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ABSTRACT 
An integrated Spatial Signature Analysis (SSA) and automatic defect classification (ADC) 
system for improved automatic semiconductor wafer manufacturing characterization is 
presented. Both concepts of SSA and ADC methodologies are reviewed and then the 
benefits of an integrated system are described, namely, focused ADC and signature-level 
sampling. Focused ADC involves the use of SSA information on a defect signature to 
reduce the number of possible classes that an ADC system must consider, thus improving 
the ADC system performance. Signature-level sampling improved the ADC system 
throughput and accuracy by intelligently sampling defects within a given spatial signature 
for subsequent off-line, high-resolution ADC. A complete example of wafermap 
characterization via an integrated SSAfADC system is presented where a wafer with 3274 
defects is completely characterized by revisiting only 25 defects on an off-line ADC 
review station. 

INTRODUCTION 
This paper presents a vision of how a promising new technology called Spatial Signature Analysis (SSA) 
[l,  21 can improve automatic defect classification (ADC) system accuracy and throughput. Optical-based 
ADC technologies for semiconductor wafer manufacturing have been under heavy development for the past 
five years [3-101 and are just recently being seriously introduced into major semiconductor fabrication 
facilities 111-121. There are many challenges in building a practical and reliable ADC system that is 
effective in identifymg manufacturing problems in a real wafer manufacturing environment. Two closeiy 
coupled characteristics of an ADC system that are still very challenging for the system designer are (1) high 
defect classification accuracy and (2) high wafer throughput. Accuracy can be a problem because there can 
be many different classes of defects that a fabrication engineer may wish to automatically identify. To 
compound the accuracy problem, defects that should be grouped into the same category may have very 
different visual characteristics. The second challenge, throughput, is an issue because automatically 
classifying a defect off-line requires the defect to be repositioned under a high resolution microscope (e.g. 
optical or scanning electron), re-imaged, re-detected, analyzed to determine defect characteristics, and, 
finally, classified. This is already a time-consuming process compared to the speed at which the in-line 
wafer inspection is accomplished. As wafer critical dimensions shrink towards 0.18pm, optical microscopes 
will be replaced by slower, higher resolution SEMs for small defect review [ 131. This will add more time to 
the defect imaging step of the process. 

AUTOMATIC DEFECT CLASSIFICATION 
ADC as applied in the semiconductor industry is the process of automatically categorizing wafer defects 
into one of multiple classes using data captured by wafer analysis instruments. The type of data that is used 
by the ADC algorithms varies with the application, but may be optical microscope image data, scanning 
electron microscope (SEM) image data, material composition information (e.g. from SEM energy 

1 .Managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract 
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dispersive spectroscopy), and confocal microscope image data, for example. There are typically three steps 
to the ADC process as shown below in Figure 1. Most ADC systems use reference-based image analysis, so 
they start with an image pair consisting of a defect image as well as a defect-free reference image. This 
defect-reference pair is subjected to a segmentation algorithm that localizes the defect and generates a 
defect mask that identifies the location and extent of the defect. This mask and the original defect-reference 
image pair are used to extract features, or descriptors, that uniquely describe the appearance of the defect. 
These features are then passed on to a defect classification algorithm that attempts to automatically 
categorize the new defect based on training exemplars provided by the expert human classifier. 

High-res Optical - 
Segmentation 
(e.g. reference- 
based) 

assification 
I 

t Feature Extraction 
(shape, color, etc.) 

Figure 1. Typical approach for automatic defect classification of semiconductor 
defects. This example shows application to both optical and SEM image data 

SPATIAL SIGNATURE ANALYSIS 
SSA is a defect analysis technology that takes as its input a wafermap (a list of defect coordinate locations 
generated by an optical- or laser-based wafer inspection tool) and locates patterns of defects, or spatial 
signatures. SSA then classifies those signatures into a specific manufacturing problem category such as 
mechanical scratch, chemical vapor deposition (CVD) contamination, or spin-on-glass (SOG) streak. Figure 
2 shows an example of a wafermap with multiple defect signatures that can be characterized into process 
specific categories. The categories that SSA will use for signature classification are user-definable and can 
therefore be specific to a particular manufacturer‘s fabrication tools. A combination of image processing, 
fuzzy clustering, feature extraction, and fuzzy-based classification are employed by SSA to segment and 
then identify the spatial signatures within the wafermap. 

The resulting spatial signatures and their classifications can then be used in several different ways. First, 
the spatial signature may be indicative of one particular problem in the manufacturing line. For example, a 
particular robotic handler may leave a distinctive scratch on the wafer, and SSA may be used to 
automatically catch that distinctive scratch “signature” indicating that the handler must be serviced. Fast 
sourcing of defects is a primary goal of the SSA technology. Another potential use of the SSA results is to 
provide a means of intelligently sampling a subset of defects on the wafer for off-line, high-resolution 
review and classification. This classification step may be manual or automatic. Typically, an ADC system 
will use a defect wafermap to determine which of the detected defects should be revisited, imaged at high 
resolution, and subsequently classified. Simple clustering techniques are sometimes applied to the wafermap 
to separate the defects into clustered versus non-clustered groups. One cluster may then be statistically 
sampled to determine which of the defects will be re-imaged and classified. SSA goes far beyond simple 
clustering and can in many cases lead to complete manufacturing process characterization without ever 
performing off-line ADC on an individual defect. 

I 



. < ‘:P 

Figure 2. Defect wafermap (bottom) showing three spatial 
signatnres: mechanical scratch (upper-left), double-slot (right), 
and particle contamination (lower-left). High-resolution image of 
particle defect (top). 

SSNADC INTEGRATION 
The integration of SSA with existing ADC technology can result in a powerful system that quickly improves 
yield through manufacturing process characterization. It is clear that SSA can improve the throughput of an 
ADC system by reducing the number of defects that must be automatically classified. For example, the 
large number of defects that comprise a mechanical scratch signature that is completely characterized by 
SSA will not need to be further analyzed by an ADC system. Even if a detected signature cannot be 
completely characterized, intelligent signarure-level defect sampling techniques can dramatically reduce the 
number of defects that need to be sent to an ADC system. This concept is illustrated in Figure 3 where the 
defects within two spatial signatures are sub-sampled and classified. The bar plot in Figure 3 shows a 
typical result where the defects within one signature belong to one or two dominant classes, Note that a few 
defects fall into other, non-dominant classes, but the signature can likely be characterized for manufacturing 
purposes by the dominant class characteristics. 

The accuracy of an ADC system can also be improved by using the output of the SSA wafermap analysis to 
perform focused ADC. Focused ADC is a strategy by which the SSA results are used to reduce the number 
of possible classes that a subsequent ADC system would have to consider for a given defect. For example, 
the SSA identification of the CVD particle contamination signature in Figure 2 can be used to eliminate 
many categories of defects such as missing pattern, resist flake, or corrosion. Only defect categories 
involving particles (dust, aluminum, organic, etc.) might need to be considered. The focused ADC concept 
is illustrated in Figure 4. Spatial signature analysis results (left) are used to influence the scope of classes 
that will be considered by an ADC system. Note that if a particular set of defects has been grouped and 
labeled as signature type SA, then the entire set of possible classes, C, is reduced to those classes that fall 
within the SA class subset. This pre-filtering of classes reduces the possible alternatives for the ADC system 
and, hence, improves that chances that the ADC system will select the correct classification. This will result 
in improved overall ADC performance. 
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Figure 3. Illustration of signature-level defect sampling concept that allows faster, 
more accurate process characterization by taking advantage of the statistical 
similarity of defects that come from the same source (all contained in one spatial 
signature). 
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Figure 4. 
information to limit the scope of possible ADC classes for a defect. 

Illustration of focused ADC concept that uses spatial signature 

SSNADC PROCESSING EXAMPLE 
The two concepts of signature-level sampling and focused ADC are probably best described through an 
example of the SSNADC process on a wafermap that contains spatial signatures. Consider the test 
wafermap shown on the left in Figure 5. This wafermap contains over 3200 defects indicating some very 
serious problems in the manufacturing process. Typically, a substantial number of these defects would have 
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to be reviewed by an off-line ADC system to determine the cause andor source of the defects. This 
hypothetical example will show how it is possible with an integrated SSNADC system to characterize the 
entire set of 3274 defects by reviewing only 25 defects on an off-line ADC system. 

The first step is to subject the test wafermap to the SSA procedure. This results in the identification of three 
spatial signatures: (1) double-slot, (2) CVD contamination, and (3) mechanical scratch. The double-slot 
signature is caused by a robotic handler that is attempting to place a wafer within a slot in a wafer boat that 
is already occupied by another wafer. Knowing this information about the spatial signature completely 
characterizes the manufacturing process for this particular problem. There is no need to revisit any of the 
defects within the double-slot signature for off-line review and ADC. The mechanical scratch signature is 
caused by a robotic handler that is scratching the surface of the wafer. Similar to the double-slot signature, 
the mechnaical scratch signature does not need to be further analyzed to determine the problem source. The 
process engineer can immediately proceed to the wafer fabrication facility to inspect and repair the 
problematic wafer handler. The CVD contamination signature information can be used to potentially 
isolate the particular CVD equipment that is contaminated, but this does not provide the process engineer 
with the information about the composition and source of the contaminant particles. Out of the three spatial 
signatures, only the contamination signature must be further analyzed to fully characterize the 
manufacturing problem. 
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Figure 5. Sample wafermap (left) processed by SSA results in three separate 
signatures: (1) double-slot, (2) chemical vapor deposition contamination, and (3) 
mechanical scratch. Only the contamination signature must be further analyzed to 
determine the manufacturing problem source. 

The wafermap on the left in Figure 6 (a continuation of Figure 5 )  contains only the CVD contamination 
signature. This signature can be used along with the focused ADC concept described previously to limit the 
number of possible ADC classes that have been historically correlated with CVD problems. In this example 
the entire set of N possible classes has been focused down to only three possibilities: (1) organic particle, 
(2) dust particle, and (3) class n (i.e. some other particle type). These three classes then become the 
candidate selections for the subsequent ADC process. The next step is to perform signature-level sampling 
and ADC by revisiting some small percentage of the total number of defects in the vapor deposition 
signature. In this example it is reasonable to assume that 2% (approximately 25) of the defects need to be 
characterized by a high-resolution ADC system to determine the composition and source of the particle 
within the signature. This completely characterizes the entire distribution of 3274 defects on the wafermap 
using an integrated SSNADC approach. 
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Figure 6. The vapor deposition contamination signature classification is used to 
focus the ADC system onto a limited number of classes, 3, out of the total possible N 
ADC classes (e.g. organic particle, dust particle, and class n). 

FUTURE WORK 
Many sensors on the semiconductor manufacturing floor collect valuable data about the state of the 
manufacturing process. These data sources include optical inspection microscopes, laser scattering 
inspection systems, electrical test probers, SEM microscopes, and in-situ particle monitors, just to name a 
few. As shown in Figure 7, these data sources can be grouped into spatial and temporal defect information 
sources. 
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Figure 7. Multiple data sources are shown that can be used for automatic 
manufacturing process characterization using spatial signature analysis combined 
with temporal signature analysis methods. 



The data streams from each of these sensors provide limited information on their own, but the combination 
of many of these sources contains much valuable information about the state of the manufacturing process. 
There are, however, no automatic process characterization (APC) tools available that can assimilate and 
then collectively analyze the data. In our future work, we intend to develop analysis procedures for more of 
these data sources (starting with electrical test and ISPM) and then attempt to fuse multiple sources with &e 
goal of a more complete automatic process characterization. It is our belief that this can enhance many 
aspects of semiconductor manufacturing including throughput, root cause determination, statistical process 
control (SPC), and real-time yield prediction and analysis. The long-term view of such a system would be 
the movement towards a completely automated manufacturing fabrication facility where the APC system 
provides closed loop tool control. 

SUMMARY 
This paper provides the conceptual framework for an integrated SSNADC analysis system. Concepts 
(focused ADC and signature-level sampling) were presented illustrating how SSA and ADC algorithms and 
hardware can work together in an automated process characterization system for improved accuracy and 
throughput. A comprehensive example was presented that showed step-by-step how an integrated 
SSNADC system can quickly and accurately characterize a problematic manufacturing process. Finally, a 
vision of automatic process characterization was presented that will fuse data from multiple sensor inputs to 
provide more accurate and timely diagnosis of manufacturing problems. 
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