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NUCLEAR WASTE REPOSITORY CHARACTERIZATION: A SPATIAL ESTIMATION/IDENTIFICATION APPROACH* 

J. V. Candy and N. Mao 
Lawrence Livermore National Laboratory 
Livermore, CA 9t550 

'Abstract. In this paper we consider the application of spatial estimation techniques to a 
groundwater aquifer and geological borehole data. We investigate the adequacy of uhese 
techniques to reliably develop contour maps from various data sets. 

The practice of spatial estimation is discussed and the estimator is then applied to a 
groundwater aquifer system and a deep geological fonnation. It is shown that the various 
statistical models must first be identified from the data and evaluated before reasonable 
results can be expected. 

Keywords. Nuclear Waste Disposal, spatial estimation, geology, optimal filtering, 
'identification, statistics. 

INTRODUCTION 
The need for alternate energy sources has 
propelled the use of nuclear energy as a 
feasible means for generating power. Nucle
ar technology has b°en utilized in many 
militcry and non-military applications such 
as fuel fabrication, medicine, weapons, etc. 
One perplexing problem has evolved - the 
disposal of radioactive waste products. It 
is the responsibility of the Nuclear Regu
latory Commission (NRC) to assure that 
wastes bp disposed in a manner non-detri
mental to public health and welfare. 

One proposed solution to the disposal 
problem is to isolate the waste in deep geo
logical repositories. The waste is to b3 
contained until they are no longer radio-
toxic. Some elements will take a long time 
to decay - up to a few million years. For 
these slowly decaying elements the primary 
containment vessel will have deteriorated 
and therefore the geological structure of a 
repository will serve as the ultimate con
tainment vessel. The question of contami
nation of the water supply becomes of prime 
concern. The magnitude of the disposal 
problem can be realized from the fact that 

90 only a single curie of Sr, a common 
fission bv-oroduct. if dissolved in water 

restrial storage have stressed the need for 
careful hydrogeologic studies to insure that 
the wastes will not contaminate existing or 
future water supplies. Thus, prior to con
struction and regulation of a repository, a 
site must be selected, characterized, and 
evaluated. Since the most likely release of 
radionuclides in the long term will be via 
the groundwater system, it is obvious that 
hydrogeology will form a major component of 
any performance evaluation model. Much 
information about the geological and hydro-
geological structures of the site must be 
obtained. This process is called site 
characterization. This paper addresses it-
self to the site characterization problem, 
i.e., the problem of determining various 
geological and hydrogeological parameters 
necessary to characterize a potential re
pository. Information about hydrogeological 
parameters can be obtained by borehole 
sampling. However, too many boreholes at a 
site are not only expensive but they can 
tend to deteriorate the integrity of the 
site as a possible repository. Two ap
proaches are possible: first, the use of 
nonintrusive measurements (e.g., seismic) or 
second, make statistical inferences on the 
suitability based on few measurements. In 
this paper we evaluate a technique which car 
be used to solve the site characterization 
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INTRODUCTION 

The need for alternate energy sources has 
propelled the use of nuclear energy as a 
feasible means for generating power. Nucle
ar technology has been utilized in many 
military and non-military applications such 
as fuel fabrication, medicine, weapons, etc. 
One perplexing problem has evolved - the 
disposal of radioactive waste products. It 
is the responsibility of the Nuclear Regu
latory Commission (NRC) to assure that 
wastes be disposed in a manner non-detri
mental to public health and welfare. 

One proposed solution to the disposal 
problem is to isolate the waste in deep geo
logic?1 repositories. The waste is to be 
contained until they are no longer radio-
toxic. Some elements will take a long time 
to decay - up to a few million years. For 
these slowly decaying elements the primary 
containment vessel will have deteriorated 
and therefore the geological structure of a 
repository will serve as the ultimate con
tainment vessel. The question of contami
nation of the water supply becomes of prime 
concern. The magnitude of the disposal 
problem can be realized from the fact that 

90 only a single curie of Sr, a common 
fission by-product, if dissolved in water 
could render 10 liters unacceptable as 
drinking water according to the U.S. Public 
Health Service Standards (Davis, 1966). 
Disposal practices depend on the radio
activity and general chemical character of 
the waste, and the physical environment in 
the area of disposal. All plans for ter

restrial storage have stressed the need for 
careful hydrogeologic studies to insure thai 
the wastes will not contaminate existing or 
future water supplies. Thus, prior to con
struction and regulation of a repository, a 
site must be selected, characterized, and 
evaluated. Since the most likely release of 
radionuclides in the long term will be via 
the groundwater system, it is obvious that 
hydrogeology will form a major component of 
any performance evaluation model. Much 
information about the geological and hydro-
geological structures of th» site must be 
obtained. This process is called s_Ue 
characterization. This paper addresses it-
self to the site characterization problem, 
i.e., the problem of determining various 
geological and hydrogeological parameters 
necessary to characterize a potential re
pository. Information about hydrogeologica' 
parameters can be obtained by borehole 
sampling. However, toe many boreholes at a 
site are not only expensive but they can 
tend to deteriorate the integrity of the 
site as a possible repository. Two ap
proaches are possible: first., :he use of 
nonintrusive measurements (e.g., seismic) oi 
second, make statistical inferences on the 
suitability based on few measurements. In 
chis paper we evaluate a technique which ca' 
be used to solve the site characterization 
problem. The fundamental problem is to 
generate a grid of control points from a se' 
of sparse, irregular, uncertain, but 
spatially-correlated, measurements - this i; 
called the fundamental spatial estimation 
problem. 

•Work performed under the auspices of the U.S. Department of Energy by the Lawrence 
Livermore National Laboratory under contract number W-7405-ENG-48. 
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he objective of the paper is to evaluate 
he effectiveness of spatial estimation as a 
otential tool for site characterization of 
sep geological repositories. The basic 
riterion for evaluation is how realisti-
ally the estimator predicts the geological 
nenomenon. This can be judged in two ways: 
y comparing the estimated value with the 
easured value for the point which is re
eved from the data set, or by comparing the 
stimated map with the "real" contour map 
ased on other information in addition to 
he estimated data set. We evaluate the 
itimator by experimenting on representative 
ata sets. The first case is a simple 
roundwater aquifer and the second is a 
amplex geological formation. 

SPATIAL ESTIMATION 
i this section we briefly state the funda-
ental theory of spatial estimation. Our 
ltimate goal is to use the spatial esti-
ator to produce a reasonable contour map 
ith some measure of confidence. Here we 
ivelop an "optimal" spatial estimator which 
an be used to estimate control points on a 
rid for eventual contouring. 
et z(x.) be the value of the variable z at 
oint z. in space (1, 2, or 3 dimensional). 
i the estimation approach, z(_x.) is in-
erpreted as a particular realization of a 
andom function Z(_x). More formally, z(x.) 
s defined as a regionalized variable, i.e., 
function with spatial distribution which 

aries randomly from one location to an
ther. Spatial estimation theory is based 
i the observation that the variabilities of 
11 regionalized variables can be character-
zed by a statistical model 
e define the following measurement model 
or the data as 

Z(x) = r(x) + m(x) + e(x) (1) 
nere r(xj is the residual value at location 
; m(x) Ts the systematic error or drift and 
{jO is the random measurement error at _x. 
e also assume that the drift is a slowly 
ai/ig function which can be approximated 
y a polynomial and the function Z is 
ocally stationary, i.e., 

Var{Z(x+h) - Z(x)l-:2v(h) (2) 
here 2y 1s the variogram of the difference. 

GIVEN a set of measurement data {z(j^-)}, 
i = 1, ..., N and the measurement model 

z f ^ ) = r ^ ) + m ( x k ) + e ^ ) , (3) 

FIND the "best" linear, unbiased, 
minimum error variance estimate 

z U J of z at point x,. 

The spatial estimation problem can be solved 
using optimization theorv results, The re
sult is (see Candy (1980) for details) 

T z(x k) = X I , such that (4) 

o k:= Var(z(x k) - z(x k)} is minimum (5) 

The associated error variance is also esti
mated as 

°k = A {5) 

where 6 is determined by the variogram and 
drift functions. 
Thus, the technique generates point esti
mates z(x. ) and a measure of the precision 

2 0. . In the next section we discuss the 
pragmatic issues in spatial estimation. 

PRACTICE OF SPATIAL ESTIMATION 
We discuss the problem of identifying a 
spatial model in this section. We describe 
properties and procedures to estimate the 
variogram from samples. Then we discuss 
some of the practical aspects of spatial 
estimation which can be used. 
First we discuss the properties of the 
variogram. The variogram is more general 
than the usual covariance because in cases 
that the covariance does not exist the 
variogram does (e.g. Wiener process). The 
variogram is related to the covariance by 

Y(h) - C(0) - C(h) 
where C(£):= Cov(z(x+h), z[*)). 

The variogram starts at 0 , is a positive 
definite, even function, possesses a limit 



SPATIAL ESTIMATION 
n this section we briefly state the funda-
ental theory of spatial estimation. Our 
Itimate goal is to use the spatial esti-
ator to produce a reasonable contour map 
ith same measure of confidence. Here we 
evelop an "optimal" spatial estimator which 
an be used to estimate control points on a 
rid for eventual contouring. 
et z(x.) be the value of the variable z at 
oint x. in space (1, 2, or 3 dimensional). 
n the estimation approach, z(x.) is in-
erpreted as a particular realization of a 
andom function l[z). More formally, z(_x.) 
s defined as a regionalized variable, i.e., 
function with spatial distribution which 

aries randomly from one location to an
ther. Spatial estimation theory is based 
i the observation that the variabilities of 
11 regionalized variables can be character-
zed by a statistical model. 
e define the following measurement model 
or the data as 

Z(_x) = r(x) +m(x) + e(x) (1) 
iiere r(x) is the residual value at location 
; m(_x) Ts the systematic error or drift and 
(_x) is the random measurement error at x. 
e also assume that the drift is a slowly 
arying function which can be approximated 
y a polynomial and the function Z is 
ocally stationary, i.e., 

Var{Z(x+h) - Z(x)}=:2y(h) (2) 
here 2y is the variogram of the difference, 
he residual is defined to be zero mean with 
tationary increments as in (2). The random 
easurement errors are assumed to be zero 
ean, uncorrelated with zOt), and itself, 
ith covariance Z. 

sing the measurement model of (1) the 
patial estimation problem is 

<v: = Var{z(x. ) - z(xj} is minimum (5) 

The associated error variance is also esti
mated as 

°k = ^ k ^ 

where 6 is determined by the variogram and 
drift functions. 
Thus, the technique generates point esti
mates z(_x, ) and a measure of the precision 
cC. In the next section we discuss the 
pragmatic issues in spatial estimation. 

PRACTICE OF SPATIAL ESTIMATION 
We discuss the problem of identifying a 
spatial model in this section. We describe 
properties and procedures to estimate the 
variogram from samples. Then we discuss 
some of the practical aspects of spatial 
estimation which can be used. 

First we discuss the properties of the 
variogram. The variogram is more general 
than the usual covariance because in cases 
that the covariance does not exist the 
variogram does (e.g. wiener process). The 
variogram is related to the covariance by 

7(h) = C(0) - C(h) 
where C(h):= Cov(z(x+h), z(x)). 

The variogram starts at 0 , is a positive 
definite, even function, possesses a limit 

In some cases, the varingram may not start 
at zero, but soTie other positive value then 
it is said to be discontinuous and exhibit 
the "nugget effect" (see (Journel, 1978) for 
details), i.e., f(_h) - C for h > e and 
e small. 



called the _sjJJ, (C(0)), a range, the point 
the say h = a where the samples are uncor-
related, and the variogram grows more slowly 
than a parabola in h (see Journel, 1978 
for details). 
Table I depicts some of the common vario-
grams which satisfy the properties dis
cussed. Note that some variograms do not 
possess all of these properties (e.g. a 
linear variogram does not possess a sill). 
Finally we note that if the regionalized 
variables do not exhibit the same behavior 
in every direction (isotropy), they are 
called anisotropic, i.e., the variograms 
calculated in different spatial directions' 
differ. When they are identical, the vario
gram is termed isotropic. 

Variogram identification from raw data is 
the most crucial part of the spatial esti
mation process. Prior to the actual esti
mation, it is necessary to fit an experi
mental variogram to a theoretical model 
which will ensure mathematical consistency 
of the calculations. Thus, the practice of 
variogram identificaion is concerned with: 

(i) estimating the "raw" or experimental 
variogram and drift from sample data; 

(ii) fitting a theoretical variogram and 
drift to the experimental; and 

(iii) checking the validity of the fit. 
An unbiased estimator for the variogram is 
(Olea, 1976) 

i N(h) ? 

T*(h) * 2NTnT~ l ( z ( - i + i l ) " z { - i " ( 7 ) 

where N(_h) is the number of pairs of points 
separated by distance £. 
If drift is present, then it can be shown 
that (15) is a biased estimator for the 
variogram. The drift can also be estimated 
using the experimental drift estimator on 
the sample data, i.e., 

1 «(h) m * ( h ) = U ^ , E ( z ^ + h ) - z ^ ) ) (8) 

The experimental variogram can then be 
drift-corrected and fit. The drift 
corrected variogram is given by 

i N(h) . -

algebraic property that higher order differ
encing of variables filters out polynomials 
in the expectation. The original random 
function Z(^) is called an intrinsic random 
function of order k (abbreviated k-IRF) 
where k is the highest degree polynomial 
filtered. The purpose of taking increments 
is to produce a stationary regionalized 
variable from one with a drift. The ad
vantage is that the covariance structure of 
the spatial variable can be estimated with
out the effects of the drift. This is done 
by developing the generalized covariance of 
the k-IRF which differs from the variogram, 
which is only legitimate for the 0-IRF case. 

There are various classes of functions that 
satisfy the conditions of a generalized co-
variance, but one class with nice proper
ties for identification purposes (that is, 
linear in the coefficients) is the class of 
polynomial generalized covariances. The 
form of these generalized covariances, which 
depends on the order of the increment, is 
listed in Table I. 

Once we have decided on the type of a theo
retical variogram or generalized covariance, 
we must make sure that the fit is reason
able. Tests must be performed to insure the 
validity of the variogram and drift models 
(Gambolati, 1979), The technique employed 
is the successive estimation of all of the 
data points, ignoring each of them in turn, 
one by one. We then verify that there is no 
systematic error and compare the calculated 
errors (difference between the estimated and 
real values) with the theoretically pre
dicted standard deviations (a,) to 
assure consistency. A statistical analysis 
is carried out on the standard errors, 
checking that they are zero mean and unit 
variance. This technique can be utilized 
for comparing several models and determining 
the best fit. The first selection criterion 
is minimum mean squared error and secondly 
the standard error is close to unity. The 
deviation from the actual values, i.e., 
Az. = z. - z. are calculated for the entire 
data set and then the sample error sta
tistics are estimated. The sample sta
tistics are: 

(i) Systematic Error is zero. 
(E(ta^ =0); 

(ii) Standard Error is unit variance. ; 
(Azi " N(0,1)); j 



linear wingram aues not possess a s m ; . 
Finally we note that if the regionalized 
variables do not exhibit the same behavior 
in every direction (isotropy), they are 
called anisotropic, i.e., the variograms 
calculated in different spatial directions' 
differ. When they are identical, the vario-
gratn is termed isotropic. 
Variogram identification from raw data is 
the most crucial part of the spatial esti
mation process. Prior to the actual esti
mation, it is necessary to fit an experi
mental variogram to a theoretical model 
which will ensure mathematical consistency 
of the calculations. Thus, the practice of 
variogram identificaion is concerned with: 

(i) estimating the "raw" or experimental 
variogram and drift from sample data; 

(ii) fitting a theoretical variogram and 
drift to the experimental; and 

(iii) checking the validity of the fit. 
An unbiased estimator for the variogram is 
(Olea, 1975) 

l N(jj) ? 
^ = 2KH?T l ( z ( v - ] " 2 ( - i ) ] ( 7 ) 

where N(_h) is the number of pairs of points 
separated by distance h_. 

If drift is present, then it can be shown 
that (15) is a biased estimator for the 
variogram. The drift can also be estimated 
using the experimental drift estimator on 
the sample data, i.e., 

i N(h) 
m*(^ ' ' m -1 ( z ( V ^ " z (ii ] ) (R) 

The experimental variogram can then be 
drift-corrected and f i t . The dr i f t 
corrected variogram is given by 

Y(h) = ^ j j y I [zl^+h) - z(x.) - m*(h)] 

Another approach to the drift and structure 
identification problem is to make use of an 

flu^tne enects or m e a r m . mis is done 
by developing the generalized covariance of 
the k-IRF which differs from the variogram, 
which is only legitimate for the 0-IRF case. 
There are various classes of functions that 
satisfy the conditions of a generalized co-
variance, but one class with nice proper
ties for identification purposes (that is, 
linear in the coefficients) is the class of 
polynomial generalized covariances. The 
form of these generalized covariances, which 
depends on the order of the increment, is 
listed in Table I. 

Once we have decided on the type of a theo
retical variogram or generalized covariance, 
we must make sure that the fit is reason
able. Tests must be performed to insure the 
validity of the variogram and drift models 
(Gambolati, 1979). The technique employed 
is the successive estimation of all of the 
data points', ignoring each of them in turn, 
one by one. We then verify that there is no 
systematic error and compare the calculated 
errors (difference between the estimated and 
real values) with the theoretically pre
dicted standard deviations (o, ) to 
assure consistency. A statistical analysis 
is carried out on the standard errors, 
checking that they are zero mean and unit 
variance. This technique can be utilized 
for comparing several models and determining 
the best fit. The first selection criterion 
is minimum mean squared error and secondly 
the standard error is close to unity, The 
deviation from the actual values, i.e., 
Az. = z. - z. are calculated for the entire 
data set and then the sample error sta
tistics are estimated. The sample sta
tistics are: 

(i) Systematic Error is zero. 
(E(A Z i) =0); 

(ii) Standard Error is unit variance. 
(Azl " M O . D ) ; 
a. 

i 

(iii) RMS Error is minimum (minVAz.) 

This completes the discussion of variograms 
estimation and identification. 

APPLICATION OF SPATIAL ESTIMATORS 
When the variance exists. In this section we discuss the application 

of the spatial estimation technqiues to real 



data sets. We apply the "practice" of spa
tial estimation to representative measure
ments of water and geological formation 
depth data in order to evaluate the perfor
mance of the estimator and produce contour 
maps for comparative purposes. We evaluate 
the estimator performance on a groundwater 
aquifer system and then investigate the sub
surface structure mapping of a geological 
formation from borehole data. The aquifer 
system structure is simple, while the rock 
depth information is much more complex. 
First we investigate an aquifer located in 
Toppenish Creek, Washington. 

CASE STUDY: Toppenish Creek Basin, 
Washington 
The purpose of this study is to investigate 
the performance of spatial estimation tech
niques on a simple groundwater aquifer sys
tem. The data set is 76 measurements of the 
September 1971 water levels at Toppenish 
Creek Basin, Washington. The measurements 
are distributed irregularly in the region 
and contours of the raw data show that the 
major hydraulic gradient is from the SE to 
NW direction. The spatial estimator will be 
applied to generate a grid of (22 x 22) uni
formly spaced sample estimates and then 
contoured. 

First, we must identify a structural model 
(variogram and drift) from the data. Fol
lowing the procedure outlined in the previ
ous section the estimated variograms y*, 
Y and drift m* are calculated. A set of 
sample anisotropic/isotropic variograms are 
estimated and as expected the NW/SE vario
gram (direction of the hydraulic gradient) 

2 
increased at a rate faster than h indi
cating the presence of a drift. Note that 
the average variogram is dominated by the 
NW/SE and N/S variogram. An examination of 
the estimated drift-corrected variograms 
(Fig. 1) still indicate a biased estimate 
(not all drift removed); therefore we decid
ed to visually fit the NE/SW variogram, 
since it should be essentially drift free 
(appears perpendicular to the major hydrau
lic gradient). 
The estimated NE/'JW variogram is shown in 
Fig. 2. We noted that a large number of 
pairs (- 120) are at distances between 0 and 
2 feet, which indicates that a careful fit 
of the initial points should be made, since 

function, linear, and spherical variograms 
with constant and linear drifts. After fit
ting these structures visually we applied 
the successive estimation method for valida
tion. Each model was fit visually to the 
estimated NE/SW variogram and then the pa
rameters of each particular structural model 
were adjusted until the standard error was 
approximately unity. Those with the 
smallest root mean-squared error (RMSE) were 
retained. These results are summarized in 
Tables II and III. We found that the suc
cessive estimation technique appears to 
identify the closest points with most pairs. 
This is apparent when we examine Fig. 2 more 
closely which shows the "best" fits from 
Tables II and III: generalized covariance, 
spherical, and linear variograms with con
stant drift. Note that in this figure we 
plot the "fits" to the NE/SW variogram since 
it is approximately drift-free. Note also 
that the initial slopes of the linear and 
spherical are practically identical, thus 
they yield similar validations. We also 
found that most pairs (range, sill) with 
initial slope 25 yielded identical statis
tics again confirming the heavy dependence 
on closely spaced pairs. 
After the structural identification was com
pleted, the spatial estimator was run over 
the data set. We chose the linear variogram 
with a constant drift since it had the mini
mum RMS error and generated the contours 
shown in Figs. 3 and 4. We could have se
lected the generalized covariance, or spher
ical model as well, since the validation 
statistics were very close. In fact, maps 
generated from these models were almost 
identical. An examination of the resulting 
contour map of the Toppenish Creek Basin in
dicates that most of the major features have 
been maintained. Note that the normalized 
map coordinates must be converted back to 
problem coordinates and the conversion fac
tors are shown as (Ax, Ay) on Figs. 3 and 4. 
A close examination of the one-sigma error 
map in Fig. 4 indicates that the upper NE 
corner and lower SW comers are the most un
certain areas. This is expected since no 
measurements are ?vailable in those regions. 

We also note that the spatial estimator was 
evaluated for another aquifer (Todd Lake, 
Penn.) in which the true grid values of the 
region were assumed known. Data (28 points) 

+ was selected from an existing 'truth" 



Washington 
The purpose of this study is to investigate 
the performance of spatial estimation tech
niques on a simple groundwater aquifer sys
tem. The data set is 76 measurements of the 
September 1971 water levels at Toppenish 
Creek Basin, Washington. The measurements 
are distributed irregularly in the region 
and contours of the raw data show that the 
major hydraulic gradient is from the SE to 
NW direction. The spatial estimator will be 
applied to generate a grid of (22 x 22) uni
formly spaced sample estimates and then 
contoured. 

first, we must identify a structural modal 
(variogram and drift) from the data. Fol
lowing the procedure outlined in the previ
ous section the estimated variograms y*, 
•y and drift m* are calculated. A set of 
sample anisotropic/isotropic variograms are 
estimated and as expected the NW/SE vario
gram (direction of the hydraulic gradient) 
increased at a rate faster than h indi
cating the presence of a drift. Note that 
the average variogram is dominated by the 
NW/SE and N/S variogram. An examination of 
the estimated drift-corrected variograms 
(Fig. 1) still indicate a biased estimate 
(not all drift removed); therefore we decid
ed to visually fit the NE/SW variogram, 
since it should be essentially drift free 
(appears perpendicular to the major hydrau
lic gradient). 

The estimated NE/SW variogram is shown in 
Fig. 2. We noted that a large number of 
pairs (- 120) are at distances between 0 and 
2 feet, which indicates that a careful fit 
of the initial points should be made, since 
the estimator will weight these closest 
points most heavily. The drift appears 
linear; however, it could be modeled either 
as linear or a constant since it is not very 
severe. We used the automatic (generalized 
covariance) fit feature of the estimation 
algorithm and also selected power 

1 We used the algorithm BLUEPACK (Delfiner, 
1976) for our case studies. 

b i u j c i j n i inu alluvia nie uebi \ i Lb rrbiii ~**̂ **̂  
Tables II and III: generalized covariance, 
spherical, and linear variograms with con
stant drift. Note that in this figure we i 
plot the "fits" to the NE/SW variogram since ' 
it is approximately drift-free. Note also 
that the initial slopes of the linear and 
spherical are practically identical, thus 
they yield similar validations. We also 
found that most pairs (range, sill) with 
initial slope 25 yielded identical statis
tics again confirming the heavy dependence 
on closely spaced pairs. 
After the structural identification was com
pleted, the spatial estimator was run over 
the data set, We chose the linear variogram 
with a constant drift since it had the mini
mum RMS error and generated the contours 
shown in Figs. 3 and 4. We could have se
lected the generalized covariance, or spher
ical model as well, since the validation 
statistics were very close. In fact, maps 
generated from these models were almost 
identical. An examination of the resulting 
contour map of the Toppenish Creek Basin in
dicates that most of the major features have 
been maintained. Note that the normalized 
map coordinates must be converted back to 
problem coordinates and the conversion fac
tors are shown as (Ax, Ay) on Figs. 3 and 4. 
A close examination of the one-sigma error 
map in Fig. 4 indicates that the upper NE 
corner and lower SW corners are the most un
certain areas. This is expected since no 
measurements are available in those regions. 

We also note that the spatial estimator was 
evaluated for another aquifer (Todd Lake, 
Penn.) in which the true grid values of the 
region were assumed known. Data (28 points) 

t was selected from an existing "truth" 
model (partial differential equation) of the 
aquifer. The variogram and drift models 
were identified from the sparse data. The 
objective was to use these models based on 
sparse data to 

An LLNL hydrologist, who developed 
the truth model, selected the data points. 
Ten were his original measurements and the 
other 18 he obtained from knowledge (maps, 
surveys, etc.) of the region. 



estimate the "truth" grid. Comparison of 
the grids showed that the estimator could 
reproduce the truth grid (323 points) with a 
maximum relative error of I* (see Candy 
(1980) for details): 
Summarizing the results of these case stud
ies, it appears that the spatial estimator 
can be used with confidence to reconstruct a 
regional contour map of simple groundwater 
aquifer systems. In the next section we 
consider the mapping of a deep geological 
structure. 
CASE STUDY:_ Nevada Test Site, Paleozoic 
Rock Formations 
The purpose of this study is to evaluate the 
performance of the spatial estimator on data 
from a complex but well known geological 
formation - the Paleozoic rock at the Nevada 
Test Site (NTS). The mile NTS is one of the 
most exhaustively studied areas in exis
tence. We studied the depth to the top of 
the Paleozoic rocks from 93 borehole data 
and the effect of a fault on the estimated 
depth. First, the variogram was estimated 
from the raw data. A set of estimated an
isotropic (directional) variograms are shown 
in Fig. 5. These variograms are biased be
cause of the presence of drift in all direc
tions. 

Various tested structural models are summa
rized in Table IV and the identification and 
validation results &re summarized in Table 
V. The RMS errors for those models without 
fault are slightly smaller than those for 
the equivalent models with fault. There are 
probably two reasons behind this observa
tion. First, the vertical throw due to 
fault is relatively small as compared with 
the error. Second, there are fewer data 
points to estimate because the fault effec
tively divides the data into two sets and no 
correlation is assumed between them. Never
theless, the RMS error from all models are 
not too different from the RMS error of 77,8 
m estimated from gravity data based on 20 
measurements of depth between 500 and 1000 m 
which validates the results. 

The contour maps based on the estimated 
depth for the case with the fault together 
with the corresponding uncertainty maps are 
shown in Figs. 6 and 7. Although the esti
mated depths show discontinuity near the 
fault, the contour routine smooths out these 

residuals (see Table V) using the same 
initial variogram but constant drift is 
quite good (0.911) indicating that the esti
mated drift is reasonable. 
The structure for the rock depth is much 
more complicated than those from the water 
level case studied before. However, with 
simple linear variogram and constant drift, 
the Paleozoic rock depth can be reasonably 
reproduced. 
This concludes the application of spatial 
estimation techniques to a simple ground
water aquifer system and complex geological 
formations. 

SUMMARY 

In this paper we developed spatial esti
mators for correlated data irregularity 
distributed in a region. The practice of 
spatial estimation was then discussed and it 
was shown that the most crucial area of spa
tial estimation is the identification of the 
statistical structural model - the variogiam 
and drift. Techniques to estimate and iden
tify the underlying variogran and drift from 
raw data were discussed and a validation 
technique discussed. 
The spatial estimators were applied to two 
case studies: (<) Toppenish Creek Basin, 
and (ii) Neyada Test Site. The first case 
was a simple groundwater aquifer and the 
second a complex geological formation. The 
spatial estimator yielded reasonable contour 
maps of the regions under investigation. 
Results of the estimator for the Nevada Test 
Site data were confirmed by using additional 
information (gravity measurements). Spatial 
estimation techniques can be an effective 
tool to characterize proposed repository 
sites from limited data (see Canc'y (1980)); 
however, much care must be taken when iden
tifying the structural model from the raw 
data. 
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The purpose of this study is to evaluate the 
performance of the spatial estimator on data 
from a complex but well known geological 
formation - the Paleozoic rock at the Nevada 
Test Site (NTS). The mile NTS is one of the 
most exhaustively studied areas in exis
tence. We studied the depth to the top of 
the Paleozoic rocks from 93 borehole data 
and the effect of a fault on the estimated 
depth. First, the variogram was estimated 
from the raw data. A set of estimated an
isotropic (directional) variograms are shown 
in Fig. 5. These variograms are biased be
cause of the presence of drift in all direc
tions. 

Various tested structural models are summa
rized in Table IV and the identification and 
validation results are summarized in Table 
V, The RMS errors for those models without 
fault are slightly smaller than those for 
the equivalent models with fault. There are 
probably two reasons behind this observa
tion. First, the vertical throw due to 
fault is relatively small as compared with 
the error. Second, there are fewer data 
points to estimate because the fault effec
tively dWides the data into two sets and no 
correlation is assumed between them. Never
theless, the RMS error from all models are 
not too different from the RMS error of 77.8 
m estimated from gravity data based on 20 
measurements of depth between 500 and 1000 m 
which validates the results. 

The contour maps based on the estimated 
depth for the case with the fault together 
with the corresponding uncertainty maps are 
shown in Figs. 6 and 7. Although the esti
mated depths show discontinuity near the 
fault, the contour routine smooths out these 
differences. The contour map has the gross 
features of a map based on gravity data, 
surface yeology data as well as the borehole 
data. 
The contour maps indicate a quadratic drift. 
We calculated this drift with ? spherical 
variogram of range 3,000 m and sill 16,800 
m. From the variograms of the drift 
removed residuals it was evident that the 
anisotropy has bee" greatly reduced. The 
standard error for the drift removed 

SUMMARY 
In this paper we developed spatial esti
mators for correlated data irregularily 
distributed in a region. The practice of 
spatial estimation was then discussed and it 
was shown that the most crucial area of spa
tial estimation is the identification of the 
statistical structural model - the variogram 
and drift. Techniques to estimate and iden
tify the underlying variogram and drift from 
raw data were discussed and a validation 
technique discussed. 
The spatial estimators were applied to two 
case studies: (i) Toppenish C-eek Basin, 
and (ii) Nevada Test Site. The first case 
was a simple groundwater aquifer and the 
second a complex geological formation. The 
spatial estimator yielded reasonable contour 
maps of the regions under investigation. 
Results of the estimator for the Nevada Test 
Site data were confirmed by using additional 
information (gravity measu-ements). Spatial 
estimation techniques can be an effective 
tool to characterize proposed repository 
sites from limited data (see Candy (1980)); 
however, much care m:;st be taken when iden
tifying the structural model from the raw 
data. 
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TABLE V NTS paleozoic rock structure 
identification/validation 
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paleozoic rock depth at NTS. 
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model linear 1 with fau l t . 
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Fig . 7. One-slgma error for paleozou 
rock depth at NTS from model linear 
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