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FRAGMENTATION AND ABLATION DURING ENTRY

Gregory H. Canavan

Objects that both fragment and ablate during entry can be treated by an
extension to the previous separate models. The model agrees with numerical
calculations and retains the invertibility desired for the interpretation of
experimental data.

This note discusses objects that both fragment and ablate during entry, using the results of
previous reports to describe the velocity, pressure, and fragmentation of entering objects. It
shows that the mechanisms used there to describe the breakup of non-ablating objects during
deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation
during entry, building on earlier models that separately discuss the entry of objects that are hard,
whose high heat of ablation permits little erosion, and those who are strong whose strength
prevents fragmentation, which are discussed in "Radiation from Hard Objects,"1 "Deceleration
and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,"2 and "Meteor Signature
Interpretation."3

This note provides a more detailed treatment of the further breakup and separation of
fragments during descent. It replaces the constraint on mass per unit area used earlier to
determine the altitude and magnitude of peak power radiation with a detailed analytic solution of
deceleration. Model predictions are shown to be in agreement with the key features of numerical
calculations of deceleration. The model equations are solved for the altitudes of maximum
radiation, which agree with numerical integrations. The model is inverted analytically to infer
~ object size and speed.from measurements of peak power and altitude to provide a complete
model for the approximate inversion of meteor data.

Ablation. An earlier note discusses fragmentation without ablation during entry.4 For
objects that ablate it is necessary to incorporate the fact that its area A decreases as material is
eroded. That can be done by complementing the equation for the conservation of momentum

under drag

MdV/dt = - CpAV2, (1)
with an equation for the rate of change of mass due to ablation

QdM/dt = - JpAV3, (2)

where Q is the heat of vaporization, which is given for various object types in Table 1, andJ =
0.1 is a heat transport coefficient. Taking the ratio of Egs. (1) to (2) and integrating produces
M = Moexp[-K(1 - v2)], 3




i

where Mg and Vg are the object's initial mass and velocity, v = V/Vg, and K is a parameter

K =JVo2/2CQ. 4
Equation (3) indicates that the object's relative mass at any altitude is determined by K and v. For
K constant, it can be used to evaluate the current area A = D2 = Dg2(M/M)%/3 = Dy2m2/3 ,

which on substitution into Eq. (1) produces an equation in V only. The ablation parameter K for
a typical initial velocity of Vg = 15 km/s is shown in Table I

Table 1. Approximate meteor parameters.

type density (kg/m3) QU/kg) S(N/m2)

C i K
iron 8000 8x106 108 2 0.1 0.70
stone 3500 8x106 107 2 01 070
carbon 2200 5x106 106 2 0.1 113
cometary 1000 2.5x106 105 2 0.1 225

For iron, K= (.7, so that even when the velocity drops 10% below Vo, the objects mass only falls
~1-¢0.7x0.8 = 40%, and the diameter = 10%. Weak ablation, i.e., V02/Q small, gives K<< 1
even for large Vo2, which means M/M, falls slowly with velocity. The limit of Vo2/Q = 0 is the
non-ablative limit treated in the earlier papers cited above. Conversely, cometary material gives
K= 2.25, which would reduce mass = 1 - ¢-2-25X0.8 =~ 90% as the velocity fell 10%. Strong
ablation, i.e., Vo2/Q large, gives K >> 1, so that M/Mg falls rapidly with v, which corresponds to
the limit of mechanically strong but thermally soft objects. Stony objects have a value of Q
similar to that of iron, so they ablate similarly. Carbonaceous objects are intermediate between
stony and cometary objects in Q and in the effects of ablation.

Fragmentation conditions. The earlier note established the rough criteria for breakup
that the pressure on the front of the object, reach the mechanical strength of the object, S. The
ram pressure is approximately

p=CpVZ2, )
As the object descends, the density increases but its velocity decreases, so the pressure has a
maximum at some intermediate altitude. An approximate solution to Egs. (1) and (2) is

V = Ve PH/B, - (6)
where P is the areal density or ballistic coefficient of an object of mass M, area A, and density pa
B = M/A = (47/3)pa(D/2)3/m(D/2)2 = 0.7paD. @)

Figure 1 compares the velocity from Eq. (6) with that from a direct numerical integration of Egs.
(1) and (2) for the vertical entry of a stony object at 15 km/s. The numerical solution shown by
solid squares shows sharp deceleration below about 25 km. The approximate solution, which is
~quite close, is shown by solid diamonds. The open squares show the velocity that results from




using the time dependent value of B for the eroding object in Eq. (6). That approximation
significantly overestimates the deceleration of the object because it applies the reduced density to
the object's whole trajectory. In general, the solution using the initial B is more accurate before
fragmentation, although it is necessary to use the rapidly decreasing P from breakup after
fragmentation.

This level of agreement between the numerical and approximate velocity is obtained for a
range of values of B, Vo, and Q. Because the initial B gives an adequate approximation to V, it is

-not necessary to include the indirect effect of Q through P in estimating V.

The corresponding approximation to the pressure is

p=CpV2 =CpVo2e-2pH/B, (8)
which is compared to the numerical solution of Egs. (1) and (2) in Fig. 2. The agreement is
almost exact. This level of agreement again holds for a range of 8, Vo, and Q, so it is not
necessary to include the indirect effect of ablation through the effect of decreasing area on f8 to
determine the dynamic pressure accurately. Because of this insensitivity of fracture to Q, the
treatment of "Fragmentation of Weak Non-Ablating Objects During Entry" in the earlier paper is
not changed to first order. That is not only a convenience, it means it is not necessary to review
the full process of fragmentation again. Instead, Figs. 1-3 of "Fragmentation of Weak Non-
Ablating Objects” can be used as they are to describe the early phases of entry.

Because of this insensitivity of fracture to Q, it is also possible to use the initial value of
in differentiating p with respect to p to find the density, pm = p/2H, at which pressure is
maximum,

Pm = CVo2B/2H, ©)
For the parameters of Fig. 2, pm = p/2H = 0.7 x 3000kg/m3 x 0.5 m / 2 x 7000 m = 0.075 kg/m3,
0 zm = 20 km, as seen. If Pm is less than the maximum stress, S, the object does not fracture, it
merely ablates during entry, as treated in earlier reports. If pm exceeds S, it fractures. The case
where it pm exceeds S, but the object has a very high heat of vaporization was treated in the
previous report.6 The case where it fragments and then subsequently ablates is treated below.

After fragmentation, conditions change more rapidly. Figure 3 shows the power
radiated as a function of altitude (measured from 20 km for ease of plotting) from 1 m objects at
15 km/s vertical entry with heats of vaporization ranging from 1 to 16 MJ/kg, which more than
span the values in Table 1. Perhaps the most important observation is the simplest one:
fragmentation has a major impact on the flow parameters absent fragmentation, but ablation has
only a factor of two impact on those from fragmentation. That is, in the absence of
fragmentation, the power curves would extend over one or more scale heights at much lower

 altitudes. With fragmentation, the power radiation is compressed into 1 km in altitude for the
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lowest Q and only about 2 km for the highest. Conversely, given fragmentation, the full range of
Q only changes the peak radiation rate by about a factor of two, and the width by a like amount.

Ablation does, however, have a noticeable impact on post-fragmentation conditions.
Figure 4 shows the velocity as a function of altitude (from 20 km) for 1 m objects with heats of
vaporization from 1 to 16 MJ/kg incident vertically at 15 km/s. All experience significant
deceleration by 24-25 km and are essentially stopped by 23-24.5 km. While these differences are
of interest, they would not be detectable with the rough altitude and time resolution of current

_ sensors. Comparing Figs. 4 and 3 shows that for each value of Q, the velocity has only decreased

about 20% from its initial value at the time of peak radiated power, which would be difficult to
detect kinematically.

Figure 5 shows the mass as a function of altitude (from 20 km) for 1 m objects with 1 to
16 MJ/kg heats of vaporization from incident vertically at 15 km/s. All experience significant
erosion by 24-26 km. Those with Q < 2 MJ/kg are essentially eroded away by 25 km. Stone and
iron objects would be eroded by about a factor of two. Stronger objects would be eroded little.
These differences are significant in predicting the amount of meteoroids that might be found,
they would not be detectable with current sensors, which are primarily sensitive to light
emission. Comparing Figs. 5 and 3 shows that for each Q, the mass has decreased by less than a
factor of two from its initial value at the time of peak radiated power, which is within the range
of validity of the scaling models used below.

Figures 3, 4, and 5—together with the treatment of fragmentation presented in
"Fragmentation of Weak Non-Ablating Objects"—provide the formal basis for predicting the
optical observables from objects of various sizes and speeds. The previous paper also discusses
the scaling of radiated power P o (DV)3 for non-ablating objects. The remainder of this paper
largely discusses how that scaling—and its inversion—are modified for strongly ablating objects.
However, Fig. 3 already indicates the principal result: ablation makes factor of two modifications
to the basic parameters set by fragmentation.

Analysis. Before fragmentation, the velocity changes relatively little, which permits
replacing v = V/Vg in Eq. (6) by

v=ePHPB=1-pHP. (10)
which reduces Eq. (3) to
m = exp[-K(1 - v2)] = exp[-K(1 - {1 - 2pH/Bo})] = e-2KpH/Po ~ y2K (11)

Figures 4 and 5 show that these approximations for v and m are not accurate after fragmentation.

However, the result in Eq. (3), that the relative mass is a direct function of the relative velocity,
holds whether on not the object fragments. Thus, it is valid throughout the fragmentation process,
| if a replacement for the v of Eq. (10) can be found.
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If the object fragments, that increases its total effective area, which increases drag, which
causes the fragments to decelerate faster. As long as the pressure on a fragment remains larger
than its strength, it will fragment, which increases the total area still further. That process can
proceed through several generations until the fragments move too far apart to share a common
shock or are decelerated enough to reduce the pressure below their material strength, which stops
the cascade process and allows the fragments to descend as individual objects.

This cascade process can be modeled approximately. After breakup the fragments move
apart at an approximate transverse speed7

Vi =kV(pfipa) V, (12)
where pf is the density at the breakup altitude and k is a constant on the order of unity. For stony
objects with pa =~ 3,000 kg/m3 that breakup at about 30 km, or pf = 0.01 kg/m3, V(pfpa) =
0.002, so Vi =0.002 V = 40 m/s. Thus, in descending a distance h, the fragments expand to a
diameter

Df = ViV =kV(pflipa) b, (13)
and area ,
A =Df2 =k2(pflpy) b2, (14)

which can be substituted into Eq. (1). However, to separate Egs. (1) and (2 ) it is necessary to
make the further approximation that the mass does not change rapidly during cascade expansion.
That is justified by Fig. 5, which shows that the mass typically falls by less than a factor of two
during deceleration. The one additional approximations is that the density does not vary rapidly
during deceleration. Figure 4 shows that deceleration typically occurs over a distance of 2-3 km,
during which the density increases by less than a factor of two. With these approximations,
which are discussed further below, Eq. (1) reduces to

MdV/dt = -Cpf (D + V¢ 1)2V2, : (15)
whose solution is
Va = V{[(D + V¢ )3 - D3INCp£/(3MV¢) + 1/Vo}, (16)

where Vo is the initial velocity and N is a parameter inserted to account for the averaging over
density and mass. Figure 6 compares the numerical solution of Egs. (1) and (2) with the results of
Eq. (16) for the fragmentation of a 1 m object at 28 km. The analytic plots are shown for N =
0.25 and 0.75, which roughly bound the velocity curve at all appreciable levels. The value of N =
0.25 matches the slope of the numerical solution closely down to about 26 km. For lower
altitudes it falls much too slowly. The value of (.75 lies slightly below the numerical solution to
about 25 km. For lower altitudes it is significantly higher, although that is a level such that little
radiation would be produced.

It is clear from the form of Eq. (16) that if M increased or p decreased, the velocity at any

~ time would decrease. The neglect of the erosion of M and of the increase of density during




deceleration has just that effect. Thus, it is expected that the analytic velocity would have larger
values at late times. It is possible to use more careful approximations to M and more careful
integrations over density to remove these errors. However, the goal here is to produce an
invertible approximation for the power radiated during the maximum deceleration period, for
which those corrections are not required. For the approximate velocity of Eq. (16), the
approximate radiation rate is

P=p D+ Vi1)2V3, _ v an
which is compared with the numerical result in Fig. 7. The numerical value is shown by the solid
squares. The curve for N = 0.25 lies well above it at peak, peaks at a lower altitude, and falls
much moreﬁslov:{}xhaLl‘(lwer altitudes. The curve for N = 0.75 peaks at the same altitude, although
at a lower altitude, and falls about as rapidly at lower altitudes. Depending on whether it was
necessary to model the peak power or integral energy, the curve for N = 0.75 could be adjusted
to the numerical result by multiplying the peak or integral by about a factor of 4/3.

Impactor parameters. Using Eq. (1), P may be written as

P a y2/ (y3 + K)3, et (18)
where y = D + Vi tand K = 3MV{¢/ NCpfVo - D3, whose solution is

D +Vit=QKMNI3, (19)
from which the time t& maximum power is

tmax = [@KM1/3 - D]/ v, (20)
and the altitude to maximum power is

Azmax = Vo tmax, (21)

which is shown in Fig. 8 for 0.5 and 1 m objects incident vertically at 15 km/s. The 1 m object
travels about 3 km from a fragmentation at 35 km to peak radiation at 32 km. The 0.5 m object
travels about 1.5 km. For fragmentation at 25 km, those distances are each about halved. The 1 m
fragments would deposit at about 25 - 1.5 = 23.5 km, in accord with Fig. 7 for N = 0.75, which
was also used in constructing Fig. 8. For fragmentation altitudes below 20 km the deposition
altitudes are only about 1 km lower, which is probably not detectable.

Figure 9 shows the deceleration altitude of 0.5 and 1 m objects as functions of their initial
velocity. The smaller objects decelerate higher, particularly at higher velocities. Figure 10 shows
the time to peak radiation as a function of object size and speed. The larger objects have longer
times because they penetrate further. The times to peak are short compared to the width of the
peak radiation, but could be useful as auxiliary diagnostics.

Inversion for fragmenting and ablating objects. These results can also be used to work

backwards to infer the parameters of fragmenting objects from observations. For fragmenting
objects, the fundamental measurement are the peak power and altitude. From Eqs. (18) and (19),
| P o y2/ (y3 + K)3 = @K/M2/3/ 2K/7 + K)3 ~ /K73, (22)




Y ,
so that K ~ P3/7, which can be used with Eq. (19) to estimate t and D as before. Thus, this /
solution for fragmenting and ablating objects maintains the invertibility of the earlier separate
solutions for objects that fragmented or ablated only.

Summary and conclusions. This note discusses the estimate of the parameters of objects
that both fragment and ablate during entry. It uses the kinematic results of previous reports to
describe the velocity and pressure of entering objects. It shows that the mechanisms used to
describe the breakup of non-ablating objects during deceleration remain valid for most ablating
objects as well. It provides a more detailed treatment of the further breakup and separation of
fragments during their descent. It replaces the constraint on mass per unit area used earlier to
determine the altitude and magnitude of peak power radiation with a detailed analytic solution of
their time dependent deceleration. This analytic model is shown to be sufficiently accurate and to
reduce to those derived earlier in appropriate limits. The model predictions are shown to be in
agreement with the key features of numerical calculations of deceleration—particularly velocity
and power. The model equations are solved for the altitude of maximum radiation, which agrees
with numerical integrations. The model is inverted analytically to infer object size and speed
from measurements of peak power and altitude. It thus forms a complete model for the
approximate inversion of meteor data.
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