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Abstract 
This paper points out that the traditional perspec- 
tive of evolutionary computation may not provide the 
complete picture of evolutionary search. This paper 
focuses on gene expression-transformations of rep- 
resentation (DNA+RNA+Protein) from a the per- 
spective of relation construction. It decomposes the 
complex process of gene expression into several steps, 
namely (1) expression control of DNA base pairs, 
(2) alphabet transformations during transcription and 
translation, and (3) folding of the proteins from se- 
quence representation to Euclidean space. Each of 
these steps is investigated on grounds of relation con- 
struction and search efficiency. At the end these pieces 
of the puzzle are put together to develope a possibly 
crude and cartoon computational description of gene 
expression. 

1 Introduction 
Intra-cellular expression of genetic information in a 
living organism plays a critical role in the emergence 
of different forms of life. Different regions of DNA, 
the carrier of genetic information, are transcribed in 
different cells of an organism for producing messen- 
ger RNA (mRNA). Messenger RNA sequences are in 
turn translated to produce proteins, which are respon- 
sible for almost every activity of a living being. The 
transformation of the information coded in DNA to 
the proteins is often called gene ezpression. Little at- 
tention has been paid to understand the quantitative 
role of this intra-cellular flow of genetic information 
in evolutionary search. Almost all state of the art 
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evolutionary algorithms acknowledge very little com- 
putational importance of gene expression. 

In this paper we study the seemingly major steps 
in gene expression from the perspective of blackbox 
search or optimization (BBO). We start by revisiting 
the decomposition of BBO in terms of constructing 
partial orders in the relation and class spaces, pro- 
posed elsewhere (?). Detecting relations that capture 
patterns of the high fitness regions of the search space 
require explicit mechanisms for representing the func- 
tional definition of patterns and inducing them from 
samples taken from the search space. Since naive mu- 
tation is exponential in time complexity and naive 
crossover also takes exponential time for learning even 
similarity based equivalence classes or schemata (let 
alone more general classes) (?), it is natural to con- 
jecture that may be we are missing another piece 
of the puzzle of evolutionary computation. In nat- 
ural evolution proteins define the underlying search 
space. The shapes of the proteins define their pheno- 
type, in other words their efficacy. Production of a 
protein is characterized by (1) gene regulatory con- 
trols, (2) transformation of sequence reprsentations 
(DNA+RNA+Amino acid sequence) , and (3) fold- 
ing of the amino acid sequence into Euclidean space. 
Clearly, gene expression plays a major role in chang- 
ing and defining the evolutionary representation; also 
note that representation is a natural way to manip- 
ulate and capture relations. Let us summarize the 
points noted so far to drive the idea home: 

1. crossover, mutation, selection alone appear to 
be computationally inefficient for learning even 
schemata, let alone more general classes; 

2. gene expression constructs representation in nat- 
ural evolution; 
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3. popular models of evolutionary computation do 
not explain gene expression well. 

This naturally leads us to hypothesize that may be 
gene expression is the missing piece of puzzle in evo- 
lutionary computation that offer mechanisms to learn 
relations, critical for designing scalable BBO algo- 
rithms. 

Section 2 reviews the decomposition of BBO pro- 
posed by the SEARCH framework. 

2 BBO Decomposition 
SEARCH 

In 

The SEARCH (Search Envisioned As Relation and 
Class Hierarchizing) framework developed elsewhere 
(Kargupta, 1995; Kargupta & Goldberg, 1996) offered 
a decomposition of BBO with a flavor of probabilis- 
tic and approximate approach. In this section, we 
briefly review the decomposition of BBO proposed by 
the SEARCH framework into relation, class, and sam- 
ple spaces. 

The foundation of SEARCH is based on the fact 
that induction is an essential part of black box op- 
timization, since in absence of any analytic informa- 
tion about the objective function structure, a BBO 
algorithm must guess based on the samples it takes 
from the search space. SEARCH also notes that in- 
duction is no better than table look up unless we re- 
strict the scope of the inductive search algorithm to a 
finite set of relations’ among the search space mem- 
bers. If relations are important to consider, then we 
should pay careful attention to determine which rela- 
tion is “appropriate” and which is not. Let us take 
an example to illustrate the idea. Say, we have a few 
people sitting in a room and we would like to identify 
the person with highest amount of money in his/her 
pocket. If we want to do any better than enumeration, 
i.e. exhaustively picking every person in the room 
and checking his pocket for the amount of money he 
or she has, we must make intelligent guesses by ob- 
serving certain features of the people (e.g. quality of 
dress, shoes etc.). If we consider “all possible fea- 
tures” we are again back to enumeration (Watanabe, 
1969; Mitchell, 1980). We must consider a certain fi- 
nite set of features that defines the bias of the process. 
Features, like quality of dress define relations among 
the set of people. Depending on what we mean by 
the “quality of dress”, such a relation may divide the 

‘A relation is defined as a set ordered tuples. A class is a 
tuple of elements taken from the domain under consideration. 
In this paper we will primarily be concerned with tuples taken 
from space of n-ary Cartesian products of the search domain 
with itself. 

set of people into different classes, such as cheaply 
dressed people, very expensively dressed people, and 
so on. We consider hypotheses defined by the feature 
set, use it to divide the search space into different 
classes, and evaluate hypotheses using samples taken 
from the search domain. The set of features that we 
restrict our attention to may be pre-determined or dy- 
namically constructed during the course of induction. 
The decomposition of BBO in SEARCH in terms of 
relation, class, and sample spaces essentially captures 
this idea. Note that, the search for relations is es- 
sential, since some relations are inherently good and 
some are not. For example, uquality of dress” may be 
a good one; however, “color of the hair” may not be 
a good relation for the above mentioned problem. In 
SEARCH, relations that are inherently good for deci- 
sion making are said to properly delineate the search 
space. If we construct a partial ordering among the 
classes, defined by a relation of order k (logarithm of 
the number of classes defined by the relation), select 
the “top” ranked classes for further exploration and 
the class containing the optimal solution is one among 
those selected classes, then we say that order-k rela- 
tion properly delineates the search space. The search 
for appropriate relations and classes can be viewed as 
a decision making processes in the relation and class 
spaces respectively. SEARCH offers a general prob- 
abilistic and approximate framework to do that. If 
the relation space provided a priori to the search al- 
gorithm contains all the relations needed to solve a 
problem and the order of all of these suitable rela- 
tions is bounded from top by some constant k, then 
the given problem can be solved in sample complex- 
ity (can be loosely defined as the number of samples 
taken for solving the problem) polynomial in problem 
size, solution quality, success probability. This class of 
problem is called the class of order-k delineable prob- 
lems. 

The traditional perspective toward BBO is often po- 
larized by the desire to find optimal solutions, asymp- 
totic convergence, ways to get out of local optima-s. 
While they are certainly important, the big picture of- 
ten gets lost amidst all these issues. SEARCH points 
out that, since induction is an essential part of BBO, 
search for appropriate relations is the critical step in 
BBO. In stead of looking for better solutions from be- 
ginning, SEARCH advocates a BBO algorithm to first 
detect the structure of the search space, induce rela- 
tions to capture that, and then identify desired quality 
solutions. Following the SEARCH analysis, we note 
that two main steps of any BBO algorithm should be, 

1. construction/selection of relations that properly 
delineates the search space; 

2. detection of better classes 



Capturing the symmetries and assymetries of a search 
space in terms of relations is a challenging task and 
this is the primary topic of this paper. 

3 Relations Among What? 
Previous sections used the term relation in an abstract 
set theoretic sense. Although we talked about re- 
lations among the search space members in general, 
recall that our fundamental objective is to identify 
order-k delineable relations, i.e. relations that iden- 
tify members of the search space that may contain 
the desired quality solution. Unfortunately in BBO, 
we do not know the desired solution a priori. There- 
fore detection of order-k delineable relations involves 
two steps: (1) identifying relations that capture better 
regions of the search space as classes and (2) use these 
relations to direct the future directions of search. The 
former step constructs or selects a relation and the lat- 
ter step evaluates the efficacy of the relation in guiding 
the search into desired quality solutions. 

Relations that we use for capturing better regions of 
the search space, need to be either selected from a pre- 
defined repository of relations or constructed on the 
fly from the search space members. In many existing 
search algorithms, relation space is either implicitly or 
explicitly defined a priori; Representation, search op- 
erators, heuristics often contribute to defining the rela- 
tion space. If sufficient domain knowledge is available, 
then highly effective and specialized relation space can 
be crafted for that domain specific application. Un- 
fortunately, in BBO such luxury is often unaffordable. 
This lead us to the following dielema. If our BBO al- 
gorithm uses a very restricted relation space then the 
scope of the algorithm is accordingly restricted; on the 
other hand, as we make the relation space richer and 
larger, we pay a price in terms of the cost for search- 
ing appropriate relations in the relation space. For 
example, in perceptron the representation was quite 
restricted which made it capable of learning only linear 
classifiers (?). On the other hand, the repersentation 
of a general three layered neural network (3-CNN) is 
very reach and it is backed by the Kolmogorov map- 
ping theorem (); unfortunately, 3-CNN pays a price 
for such richness in representation and it has already 
been shown elsewhere () that 3-CNN is not polyno- 
mial time learnable. An example of inadequecy of the 
representation can be given using the sequence repre- 
sentation used in simple genetic algorithm. Design of 
simple GA is often based on the processing of simi- 
larity based equivalence classes or schemata, defined 
by the partitions introduced by defining equivalence 
over variable positions in the sequence representation. 
Consider Figures 1 and 2 which show two popular 

Figure 1: This function is an additive combination of 
two order-4 deceptive trap functions. 

BBO maximization problems. Note that the regions of 
the search space with higher objective function value 
can be captured by hyperplanes that are either orthog- 
onal or parallel to coordinate axes. In other words, 
equivalence classes defined by the partitions over the 
sequence representation can easily capture better re- 
gions of the search space that actually contain the 
globally optimal solution; for example, in Figure 1 the 
class 4# defined by the relation f# contains the glob- 
ally optimal solution. Similarly in Figure 2 the class 
1.5# contains the best solution. Now consider Figures 
3 and 4 which two other typical test functions (min- 
imization problems) often used in BBO literature. It 
is not obvious how such similarity based partitions 
defined over the sequence representation can be used 
for effectively capturing better regions of the search 
space. Nevertheless, the important thing to note that 
the local optimas or the undulations of the terrains 
do offer some symmetries or assymetries (to be pre- 
cisely defined later). In other words, if we can some- 



how capture the relations among local optima-s, these 
relations lead us to the region containing the desired 
optimal solution, For example in Figure 3 the local 
minima-s form a pattern similar to concentric circles 
about different points in the search space. If we can 
capture the symmetry of concentric circle as a relation 
and instruct the search algorithm to move along the 
radius and explore regions along the circles defined by 
this detected relation, it will soon find the optimal so- 
lution. Similarly, in Figure 4 if we connect the local 
minima-s by a piece-wise straight lines, following these 
lines may lead us the optimal solution far more effi- 
ciently than a pure random search. Simple partitions 
defined over the variables of a sequence representa- 
tion are clearly not capable of capturing the complex 
relations, such as the ones shown in Figures 3 and 
4. Clearly, we can always find problems for which a 
pre-defined relation space in insufficient to capture the 
patterns of the search space. Therefore, the strategy 
of constructing relations is more appealing compared 
to the strategy of selecting appropriate relations from 
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Figure 2: Michalewitz's function. 
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Figure 3: Langerman function 

a pre-defined relation space. 

4 Learning Relations 
And Classes In Evolutionary 
Algorithms 

Like any other BBO algorithm, performance of an evo- 
lutionary search algorithm depends on how well it cap- 
tures the regions of the search space with high fitness 
using relations and classes. A common characteristic 
among most of the popular evolutionary algorithms 
is that they all process relations and classes without 
paying explicit attention and by making subtle but im- 
portant assumptions that often restrict their efficacy 
in detecting appropriate relations and classes. 

For example, simple GA (sGA) (?) assumes relation 
space is defined by the similarity based partitions of 
the given representation. These partitions define sim- 
ilarity based equivalence classes, or schemata. Bot- 
tom line is that if sGA will work only if the good re- 
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0 transcription: formation of mRNA (ribonucleic 
acid) from DNA 

0 translation: formation of protein from mRNA 

0 protein folding 
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Figure 4: Shekel’s foxhole function. 

gions of the search space can be captured by low order 
schemata, defined by adajacently located variables in 
the chosen representation. 

5 From DNA To Protein 
DNA molecules consist of two long complementary 
chains held together by base pairs. DNA consists of 
four kinds of bases joined to a sugar-phosphate back- 
bone. The four bases in DNA are adenine (A), guanine 
(G), thymine (T) and cytosine (C). Chromosomes are 
made of DNA double helices. Bases on DNA helices 
obey the complementary base pairing rule. T and G 
pair with A and C respectively. In other words, if the 
base at a particular position of a helix is T then the 
corresponding base in the other helix should be A. 

Expression of genetic information coded in DNA 
into the proteins takes place through several compli- 
cated steps. However, the major distinct phases are 
identified as 

. ,  . ,  
guanine (G), and cytosine (C). All the bases defining 
the RNA are same as those in DNA sequences, except 
that T is replaced by U. DNA produces mRNA us- 
ing the RNA Polymerase and the regulatory proteins 
following the complementary base-pairing rules 
similar to those in DNA. 

Messenger RNA acts as the template for protein 
synthesis. Proteins are a sequence of amino acids, 
joined by peptide bonds. Messenger RNA is trans- 
ported to the cell cytoplasm for producing protein in 
the ribosome. There exists a unique set of rules that 
define the correspondence between nucleotide triplets 
(known as codons) and the amino acids in proteins. 
This is known as the genetic code. Each codon, com- 
prised of three adjacent nucleotides in a DNA chain, 
produces a unique amino acid. Although amino acid 
sequences fundamentally define proteins, formation of 
the three dimensional structure of proteins involves a 
complex non-linear process, which is often called pro- 
tein folding. This process involves interaction between 
multiple amino acid subsequences. Current under- 
standing of the process can reasonably predict the na- 
ture of secondary interaction structure among amino 
acids. However, the nature of higher order interac- 
tions, such as tertiary structure among amino acids is 
little understood. 

Like many other natural processes, steps of gene 
expression are characterized by different symmetric 
structures and operations. Let us spend a little time 
recalling some of these important symmetric proper- 
ties. 

A DNA double helix is comprised of the two com- 
plementary chains of nucleic acid bases. The notion of 
complementary base pairs exists due to the fact that 
(T-+A, A+T) and (C+G, G+C). These pairs define 
two disjoint cyclic permutations over the set of four 
nucleic acid bases. Similarly, the DNA+mRNA map- 
ping exhibits cyclic pairs (T, U) and (C, G). The ge- 
netic code that maps the mRNA into the amino-acid 
sequence in protein, also offers interesting symmetry 
properties. Table 1 tabulates the nucleic acid codons 
and their corresponding amino acids. Note that most 
of the rows of the table have multiple codons listed 
against one amino acid. For example, the first row 
shows that GCA, GCC, GCG, GCU all map to Ala- 
nine. In other words, this set of four codons offers 



I Alanine I GCAGCCGCGGCU 
Hydrogen bonds Ligand molecule 

/ 

I Cvsteine I UGCUGU 

Lysine AAA AAG 
Leucine UUAUUGCUACUCCUGCUU 
Methionine AUG 
Asparagine AAC AAU 
Proline CCACCCCCGCCU 

Tyrosine 1 UACUAU 
STOP I UAAUAGUGA 

Table 1: Genetic code. 

an invariant transformation to the mRNA. Since the 
“fitness” of a living organism depends on its protein 
structure, which is determined by the amino acid se- 
quence in the protein, the “fitness” remains invariant 
if any member of the set of four codons is replaced 
by another member. Such transformations are called 
fitness invariant symmetry transformations. Formally 
speaking, if #(x) is an arbitrary function, x = T XI 
where T is a linear transformation, and #(x) = #(X), 
then we say T is a fitness invariant symmetry trans- 
formation. Although such transformations keep #(x) 
invariant, they do not in general keep the eigen func- 
tions invariant. 9, an eigen function of the operator 
# is a state function that satisfies #(9) = E!@, where 
the values of E are the eigen values. In the coming 
sections these fitness invariant symmetry transform+ 
tions will play an important role. 

Capturing the abundance of symmetries in gene ex- 
pression is a challenging task. However, group theory 
offers some interesting tools to deal with symmetry 
in both physical and abstract systems. Group theory 
has been successfully used for exploiting symmetries 
in quantum mechanics (?), Group theory can also be 
used to study the computational rationale behind the 
transformations in gene expression. The following sec- 
tion presents a brief review of the necessary concepts 
of group theory used in this paper. 

Folded protein 
0 

Figure 5: A typical ligand binding site of a protein, 
like catabolite gene activator protein (CAP). 

6 Computational Decomposi- 
tion Of Gene Expression 

6.1 Protein Folding 
The shape of the protein decides the efficacy or its 

fitness. In other words they define the underlying evo- 
lutionary search space. The 3-D shape of a protein 
can be viewed as a structure generated by a set of 
points in Euclidean space. It is interesting to note 
that although the DNA and RNA are sequences of 
neuclic acids, proteins fold into a high dimensional 
Euclidean space from the sequence of amino acids. It 
is even more interesting that the actual performance of 
a protein is often decided by a small region of the sur- 
face that comes in direct contact with ligand molecule. 
Figure 5 shows a typical binding site of a protein. The 
hydrogen bonds between the protein surface and the 
ligand molecule determine how well the protein fits 
with the latter, which in turn determines the fitness 
of the protein. Although the purpose of the protein 
surface not in contact with the ligand is not clear yet, 
biologists believe that it may be needed for making the 
protein structurally stable. These observations can be 
summarized in the following manner: 

1. high dimensional evolutionary search space is 
evaluated through a mapping to the Euclidean 
space 

2. only a small fraction of the dimensions in the Eu- 
clidean space play critical role in determining the 
performance of the proteins that essentially de- 
fines life. 

Let us again recapitulate these observations in a 
broader context of BBO. Imagine you give the nature 
a BBO problem. If our conclusions are right, nature is 



likely to first project the underlying high dimensional 
search space to a low dimensional Euclidean space. 
This would only make sense if such projection does 
not change the search problem significantly. In other 
words, we would like the patterns of the search land- 
scape to remain nearly invariant-meaning, regions of 
high fitness values map to high fitness regions in the 
projected space and likewise for the regions with rela, 
tively low fitness values. If this constraint is satisfied, 
then such a mapping may be quite useful since reduc- 
tion of dimensions by a large fraction will reduce the 
search space significantly; as a result the orginal prob- 
lem may become computationaly ameneable. Now the 
question is whether we can say something concrete 
about such possibility. 

Before we answer this question, let us discuss the 
following. For most of the interesting BBO problems 
enumeration cannot be afforded. In other words, for 
all practical purposes, we would like to stop our fa- 
vorite algorithm to stop after sampling some finite 
number of points from the search space. Let us say, 
we sample some n points from a n dimensional space, 
X". If IAl be the cardinality of each of these n di- 
mensions, then the overall size of the search space is 
JAJ". It is quite natural to wonder that, since in BBO 
our perception of any pattern in the search space is 
restricted to the information provided by the n sam- 
ples, whether we need all the n dimensions for de- 
scribing the pattern. As it turns out, we can design 
a simple random polynomial time algorithm for cap- 
turing such a pattern using only O(log2(n)) dimen- 
sional Euclidean space, that keeps the search space 
nearly invariant with respect to any arbitrary met- 
ric defined over it. In order to make this claim more 
precise, let us first define the idea of graph isometry. 
A graph is a collection of nodes and edges. An edge 
connects two nodes of the graph. Let us view the n 
samples taken from the search space as the n nodes of 
a graph and also assume that there exists a distance 
metric ( p z )  that defines the distance between any two 
points from the original search space (X" ) .  An edge 
represent the distance between the two nodes it con- 
nects. An isometry is a mapping 7 from the metric 
space (Xn, pz)  to another metric space (Y", py)  such 
that pz(xl,z2) = py(cy(x1),-y(x2). In other words 
7 preserves the distance among the nodes. We say 
the mapping 7 to be E-nearly isometric, if and only 

< E. In this case we may say that if pu(Jzi)&La) - 
the mapping has an E distortion. The following theo- 
rem developed elsewhere (?) provide the foundation 
of near isometric mapping of the underlying search 
space to a Hilbert space. 

Theorem 1 (Bourgain,l985) Every n-point met- 
ric space can be mapped to a O(1ogn) Hilbert space 

P- X i , o a  

X / 

Figure 6: Near isometric representation construction 
from a finite population of samples. 

with an O(1og n) distortion. 

Proof of the following theorem (?) adopts the gen- 
eral scheme of Bourgain's work and it offers a simple 
random polynomial algorithm to obtain near isometric 
mapping. 

Theorem 2 (Linial et. al., 1994) In randompoly- 
nomial time, every n-point metric space can be em- 
bedded in $O(logan) (for any p > I), with distortion 
O(logn), where is a norm in the Euclidean space 
Si" defined by Il(zl,xa,--.,xn)llp = (E Iz i lP) l /p .  

Their algorithm works as follows. For each K. < n, such 
that K. is a power of 2, randomly pick O(1og n) sets ui 
Xn of size K. This will result in selection of O(log2 n) 
sets ul ,u2, - - -a logan.  Map any point z E Xn to 
an O(log2 n) dimensional space such each coordinate 
takes the value pz(x,ui) = min{pz(q,x2)Jz2 E ai}. 
In plain English, it means that we first randomly se- 
lect O(log2 n) subsets of sizes exponentially growing 
toward n from the sample set. Then we compute 
the smallest distance between the sample point, x un- 
der consideration and each of these selected subsets. 
We get a vector of these distance values of length 
O(log2 n), which defines the representation of x. 

Figure 6 offers a pictorial description of this algo- 
rithm, which may be quite plausible in the biological 
context. In order to judge the utility of this mapping 
approach, let us look at some experimental results. 
Consider a binary string space with A = ( 0 , l )  and 
n = 32. We used hamming distance metric. A sample 
of 30 strings are randomly generated and each of these 
strings is projected to $2". Figure 7 shows the original 
normalized distance matrix for 32 dimensional space. 
Figure 8 shows the same for the 25 dimensional newly 
constructed representational space. Figure 9 shows 
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Figure 7: Hamming distance matrix in 32 dimensional 
space. 25 dimensional space. 

Figure 8: Hamming distance matrix in the projected 

the distortion. As we see, the distortion is quite low 
for most of the members of the sample population. 

By construction, the new representation of a sam- 
pled point x, is a vector of the distance values between 
z and a set of its nearby neighbours. Note that for bi- 
nary search space, with hamming distance metric the 
maximum value can each of these dimensions can take 
is bound by the number of dimensions of the original 
search space, n. Therefore the ratio of the original 
and constructed search space cardinalities, 

This gives the order of reduction in cardinality in the 
constructed representation. Apart from the mathe- 
matical justifications, this representation also has a 
simple and intutive appeal. Consider Figure 10, where 
2 1 -  - xn be the set of points used to compute the dis- 
tance vector, i.e. the new representation of the point 
20. Constructing a relation using these points in or- 
der to capture a pattern of high fitness values, is es- 
sentially a problem of searching in the function space. 
Any particular dimension in the projected space can 
be associated with a function space defined by a pair 
of points like (xo, zl), (20, x2) and so on. For exam- 
ple, we may choose to assign a linear or a quadratic 
function connecting all such pairings with the point xo 
as shown in Figure 11. Let us recapitulate the main 
points in order make it more clear. Every coordinate 

of the new space takes a value defined by a pair of 
points. In order to define a region or a class using this 
two points we need to choose a function. Let us de- 
note such a function defined by the points xo and xi by 
&(zo, xi) (in short ti). Function ti is associated with 
the i-th dimension of the P2 space. This essentially 
defines a local coordinate system that can be used to 
capture regions of the underlying search space. Figure 
1 2  shows one possible way to capture patterns in the 
fitness landscape using linear functions. 

6.2 

Once the P2 representation space is constructed for 
the population members and the coordinates are used 
to define a local coordinate system that captures good 
regions of the search landscape, then we need to find 
a way to use this information to direct future explo- 
ration of the search space. Before discussing this, let 
us review some basic concepts connecting patterns and 
algebra. 

Patterns and algebra have very deep connection. An 
algebraic system is comprised of a set of objects, a 
set of operations defined on them, and a collection 
of properties that they satisfy. A group is a simple 
algebraic system, defined by a set of elements, a com- 
posure operation, such that the elements satisfy asso- 
ciativity property, have unique inverse and an iden- 
tity element. Readers not familiar with groups may 
wish to refer to the appendix for a brief exposure to 

From proteins to RNA sequences 
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Figure 9: Mapping distortion. 

elementary group theory. In the following we are pri- 
marily going to use the intutive ideas behind groups. 
As noted earlier, algebraic structures can be used for 
capturing patterns. Groups can also be used for cap- 
turing symmetry, a certain kind of pattern. Consider 
an equlateral triangular object. Now if our eyes are 
blind-folded, one way to realize the triangular shape is 
to rotate the object and measure its surface properties 
at different locations. This essentially means that we 
are applying rotational transformations and checking 
for the invariance of the surface property. The sym- 
metry of such a triangular object can be captured by 
a group of permutation operations. 

Earlier in this paper, we discussed the geomet- 
rical perspectives of schemata. Let us now con- 
sider a schema in the algebraic context. Consider a 
space of 5-bit binary strings defined by 5 coordinates 
XI, x2, - - ‘x5. Let f f * ** be the partition that divides 
the space into four schemata, namely 11 * **, 10 * **, 
01 * ** and 00 * **. Any similarity based partition like 
this can be captured by a permutation group. Con- 
sider the set of transformations, defined by all possi- 
ble permutation transformations over the coordinates 
contributing a wild card (*) in the partition. This 
set of transformations define a permutation group and 
any schemata defined by this partition is closed under 
the operation of this group. In the above example, the 
set of all permutations defined over x3,24, and 2 5  cap- 
tures partition f f * **. The search for better schemata 
in genetic algorithms and other similar evolutionary 
algorithms is essentially equivalent to the search for 
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Figure 10: The set of points x ~ - - - x , ,  used for con- 
structing the representation of 20. 

permutation groups. Obviously, in BBO we do not 
enumerate all memebers of the schemata; therefore, 
in BBO we should search for algebraic structures like 
permutation groups in a probabilistic sense. Now the 
question is that what kind of structures we should look 
for. When we interpret this question in our usual do- 
main of schema and partition, the answer is obvious. 
We need low order schema that capture high fitness 
region of the search space (precisely speaking order-k 
delineable schema). This essentially means that we 
need to look for algebraic structures that preserve fit- 
ness invariance in a qualitative and approximate sense. 
To make this concept more precise, let us define some- 
thing called (E, S)-objective invariance. 

Definition 1 ((E,  &)-Objective invariance) 
Given a set of objects, C and an objective function 
#(*), that returns an objective function value for every 
member of C; let #m be the mean objective function 
value. The set C is said to exhibit ( E ,  J)-objective in- 
variance if and only if no more than 6 fraction of the 
set members has an objective function value, (1)  that 
is 5 #m - E ,  where maximization is the BBO objective, 
(2) that is 2 #m + E for minimization. 

This definition offers just one way to define a mea- 
sure to represent the quality of the search landscape. 
Now we can say that the search of “good”, low order 
schemata is essentially same as the search for permu- 
tation groups over the coordinates that define (E, 6)- 
objective invariant equivalence classes. 

If permutation groups defined over the coordinates 
of the search space can capture similarity based par- 
titions and schemata, then we can extend the same 
concept to our local coordinate system for capturing 
relations and classes that are not necessarily restricted 
by similarity basis. The question is how do we do that. 
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Figure 12: Capturing patterns of the fitness landscape 
using linear & functions. 

in the sequence space. In the following section we 
point out that the alphabet transformations in trans- 

Figure 11: Different possibilities of functions for cap- 
turing a pattern. this problem. 

lation and transcription may provide one solution to 

In case of similarity based partitions and schemata, it 
was quite natural since we focussed only on the given 
natural coordinates of the search space. The local co- 
ordinates in the Pa space are however functions of the 
given natural coordinates of the problem. Before we 
answer this question we need to note that, if permu- 
tations are directly applied to the P2 space, then they 
may cause large change in the Pz vector since the car- 
dinality of the coordinates of P2 can be high (e.g. n for 
hamming distance metric). This points out the fact 
a permutation operation directly on the P2 space will 
involve changing at least a pair of dimensions, unless 
it is an identity operation. Now since the P2 space is 
a finite subset of the Euclidean space, the cardinality 
of the alphabet set for each of the dimensions can be 
as large as determined by the chosen distance metric 
on the underlying search space. What we need is a 
way to apply permutations that have a control over a 
range of granularity level of perturbations. One pos- 
sible solution to this problem is to map the P2 to a 
sequence representation. For example, an n valued 
dimension of P2 can be mapped to a sequence space 
of logn bits. What we really need is to represent the 
functions associated with each of the P2 dimensions 

6.3 Alphabet transformations in trans- 
lat ion 

The three dimensional structure of the protein is cre- 
ated from the sequence of amino acids. The amino 
acid sequence is generated by translation, which is 
essentially a transformation defined over neuclic acid 
triplets. The mRNA is grouped into a sequence of 
codons (triplets) which are translated into a sequence 
of amino acids. Since the cardinality of the alpha- 
bet set of mRNA is 4 (U,C,G,A), there are 64 unique 
codons. For every codon there is an amino acid (not 
necessarily unique) as shown in 1. Since the genetic 
code is defined on alphabet triplets regardless of the 
coordinate positions, all the coordinate triplets which 
are associated with codons get mapped to the same 
amino acid. We can therefore, divide the set of all 
coordinates triplets into at most 64 different subsets, 
where members of any such subset contain the same 
codon. This essntially means that any translation 
transformation (different possible genetic codes) can 
only independently change along at most 64 dimen- 
sions (since within any subset corresponding to a par- 
ticular codon, all the coordinate triplets map to the 
same amino acid). 



Such alphabet transformations may provide a solu- 
tion to our problem of mapping the log2 n dimensional 
P2 space. Let us consider a sequence space, Mn7 of 
n, dimensions, with alphabet set size AM. In gen- 
eral, for a tuplet size of kM, there are A 2  unique di- 
mensions associated with the coordinate tuplet with 
the same alphabet tuplet value. Now, we can asso- 
ciate these dimensions with the dimensions of the P2 
space. This essentially means that, A 2  3 log n Le., 
k~ 2 (log’ n)/  log AM. Now that we have a way to 
construct a sequence representation of the P2 space, 
we need to find a way to apply permutation groups de- 
fined over dimensions of the newly constructed repre- 
sentation and identify the set of dimensions that offer 
( E ,  C)-objective invariance. 

If our above explanation has some truth, then the 
independent dimensions associated with each of the 
unique codons should exhibit some degree of objective 
invariance. This essentially means that any such ob- 
jective invariance is bound to be reflected by fitness in- 
variance by permutation groups defined over a subset 
of unique codons. It is quite interesting that, this is a 
very important characteristic of the genetic code that 
governs the translation transformation. Note that, all 
the unique codons of any row of Table 1 map to same 
amino acid. For example, in the first row, GCA, GCC, 
GCG, GCU all map to the amino acid Alanine and 
therefore they all map to the same protein structure; 
as a result the fitness of the genome remains invariant 
under the group of permutation transformations de- 
fined over these codons. As we see, the genetic code 
offers a high degree of such objective invariance. 

a 

Mcmplement shows the complementary pairing trans- 
formation. 

Mathematically, transcription can be viewed as a 
process that transforms a DNA sequence into the 
mRNA sequence. The same permutation group can 
be used to capture this transformation. The only dif- 
ference is that in nature the necleic acid Uracil (U) is 
used in mRNA instead of the corresponding Thiamin 
(T) of DNA. 

Note that transcription introduces transformations 
that offer very little fitness invariance. For example, 
GCA maps to alanine, but the complement is CGU 
which maps to arginine. If we carefully examine Table 
1 we shall note that except the row corresponding to 
serine there is no other amino acid which maps back to 
complementary codons (e.g. AGC and UCG). Since, 
in general the transcription does not offer any fitness 
invariance, it alone is of little use in the context of 
identifying linearly decomposable subspaces. In order 
to fulfill this objective nature needs some richer set of 
transformations that offer fitness invariance. 

6.5 Transcriptional regulation 
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Appendix: Groups And Semi- 
groups 
A group is a set of elements and an operation on the 
elements with four properties. Say we have the set 
E = {a, b, c, ....} and an operation @. We can write 
any table for @ which has the following properties: 

1. @ must be closed: 
For any 2 1 , ~ ~  in E ,  21 @ZZ = 2 3 ,  ZQ must be in E.  
This means that the result of using the operation on 
E’s elements must also be in E.  

2. @ must be associative: 
Foranyel,ea,m in&, ( Z l @ m ) @ 2 3  = Z 1 @ ( 2 2 @ n 1 ) -  

When the operation is used moTe than once, it does 
not matter which operation is performed first. 

3. A unique identity element (usually written as e) :  
For any 01 in E ,  s1 @ e  = el = e 8 21. 
For arithmetic operators, 0 is the identityfor addition 
and 1 is the identity for multiplication. 

4. Every element has a unique inverse: 
For each 2 1  in E ,  there is a single 2 2  in E such that 
11 8 2 2  = e  =zz @q. 
An element opemted with its inverse returns identity. 

As a small example of a group, take a set of two 
elements E = { e ,  u} .  By keeping the properties of @ 
in mind, an operation table can be written. Let e be 
the identity and note that e @ e = e satisfies the third 
and fourth properties, showing that e is always its own 
inverse. As e is the identity, a @ e = a = e @ a, by 
the third property. The only remaining combination is 
a@a. As we haven’t found an inverse for a, a@a must 
be e.  As it turns out, there is only one possible way 
to define @ for a set of two elements once the identity 
has been chosen. The operation table is shown in the 
following: 

8 ( 1  e 1 a 1 

In preparation for a central theorem of group the- 
ory, the terms isomorphic and group of permutations 
will be explained. Saying that two groups are iso- 
morphic is the notion of “equal” for groups, but with 
care to remember that sets are not ordered. In gen- 
eral, if a group is defined by a set E = {al l  u 2 , . .  . , h} 
and an operation @ on those n elements, then the 
group can impose its structure on another set E‘ = 
{b l ,  ba, . . . , b,} or even its original set can be used in 
a different order. In the case of a new set, each el- 
ement of E’ is associated with one element of E, not 
leaving anything un-associated in E .  The other differ- 
ence between an isomorphism and equality is that the 

operators may not be equal, but must behave (act) the 
same way on the respective sets of two groups. Thus 
we can define a group on one set and let it ’act’ on 
another set of the same size. Permutations are func- 
tions that reorder elements in an ordered sequence. 
A group of permutations is just a group defined over 
a set of permutations, with @ serving to represent a 
permutation which is equivalent to a pair of successive 
permutations. 

Theorem 3 (Cayley’s Theorem) Euery group is 
isomorphic to a group of permutations. 

The theorem says that any group on a set of n ele- 
ments can act on a set of n permutations. The im- 
portant points are that a group can act on any set of 
the same siee as the set of its original definition. And 
that a group can be thought of as a set of functions 
which manipulate the order of an ordered list, with @ 
serving to combine a sequence of such functions. 

Alternative statements of Cayley’s theorem refer to 
symmetry in an idealized geometric shape. The shape 
is that of a regular (equal sided) pyramid, with a tri- 
angle on each face. For two or three points the shape 
is just a line or a triangle. For n points, the shape 
is an n - 1 dimension pyramid. All the symmetries 
of the points at the corners of such a pyramid can be 
represented by permutations. In fact the set of sym- 
metry transformations is exactly the set of all possible 
permutations for n points. The group of all permuta- 
tions of n points is called the symmetric group or S,. 
If the elements of a group can be evenly divided into 
subsets, and if the group operator @ can form a new 
group on each of these subsets, then the new group 
is called a subgroup of the original group. Subgroups 
exhibit a portion of the behavior of the original group. 

Theorem 4 (Alternate of Cayley’s Theorem) 
Euery group of n elements is isomorphic to a subgroup 
of sn. 

Meaning that every group behaves (acts) the same as 
one of the ways a symmetric group acts. Or that every 
group can be interpreted in terms of symmetries, A 
graphical example will be developed next. 

Groups evolved as a means to express the symme- 
tries in a problem. And especially to simplify prob- 
lems by using symmetries. The power behind the idea 
of groups is that a group can act on a set of func- 
tions. By studying functions which preserve the shape 
of a geometric figure, the symmetries of a figure can 
be expressed. The boon is that these functions can 
be used to manipulate a figure without changing its 
essential nature. As an example consider an equi- 
lateral triangle. There are three points, P I ,  P2, P3, 
connected by equal length segments. The identity 
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transformation (function), just leaves the triangle un- 
changed. The next type of transformation is a rota- 
tion by a multiple of 120'. The set of three rotations 
E = 10' = 360', 120°, 240') forms a 'rotation' group 
with 0' as the identity, and @I serving to add rotations. 

@ II 0' 1 120' I 240' I -1 
240' 240' 1200 

This group of rotations is a subgroup of Ss. The next 
subgroup of S, will serve to introduce permutation 
notation. 

Another symmetry of the equilateral triangle is that 
any two adjacent corners can be exchanged by flipping 
the triangle. There are three possible pairs of corners, 
(12), (13), (23). If we use the notation that (1) means 
to leave the triangle unchanged, and (12) means to flip 
the triangle to exchange the points at corners 1 and 
2. Then E = ((l), (12)) and the following @I form a 
group. 

@ I I  (1) I (12) I 

Note that the (12) notation always refers to the cor- 
ners 1 and 2 rather than points PI ,  Pz. The permuta- 
tion notation (123) means to move the point at cor- 
ner 1 to corner 2, the point at corner 2 to corner 3, 
and wrapping around the two ends of (123) means to 
move the point at corner 3 to the point at corner 1. 
Thus (123) can mean the same as rotating 120' about 
the center. The combination of the identity, the ro- 
tations, and the three flips form a set E = (0' = 
(l), 120' = (123), 240' = (132), (12), (13), (23)). If we 
use the elements of E in permutation notation, then 
the group with E and @, as defined below, is the sym- 
metric group on three points, or S3. 

The upper left quarter of the @I table shows that the 
subset E' = (( l), (123), (132)}, which corresponds to 
the rotation group shown earlier, forms a subgroup of 
Sn * 
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