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FRAGMENTATION AND ABLATION DURING ENTRY 

Gregory H. Canavan 

Objects that both fragment and ablate during entry can be treated by an 
extension to the previous separate models. The model agrees with numerical 
calculations and retains the invertibility desired for the interpretation of 
experimental data. 

This note discusses objects that both fragment and ablate during entry, using the results of 
previous reports to describe the velocity, pressure, and fragmentation of entering objects. It 
shows that the mechanisms used there to describe the breakup of non-ablating objects during 
deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation 
during entry, building on earlier models that separately discuss the entry of objects that are hard, 
whose high heat of ablation permits little erosion, and those who are strong whose strength 
prevents fragmentation, which are discussed in "Radiation from Hard Objects," 1 "Deceleration 
and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,"2 and "Meteor Signature 
Interpretation. "3 

fragments during descent. It replaces the constraint on mass per unit area used earlier to 
determine the altitude and magnitude of peak power radiation with a detailed analytic solution of 
deceleration. Model predictions are shown to be in agreement with the key features of numerical 
calculations of deceleration. The model equations are solved for the altitudes of maximum 
radiation, which agree with numerical integrations. The model is inverted analytically to infer 
object size and speed from measurements of peak power and altitude to provide a complete 
model for the approximate inversion of meteor data. 

Ablation. An earlier note discusses fragmentation without ablation during entry.4 For 
objects that ablate it is necessary to incorporate the fact that its area A decreases as material is 
eroded. That can be done by complementing the equation for the conservation of momentum 

This note provides a more detailed treatment of the further breakup and separation of 

under drag 

with an equation for the rate of change of mass due to ablation 

where Q is the heat of vaporization, which is given for various object type 

MdV/dt = - CpAV2, 

QdWdt = - JpAV3, (2) 
in Table 1, and J = 

0.1 is a heat transport coefficient.5 Taking the ratio of Eqs. (1) to (2) and integrating produces 
M = Moexp[-K(l - v2)], (3) 
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,+ where Mo and Vo are the object's initial mass and velocity, v = VNo, and K is a parameter 

Equation (3) indicates that the object's relative mass at any altitude is determined by K and v. For 
K constant, it can be used to evaluate the current area A = D2 = D02(M/M0)u3 = Do2mu3, 

K = JV02/2CQ. (4) 

which on substitution into Eq. (1) produces an equation in V only. The ablation parameter K for 
a typical initial velocity of Vo = 15 km/s is shown in Table I 

Table 1. Approximate meteor parameters. 
Q!E density(kg/m3) Q(JW S(NIm2) 
iron 8000 8x106 108 
stone 3500 8x106 107 
carbon 2200 5x106 106 
cometary IO00 2.5~106 105 

c 
2 
2 

1 - K 
0.1 0.70 
0.1 0.70 

2 0.1 1.13 
2 0.1 2.25 

For iron, K- 0.7, so that even when the velocity drops 10% below VO, the objects mass only falls - 1 - e-o-7Xo.8 = 4096, and the diameter = 10%. Weak ablation, Le., V&Q small, gives K << 1 
even for large V02, which means M/Mo falls slowly with velocity. The limit of Vo2/Q = 0 is the 
non-ablative limit treated in the earlier papers cited above. Conversely, cometary material gives 
K- 2.25, which would reduce mass = 1 - e-2-25Xo-8 = 90% as the velocity fell 10%. Strong 
ablation, i.e., Vo*/Q large, gives K >> 1, so that M/Mo falls rapidly with v, which corresponds to 
the limit of mechanically strong but thermally soft objects. Stony objects have a value of Q 
similar to that of iron, so they ablate similarly. Carbonaceous objects are intermediate between 
stony and cometary objects in Q and in the effects of ablation. 

Fragmentation conditions. The earlier note established the rough criteria for breakup 
that the pressure on the front of the object, reach the mechanical strength of the object, S. The 
ram pressure is approximately 

As the object descends, the density increases but its velocity decreases, so the pressure has a 
maximum at some intermediate altitude. An approximate solution to Eqs. (1) and (2) is 

where p is the areal density or ballistic coefficient of an object of mass M, area A, and density Pa 

Figure 1 compares the velocity from Eq. (6) with that from a direct numerical integration of Eqs. 
(1) and (2) for the vertical entry of a stony object at 15 km/s. The numerical solution shown by 
solid squares shows sharp deceleration below about 25 km. The approximate solution, which is 
quite close, is shown by solid diamonds. The open squares show the velocity that results from 

p = cpv2 ,  (5 )  

v = voe-PWP, (6) 

P = M/A ~(4x/3)pa@/2~/lt(D/2)2 0.7paD. (7) 
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+ using the time dependent value of f3 for the eroding object in Eq. (6). That approximation 
significantly overestimates the deceleration of the object because it applies the reduced density to 
the object's whole trajectory. In general, the solution using the initial p is more accurate before 
fragmentation, although it is necessary to use the rapidly decreasing fl from breakup after 
fragmentation. 

This level of agreement between the numerical and approximate velocity is obtained for a 
range of values of p, VO, and Q. Because the initial p gives an adequate approximation to V, it is 
not necessary to include the indirect effect of Q through p in estimating V. 

The corresponding approximation to the pressure is 
p c- C P V ~  c- cpvo2e-2PWP, (8) 

which is compared to the numerical solution of Eqs. (1) and (2) in Fig. 2. The agreement is 
almost exact. This level of agreement again holds for a range of p, VO, and Q, so it is not 
necessary to include the indirect effect of ablation through the effect of decreasing area on p to 
determine the dynamic pressure accurately. Because of this insensitivity of fracture to Q, the 
treatment of "Fragmentation of Weak Non-Ablating Objects During Entry" in the earlier paper is 
not changed to first order. That is not only a convenience, it means it is not necessary to review 
the full process of fragmentation again. Instead, Figs. 1-3 of "Fragmentation of Weak Non- 
Ablating Objects" can be used as they are to describe the early phases of entry. 

Because of this insensitivity of fracture to Q, it is also possible to use the initial value of f3 
in differentiating p with respect to p to find the density, Pm = P/2H, at which pressure is 
maximum, 

For the parameters of Fig. 2, Pm = P/2H c- 0.7 x 3000kg/m3 x 0.5 m / 2 x 7000 m c- 0.075 kg/m3, 
so zm = 20 km, as seen. If Pm is less than the maximum stress, S, the object does not fracture, it 
merely ablates during entry, as treated in earlier reports. If Pm exceeds S, it fractures. The case 
where it Pm exceeds S, but the object has a very high heat of vaporization was treated in the 
previous report.6 The case where it fragments and then subsequently ablates is treated below. 

After fragmentation, conditions change more rapidly. Figure 3 shows the power 
radiated as a function of altitude (measured from 20 km for ease of plotting) from 1 m objects at 
15 km/s vertical entry with heats of vaporization ranging from 1 to 16 MJkg, which more than 
span the values in Table I. Perhaps the most important observation is the simplest one: 
fragmentation has a major impact on the flow parameters absent fragmentation, but ablation has 
only a factor of two impact on those from fragmentation. That is, in the absence of 
fragmentation, the power curves would extend over one or more scale heights at much lower 
altitudes. With fragmentation, the power radiation is compressed into 1 km in altitude for the 

Pm = CVo2P/2HI (9) 
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3 lowest Q and only about 2 km for the highest. Conversely, given fragmentation, the full range of 
Q only changes the peak radiation rate by about a factor of two, and the width by a like amount. 

Figure 4 shows the velocity as a function of altitude (from 20 km) for 1 m objects with heats of 
vaporization from 1 to 16 MJkg incident vertically at 15 M s .  All experience significant 
deceleration by 24-25 km and are essentially stopped by 23-24.5 km. While these differences are 
of interest, they would not be detectable with the rough altitude and time resolution of current 
sensors. Comparing Figs. 4 and 3 shows that for each value of Q, the velocity has only decreased 
about 20% from its initial value at the time of peak radiated power, which would be difficult to 
detect kinematically. 

Figure 5 shows the mass as a function of altitude (from 20 km) for 1 m objects with 1 to 
16 M J k g  heats of vaporization from incident vertically at 15 km/s. All experience significant 
erosion by 24-26 km. Those with Q c 2 MJkg are essentially eroded away by 25 km. Stone and 
iron objects would be eroded by about a factor of two. Stronger objects would be eroded little. 
These differences are significant in predicting the amount of meteoroids that might be found, 
they would not be detectable with cumnt sensors, which are primarily sensitive to light 

Ablation does, however, have a noticeable impact on post-fragmentation conditions. 

emission. Comparing Figs. 5 and 3 shows that for each Q, the m a s  has decreased by less than a 
factor of two from its initial value at the time of peak radiated power, which is within the range 
of validity of the scaling models used below. 

Figures 3,4, and %together with the treatment of fragmentation presented in 
"Fragmentation of Weak Non- Ablating Objects"-provide the formal basis for predicting the 
optical observables from objects of various sizes and speeds. The previous paper also discusses 
the scaling of radiated power P a (DV)3 for non-ablating objects. The remainder of this paper 
largely discusses how that scaling-and its inversion-are modified for strongly ablating objects. 
However, Fig. 3 already indicates the principal result: ablation makes factor of two modifications 
to the basic parameters set by fragmentation. 

Analysis. Before fragmentation, the velocity changes relatively little, which permits 
replacing v = V N o  in Eq. (6) by 

which reduces Eq. (3) to 
v = e-PWP = 1 - pwp. 

m = exp[-K( 1 - v2)] = exp[-K( 1 - { 1 - 2pwPo})] = e-2KpWpo = v2K. 
Figures 4 and 5 show that these approximations for v and m are not accurate after fragmentation. 
However, the result in Q. (3), that the relative mass is a direct function of the relative velocity, 
holds whether on not the object fragments. Thus, it is valid throughout the fragmentation process, 
if a replacement for the v of Eq. (10) can be found. 
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3 If the object fragments, that increases its total effective area, which increases drag, which 
causes the fragments to decelerate faster. As long as the pressure on a fragment remains larger 
than its strength, it will fragment, which increases the total area still further. That process can 
proceed through several generations until the fragments move too far apart to share a common 
shock or are decelerated enough to reduce the pressure below their material strength, which stops 
the cascade process and allows the fragments to descend as individual objects. 

apart at an approximate transverse speed7 

where pf is the density at the breakup altitude and k is a constant on the order of unity. For stony 
objects with Pa = 3,000 kg/m3 that breakup at about 30 km, or pf = 0.01 kg/m3, d(p@pa) = 
0.002, so Vt = 0.002 V = 40 m/s.  Thus, in descending a distance h, the fragments expand to a 
diameter 

(13) 
and area 

(14) 
which can be substituted into Eq. (1). However, to separate Eqs. (1) and (2 ) it is necessary to 
make the further approximation that the mass does not change rapidly during cascade expansion. 
That is justified by Fig. 5, which shows that the mass typically falls by less than a factor of two 
during deceleration. The one additional approximations is that the density does not vary rapidly 
during deceleration. Figure 4 shows that deceleration typically occurs over a distance of 2-3 km, 
during which the density increases by less than a factor of two. With these approximations, 
which are discussed further below, Eq. (1) reduces to 

whose solution is 

This cascade process can be modeled approximately. After breakup the fragments move 

Vt = l4pflpa)  V, (12) 

Df = Vt h/V = kd(pf/pa) h, * 

A = Df2 = k2(pf/pa) h2, 

MdV/dt = -Cpf (D + Vt t)2V2, 

Va = 1/{ [(D + Vt Q3 - D3]NCpf/(3MVt ) +  NO}, 

(15) 

(16) 
where Vo is the initial velocity and N is a parameter inserted to account for the averaging over 
density and mass. Figure 6 compares the numerical solution of Eqs. (1) and (2) with the results of 
Eq. (16) for the fragmentation of a 1 m object at 28 km. The analytic plots are shown for N = 
0.25 and 0.75, which roughly bound the velocity curve at all appreciable levels. The value of N = 
0.25 matches the slope of the numerical solution closely down to about 26 km. For lower 
altitudes it falls much too slowly. The value of 0.75 Iies sIightIy below the numerical solution to 
about 25 km. For lower altitudes it is significantly higher, although that is a level such that little 
radiation would be produced. 

time would decrease. The neglect of the erosion of M and of the increase of density during 
It is clear from the form of Eq. (16) that if M increased or p decreased, the velocity at any 
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deceleration has just that effect. Thus, it is expected that the analytic velocity would have larger 
values at late times. It is possible to use more careful approximations to M and more careful 
integrations over density to remove these errors. However, the goal here is to produce an 
invertible approximation for the power radiated during the maximum deceleration period, for 
which those comtions are not required. For the approximate velocity of Eq. (16), the 
approximate radiation rate is 

which is compared with the numerical result in Fig. 7. The numerical value is shown by the solid 
squares. The curve for N = 0.25 lies well above it at peak, peaks at a lower altitude, and falls 
much more slow1 a lower altitudes. The curve for N = 0.75 peaks at the same altitude, although 
at a lower dtimde, and falls about as rapidly at lower altitudes. Depending on whether it was 
necessary to model the peak power or integral energy, the curve for N = 0.75 could be adjusted 
to the numerical result by multiplying the peak or integral by about a factor of 413. 

P = p (D + v t  tpv3,  w 

*.?- .L L 

(17) 
I 

Impactor parameters. Using Eq. (l), P may be written as 
P a y2/ (y3 + K)3, [7 , P L  

where y = D + Vt t and K = 3MVt / NCpfVo - D3, whose s o l d n  is 

from which the time to maximum power is 
D + Vt t = (2W7)1/3 

t m a  = [(2wl)i/3 - D] / Vt, 

p.4-s- 

and the altitude to maximum power is 
Azmax = Vo tmax, (21) 

which is shown in Fig. 8 for 0.5 and 1 m objects incident vertically at 15 km/s. The 1 m object 
travels about 3 km from a fragmentation at 35 km to peak radiation at 32 km. The 0.5 m object 
travels about 1.5 km. For fragmentation at 25 km, those distances are each about halved. The 1 m 
fragments would deposit at about 25 - 1.5 = 23.5 km, in accord with Fig. 7 for N = 0.75, which 
was also used in constructing Fig. 8. For fragmentation altitudes below 20 km the deposition 
altitudes are only about 1 km lower, which is probably not detectable. 

Figure 9 shows the deceleration altitude of 0.5 and 1 m objects as functions of their initial 
velocity. The smaller objects decelerate higher, particularly at higher velocities. Figure 10 shows 
the time to peak radiation as a function of object size and speed. The larger objects have longer 
times because they penetrate further. The times to peak are short compared to the width of the 
peak radiation, but could be useful as auxiliary diagnostics. 

Inversion for fragmenting and ablating objects. These results can also be used to work 
backwards to infer the parameters of fragmenting objects from observations. For fragmenting 
objects, the fundamental measurement are the peak power and altitude. From Eqs. (18) and (19), 

P a y2/ (y3 + K)3 = (2IW)2/3 / (2IW + K)3 - 1/~7/3 ,  (22) 
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I/ 
so that K - P3n, which can be used with Q. (19) to estimate t and D as before. Thus, this J 
solution for fragmenting and ablating objects maintains the invertibility of the earlier separate 
solutions for objects that fragmented or ablated only. 

that both fragment and ablate during entry. It uses the kinematic results of previous reports to 
describe the velocity and pressure of entering objects. It shows that the mechanisms used to 
describe the breakup of non-ablating objects during deceleration remain valid for most ablating 
objects as well. It provides a more detailed treatment of the further breakup and separation of 
fragments during their descent. It replaces the constraint on mass per unit area used earlier to 
determine the altitude and magnitude of peak power radiation with a detailed analytic solution of 
their time dependent deceleration. This analytic model is shown to be sufficiently accurate and to 
reduce to those derived earlier in appropriate limits. The model predictions are shown to be in 
agreement with the key features of numerical calculations of deceleration-particularly velocity 
and power. The model equations are solved for the altitude of maximum radiation, which agrees 
with numerical integrations. The model is inverted analytically to infer object size and speed 
from measurements of peak power and altitude. It thus forms a complete model for the 
approximate inversion of meteor data. 

Summary and conclusions. This note discusses the estimate of the parameters of objects 
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