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NUCLEAR WASTE REPGSITORY CHARACTERIZATION: A SPATIAL ESTIMATION/IDENTIFICATION APPROACH*

J. V., Candy and N. Mao

Lawrence Livermore National Laboratory
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'Abst[ggg. In this paper we consider the application of spatial estimation techniques to a
groundwater aquifer and geological borehole data. We investigate the adequacy of .hese
technigues to reliably devciop contour maps from various data sets,

The practice of spatial estimation is discussed and the estimator is then applied to a

groundwater aquifer systen and a deep geological formation.
statistical models must first be jdentified from the data and evaluated before reasonable

results can be expected.
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INTROOUCTION

The need for alternate energy sources has
propelled the use of nuclear energy as a
feasible means for generating power. HNucle-
ar technoloqy has been utilized in many
militcry and non-military applications such
as fuei fabrication, medicine, weapons, etc.
One perplexing oroblem has evolved - the
disposal of radioactive waste products. It
is the responsibility of the Nuclear Regu-
latory Commission (NRC) to assure that
wastes be disposed in a manner nron-detri-
mental to public health and welifare.

One proposed solution to the disposal
problem is to isolate the waste in deep geo-
logical repositories. The waste is to b2
contzined until they are no longer radio-
toxic. Some elements will take a long time
to decay - up to a few million years. For
these slowly decaying elements the primary
containment vessel will have deteriorated
and therefore the geological structure of a
repository will serve as the ultimate von-
tainment vessel. The question of contami-
nation of the water supply becomes of prime
concern. The magnitude of the disposal
problem can be realized from the fact that

90
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only a single curie Sr, a common

Nuclear Waste Disposal, spatial estimation, geology, optimal filtering,

It is shown that the various

restrial storage have stressed the need for |
careful hydrogenlogic studies to insure that
the wastes will not contaminate existing or
future water supplies. Thus, prior to con-
struction and regulation of a repository, a
site must be selected, characterized, and
evaluated. Since the most likely release of
radionus’ides in the long term will he via
the groundwater system, it is obvious that
hydrogeology will form a major component of
any performance evaluation model. Much
information about the gecicgical and hydro-
geological structures of the site must be
obtained. This process is called site
characterization. This paper addresses it-
self to the site characterization problem,
i.e., the problem of determining various
geological and hydrogeological parameters
necessary to characterize a potential re-
pository. Information about hydrogeological
parameters can be obtaired by borehole
sampling. However, too many borehgles at a |
site are not only expensive but they can
tend to deteriorate the integrity of the
site as a possible repository. Two ap-
proaches are possible: first, the use of
nonintrusive measurements {e.q., seismic) o
second, make statistical inferences on the
suitability based on few measurements. In
this paper we evaluate a technique which ca
be used to solve the site characterization |




'Abstract,

In this paper we consider the application of spatial estimation techniques to a

groundwater aquifer and geolagical borehole data. We investigate the adequacy of these
techniques to reliably develop contour maps from various data sets.

The practice of spatial estimation is discussed and the estimator is then applied to a

groundwater aquifer system and a deep geological formation.

[t is shown that the various

statistical models must first be identified from the data and evaluated before reasonable

results can be expected.

Keywords., Nuclear Waste Disposal, spatial estimation, geology, optimal filtering,

Tdentification, statistics.
INTRODUCTION

The need for alternate energy sources has
propelled the use of nuclear energy as a
feasible means for generating power. Nucle-
ar technglogy has been utilized in many
military and non-military applications such
as fuel fabrication, medicine, weapons, etc.
One perplexing problem has evalved - the
disposal of radioactive waste products. It
is the responsibility of the Nuclear Regu-
latory Commission (NRC) to assure that
wastes be disposed in a manner non-detri-
mental to public health and welfare.

One proposed solution to the disposal
problem is to isolate the waste in deep geo-
Togicz? repositories. The waste is to be
contained until they are no longer radio-
toxic. Some elements will take a long time
to decay - up to a few million years. For
these slowly decaying elements the primary
containment vessel will have deteriorated
and therefore the geological structure of a
repository will serve as the ultimate con-
tainment vessel. The question of contami-
nation of the water supply becomes of prime
concern, The magnitude of the disposal
problem can be realized from the fact that

only a single curie of 905r, a common
fission by-product, if dissolved in water

could render 10]] liters unacceptable as
drinking water according to the U.S. Public
Health Service Standards (Davis, 1966).
Disposal practices depend on the radio-
activity and general chemical character of
the waste, and the physical environment in
the area of disposal. Al1 plans for ter-

restrial storage have stressed the need for
careful hydrogeologic studies to insure that
the wastes will not contaminate existing or
future water supplies. Thus, prior to con-
struction and regulation of a repository, a
site must be selected, characterized, and
evaluated. Since the most likely release of
radionuclides in the long term wiil be via
the groundwater system, it is obvious that
hydrogeology will form a major component of
any performance evaluation model, Much
information about the geological and hydra-
geological structures of the site must be
obtained. This process is called site
characterization. This paper addresses it-
self to the site characterization problem,
i.e., the problem of detennining various
geolngical and hydrogeological parameters
necessary to characterize a potential re-
pository. Information ahout hydrogeologica’
parameters can be obtained by borehole
sampling. However, toc many boreholes at a
site are not only expensive but they can
tend to deteriorate the integrity of the
cite as a possible repository. Two ap-
proaches are possible: first, the use of
nonintrusive measurements {e.g., seismic} o
second, make statistical inferences on the
suitability based on few measurements, In
chis paper we evaluate a technique which car
be used to solve the site characterization
problem. The fundamental problem is to
generate a grid of control points from a se!
of sparse, irregular, uncertain, but
spatially-correlated, measurements - this is
called the fundamental spatial estimation
proplen.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG-48.
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he objective of the paper is to evaluate

he effectiveness of spatial estimation as a
otential tool for site characterization of
aep geological repositories. The basic
riterion for evaluation is how realisti-
ally the estimator predicts the geological
nenomenon. This can be judged in two ways:
y comparing the estimated value with the
easured value for the point which is re-
sved from the data set, or by comparing the
stimated map with the "real” contour map
ased on other information in addition to

he estimated data set. We evaluate the
stimator by experimenting on representative
ata sets. The first case is a simple
roundwater aquifer and the second is a
amplex geological faormation.

SPATIAL ESTIMATION

1 this section we briefly state the funda-
antal theory of spatial estimation, Our
Itimate goal is to use the spatial esti-
itor to produce a reasonahle contour map
ith some measure of confidence. Here we
avelop an "optimal" spatial estimator which
an be used to estimate control points on a
»id for eventual contouring.

et Z(ii) be the value of the variable 2 at
oint X in space (1, 2, or 3 dimensional).
1 the estimation approach, z(ii) is in-

erpreted as a particular realization of a
andom function I(x). More formally, Z(Ei)

s defined as a regionalized variable, i.e.,
function with spatial districution which

aries randomly from one location to an-

ther. Spatial estimation theory is based

71 the observation that the variabilities of
11 regionalized variables can be character-

zed by a statistical model

e define the following measurement model
or the data as

(x) = r(x) *mlx) + e(x) (

nere r(x) is the residual value at location
; m(x) Ts the systematic error or drift and
{x) is the random measurement error at X-

¢ also assume that the drift is a slowly
a1, g function which can be approximated

y a pulynomial and the function Z is

ocally stationary, i.e.,

Var{Z(x*h) - Z(x)}=:2y(h) (2)

here 2y 1s the variogram of the difference.

GIVEN a set of measurement data {z(x,)},
i=1, ..., N and the measurement model

2{x) = rlx) +nlx) + e(x ), (3)

FIND the "best" linear, unbiased,
minimum error variance estimate

Z(fk) of z at point X
The spatial estimation problem can be solved

using optimization theorv results., The re-
sult is {see Candy {1980) for details)

2(x,) = A2, such that (4)

o§:= Var{z(xk) - E(Xk)} is minimum (5)

The associated error variance is also esti-
mated as

2 _ T

o = &b (6)
where 6 is determined by the varicgram and
drift functions.

Thus, the technigue generates point esti-
mates E(Ek) and a measure of the precision

05. In the next section we discuss the

pragmatic issues in spatial estimation.
PRACTICE OF SPATIAL ESTIMATION

We discuss the problem of identifying &
spatial model in this section. We describe
properties and procedures to estimate the
variogram from sa=ples. Then we discuss
some of the practical aspects of spatial
estimation which cen be used.

First we discuss the properties of the
variogram. The variogram is more general
than the usual covariance because in cases
that the covariance does not exist the
variogram does (e.q. Wiener pracess). The
variogram is related to the covariance by

y{h) = €(0) - C(h)

where C(h):= Cov(z(x*h), 2(x)).

The variogram starts at 0+, is a positive
definite, even function, possesses a limit



SPATIAL ESTIMATION

n this section we briefly state the funda-
ental theory of spatial estimation. Our
Ttimate goal is to use the spatial esti-
ator to produce a reasonable contour map
ith some measure of confidence. Here we
evelop an "optimal" spatia! estimator which
an be used to estimate cantrol points on a
rid for eventual contouring.

et 2(51) be the value of the variable z at
oint 1, in space {1, 2, or 3 dimensional).
n the estimation approach, Z(ﬁi) is in-

erpreted as a particular realization of a
andom function 2{x). More formally, Z(Ei)

s defined as a regionalized variable, i.e.,
function with spatial distribution which
aries randomiy from one location to an-
ther. Spatial estimation theory is based

n the observation that the variabilities of
11 regionalized variables can be character-
zed by a statistical model,

e define the following measurement model
or the data as

2{x) = r{x) +m(x) + e(x) m

nere r(x) is the residual value at location
; n(x) Ts the systematic error or drift and
(x) is the random measurement error at x.

e also assume that the drift is a slowly
arying function which can be approximated
y a polynomial and the function 7 is

ocally stationary, i.e.,

Var{Z(x+h) - 2(x)}=:2v(n) (2)
here 2y is the variogram of the difference,

he residual is defined to he zero mean with
tationary increments as in (2). The random
easurement errors are assumed Lo be zero
ean, uncorrelated with z(x), and itself,
ith covariance L. -

sing the measurement mode) of (1) the
patial estimation problem is

o§:= Var{z(xk) - i(xk)} is minimum (5)

The associated error variance is also esti-
mated as

2 _ T
o = 8h (6)

where § is determined by the variogram and
drift functions,

Thus, the technique generates point esti-
mates E(;k) and a measure of the precision

?
O+ In the next section we discuss the
pragmatic issues in spatial estimation.

PRACTICE QF SPATIAL ESTIMATION

We discuss the problem of identifying a
spatial model in this section. We describe
properties and procedures to estimate the
variogram from samples. Then we discuss
some of the practical aspects of spatial
estimation which can be used,

First we discuss the properties of the
variogram. The variogram is more general
than the usual covariance because in cases
that the covariance does not exist the
variogram daes (e.g. Wiener process). The
variogram is related to the covariance by

yth) = ¢(0) - C(h)

where C(h):= Cov(z(x*h), z{x]).

The variogram starts at 0*. is a positive
definite, even function, possesses a limit

t In some cases, the varingram may not start
at zerp, but some other positive value then
it is said to be discontinuous and exhibit
the “nugget effect” (see (Journel, 1978) for
details), i.e., y(h) = C0 for h > ¢ and

€ small,



called the silff (C(0)), a range, the point
the say h = a where the samples are uncor-
related, and the variogram grows more slowly

than a parabola in h2 (see Journel, 1978
for details).

Table | depicts some of the common vario-
grams which satisfy the properties dis-
cussed. Note that some variograms do not
possess all of these properties {e.g. a
Tinear variogram does not possess a sill).
Finally we note that if the regionalized
variables do not exhibit the same behavior
in every direction ('sotropx), they are
called an1sotrop1c. i.e., the variograms
calculated in different spatial directions’
differ. When they are identical, the vario-
gram is termed isotropic.

Variogram identification from raw data is
the most crucial part of the spatial esti-
mation process. Prior to the actual esti-
mation, it is necessary to fit an experi-
mental variogram to a theoretical model
which will ensure mathematical consistency
of the calculations., Thus, the practice of
variogram identificaion is concerned with:
(i) estimating the "raw" or experimental
variogram and drift from sample data;
{ii} fitting a theoretical variogram and
drift to the experimental; and
(ii1) checking the validiiy of the fit.

An unbiased estimator for the variogram is
(Olea, 1975)

N(h) 9

Tﬁﬂ" z (z{x;n) - 2(x,)° (7)

where N(h) is the numder of pairs of points
separated by distance n.

If drift is present, then it can be shown
that (15) is a biased estimator for the
variogram, The drift can also be estimated
using the experimental drift estimator on
the sample data, i.e.,

h)

N(h
m*(n) = § (z(x;th) - 2(x;)) (8)

:|d

The experimental variogram can then be
drift-corrected and fit. The drift
corrected variogram is given by

2

h)
[2(x +h) - Z(x ) - m*(h)]

algebraic property that higher order differ-
encing of variables filters out polynomials
in the expectation. The original random
function Z(x) is called an intrinsic random
function of order k (abbreviated k-IRF)
where k is the highest degree polynamial
filtered, The purpose of taking increments
is to produce a stationary regionalized
variable from one with a drift, The ad-
vantage is that the covariance structure of
the spatial variabie can be estimated with-
out the effects of the drift. This is done
by developing the genasralized covariance of
the k-IRF which differs from the variogram,
which is only legitimate for the 0-IRF case.

There are various classes of functions that
satisfy the conditions of a generalized co-
variance, but one class with nice proper-
ties for identification purposes (that is,
linear in the coefficients) is the class of
polynomial generalized covariances. The
form of these generalized covariances, which
depends on the order of the increment, is
Jisted in Table I.

Once we have decided on the type of a theo-
retical variogram or generalized covariance,
we must make sure that the fit is reason-
able. Tests must be performed to insure the
validity of the variogram and drift models
{Gambolati, 1979), The technique employed
is the successive estimation of all of the
data points, ignoring each of them in turn,
one by one. We then verify that there is no
systematic error and compare the calculated
errors (difference between the estimated and
real values) with the theoretically pre-
dicted standard deviations (ak) to

assure consistency. A statistical analysis
is carried out on the standard errors,
checking that they are zero mean and unit
variance. This technique can be utilized
for comparing several models and determining
the best fit. The first selection criterion
is minimum mean squared error and secondly
the standard error is close to unity. The
deviation from the actual values, i.e.,

Azi Tyt Ei are calculated for the entire

data set and then the sample error sta-
tistics are estimated. The sample sta-
tistics are:
(i) Systematic Error is zero.
(E(A21¥ =0);
{(i3) Standard Error is unit variance. j

(21 " N(0,1));

g,
1




Finally we note that if the regionalized
variables do not exhibit the same behavior
in every djrection (isotropy), they are
called anisotropic, i.e., the variograms
calculated in different spatial directions’
differ. When they are identical, the vario-
gram is termed isotropic.

Variogram identification from raw data is
the most crucial part of the spatial esti-
mation process. Prior to the actual esti-
mation, it is necessary to fit an experi-
mental variogram to a theoretical model
which will ensure mathematical consistency
of the calculations. Thus, the practice of
variogram identificaion is concerned with:
(1) estimating the "raw" or experimental
variogram and drift from sample data;
(ii) fitting a theoretical variogram and
drift to the experimental; and
(iii) checking the validity of the fit,

An unbiased estimator for the variogram is
(0lea, 1975)

N(h) )
(z(x;tn) - 2{x,0)" (7)

where N(h) is the number of pairs of points
separated by distance h.

If drift is present, then it can be Shown
that (15) is a biased estimator for the
variogram. The drift can also be estimated
using the experimental drift estimator on
the sample data, i.e.,

i 0
w0 s gy 2 Gl -l (8)

i=1

The experimental variogram can then be
drift-corrected and fit. The drift
corrected variogram is given by

. ) -2
y(h) = AT if] [z{x;+h) - 2(x;) - m*(h)]

Another approach to the drift and structure
idertification problem is to make use of an

t When the variance exists.

out the effects of the drift.

by developing the generalized covariance of

the k-IRF which differs from the variogram,

which is only legitimate for the 0-IRF case,

There are various classes of functions that
satisfy the conditions of a generalized co-
variance, but one class with nice proper-
ties for identification purposes (that is,
Tinear in the coefficients) is the class of
polynomial generalized covariances. The
form of these generalized covariances, which
depends an the order of the increment, is
listed in Table I,

Once we have decided on the type of a theo-
retical variogram or generalized covariance,
we must make sure that the fit is reason-
able. Tests must be performed to insure the
validity of the variogram and drift models
(Gambolati, 1979}, The technique employed
is the successive estimation of all of the
data points, ignoring each of them in turn,
one by one. We then verify that there is no
systematic error and compare the calculated
errors (difference between the estimated and
real values) with the theoretically pre-
dicted standard deviations (ok) tn

assure consistency. A statistical analysis
is carried out on the standard errors,
checking that they are zero mean and unit
variance. This technique can be utilized
for comparing several models and determining
the best fit., The first selection criterion
is minimum mean squared error and secondly
the standard error is close to unity, The
deviation from the actual values, i.e.,
Azi =z, -1 are calculated for the entire
data set and then the sample error sta-
tistics are estimated. The sample sta-
tistics are:

(i) Systematic Error is zero.

(E(az;) =0);

(ii) Standard Error is unit variance.
(azi = N0, 1))

a.
1

{ii1) RMS Error is minimum (min Azf)

This completes the discussion of variograms
estimation and identification.
APPLICATION OF SPATIAL ESTIMATORS

In this section we discuss the application
of the spatial estimation techngiues to real



data sets. We apply the "practice" of spa-
tial estimation to representative measure-
ments of water and geological formation
depth data in order to evaluate the perfor-
mance of the estimator and produce contour
maps for comparative purposes. We evaluate
the estimator performance on a groundwater
aquifer system and then investigate the sub-
surface structure mapping of a geological
formation from borehole data. The aguifer
system structure is simple, while the rock
depth information is much mare complex,
First we investigate an aquifer located in
Toppenish Creek, Washington.

CASE STUDY: Toppenish Creek Basin,
Washington

The purpose of this study is to investigate
the performance of spatial estimation tech-
niques on a simple groundwater aquifer sys-
tem. The data set is 76 measuremeats of the
September 1971 water levels at Toppenish
Creek Basin, Washington. The measurements
are distributed irregularly in the region
and contours of the raw data show that the
major hydraulic gradient is from the SE to
NW direction. The spatial estimator will be
applied to generate a grid of {22 x 22) uni-
formly spaced sample estimates and then
contoured.

First, we must identify a structural model
(variogram and drift) from the data. Fol-
Towing the procedure outlined in the previ-
ous section the estimated variograms v*,

y and drift m* are calculated. A set of
sample anisotropic/isotropic variograms are
estimated and as expected the NW/SE vario-
gram (direction of the hydraulic gradient)

increased at a rate faster than h2 indi-
cating the presence of a drift. Note that
the average variogram is dominated by the
NW/SE and N/S variogram, An examination of
the estimated drift-corrected variograms
(Fig. 1) still indicate a biased estimate
{not all drift removed); therefore we decid-
ed to visually fit the NE/SW variogram,
since it should be essentially drift free
{appears perpendicular to the major hydrau-
lic gradient).

The estimated NE/7W variogram is shown in
Fig. 2. We noted that a large number of
pairs (~ 120) are at distances between 0 and
2 feet, which indicates that a careful fit
g Of the initial points should be made, since

function, linear, and spherical variograms
with constant and linear drifts. After fit-
ting these structures visually we applied
the successive estimation method for valida-
tion. Each model was fit visually to the
estimated NE/SW variogram and then the pa-
rameters of each particular structural model
were adjusted until the standard error was
approximately unity. Those with the
smallest root mean-squared error (RMSE) were
retained. These rasults are summarized in
Tables IT and III. We found that the suc-
cessive estimaticn technique appears to
identify the closest points with most pairs,
This is apparent when we examine Fig. 2 more
closely which shows the "best" fits from
Tables II and III: generalized covariance,
spherical, and linear variograms with con-
stant drift. Note that in this figure we
plot the "fits" to the NE/SW variogram since
it is approximately drift-free, Note also
that the initial slopes of the linear and
spherical are practically identical, thus
they yield similar validations. We also
found that most pairs (range, sill) with
initial slope 25 yielded identical statis-
tics again confirming the heavy dependence
on closely spaced pairs.

After the structural identification was com-
pleted, the spatial estimator was run over
the data set. We chose the Tinear variogram
with a constant drift since it had the mini-
mum RMS error and generated the contours
shown in Figs. 3 and 4, We could have se-
Tected the generalized covariance, or spher-
ical model as well, since the validation
statistics were very close. In fact, maps
generated from these models were almost
identical. An examination of the resulting
contour map of the Toppenish Creek Basin in-
dicates that most of the major features have
been maintained. MNote that the normalized
map coordinates must be converted back to
problem coordinates and the conversion fac-
tors are shown as {Ax, Ay) on Figs. 3 and 4.
A close examination of the one-sigma error
map in Fig. 4 indicates that the upper NE
corner and lower SW corners are the most un-
certain areas. This is expected since no
measurements are available in those regions.

We also note that the spatia’ estimator was
evaluated for another aquifer (Todd Lake,

Penn.) in which the true grid values of the
region were assumed known. Data (28 points)

Was selectedf from an existing “truta"
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Washington

The purpose of this study is to investigate
the performance of spatial estimation tech-
nigues on a simple groundwater aquifer sys-
tem. The data set is 76 measurements of the
September 1971 water levels at Toppenish
Creek Basin, Washington. The measurements
are distributed irregularly in the region
and contours of the raw data show that the
major hydraulic gradient is from the SE to
NW direction. The spatial estimator will be
applied to generate a grid of (22 x 22) uni-
formly spaced sample estimates and then
contoured.

First, we must identify a structural modal
{variogram and drift) from the data. Fol~
lowing the procedure outlined in the previ-

Qus section the estimated variograms y*,

} and drift m* are calculated. A set of
sample anisotropic/isotropic variograms are
estimated and as expected the NW/SE vario-
gram (direction of the hydraulic gradient)

increased at a rate faster than h2 indi-
cating the presence of a drift, Note that
the average variogram is dominated by the
NW/SE and N/5 variogram. An examination of
the estimated drift-corrected variograms
{Fig. 1) still indicate a biased estimate
(not a1l drift removed); Lierefore we decid-
ed to visually fit the NE/SW variogram,
since it should be essentially drift free
(appears perpendicular to the major hydrau-
Tic gradient).

The estimated NE/SW variogram is shawn in
Fig. 2. We noted that a large number of
pairs (~ 120) are at distances between 0 and
2 feet, which indicates that a careful fit
of the initial points should be made, since
the estimator will weight these closest
points most heavily. The drift appears
linear; however, it could be modeled either
as tinear or a constant since it is not very
severe. MWe used the automatic (generalized
covariance) fit feature of the estimation

algorithm.r and also selected power

T e used the algorithn BLUEPACK (Delfiner,
1976) for our case studies.

LiUat Iy MIHILD JIUMS LUE  UESL LY ’l'T‘Uklil‘"‘:'.&""‘\

Tables Il and II1: generalized covariance,
spherical, and linear variograms with con-
stant drift. Note that in this figure we |
plot the "fits" to the NE/SW variogram since
it is approximately drift-free. Note also
that the initial slopes of the linear and
spherical are practically identical, thus
they yield similar validations. We also
found that most pairs (range, sill) with
initial slope 25 yielded identical statis-
tics again confirming the heavy dependence
on closely spaced pairs.

After the structural identification was com-
pleted, the spatial estimator was run over
the data set, We chose the linear variogram
with a constant drift since it had the mini-
mum RMS error and generated the contours
shown in Figs. 3 and 4. We could have se-
Tected the generalized covariance, or spher-
ical model as well, since the validation
statistics were very close. In fact, maps
generated from these models were almost
identical. An examination of the resulting
contour map of the Toppenish Creek Basin in-
dicates that most of the major features have
been maintained. Note that the normalized
map coordinates must be converted back to
problem coordinates and the conversion fac-
tors are shown as (Ax, Ay) on Figs. 3 and 4.
A clos2 examination of the one-sigma error
map in Fig. 4 indicates that the upper NE
corner and lower SW corners are the most un-
certain areas. This is expected since no
measurements are available in those regions.

We also note that the spatial estimator was
evaluated for another aquifer (Todd Lake,

Penn.) in which the true grid values of the
region were assumed known. Data (28 points)

was sehactedJr from an existing "truth”

model (partial differential equation) of the
aquifer. The variogram and drift models
were identified from the sparse data. The
objective was to use these models based on
sparse data to

t An LLNL hydroloegist, who developed

the truth model, selected the data points.
Ten were his original measurements and the
other 18 he obtained from knowledge (maps,
surveys, etc.) of the region.



gstimate the "truth" grid. Comparison of
the grids showed that the estimator could
reproduce the truth grid (323 points} with a
maximum relative error of 1% (see Candy
(1980) for details):

Summarizing the results of thece case stud-
jes, it appears that the spatial estimator
can be used with confidence to reconstruct a
regional contour map of simple groundwater
aquifer systems, In the next section we
consider the mapping of a deep geological
structure.

CASE STUDY: Nevada Test Site, Palegzoic
Rock Formations

The purpose of this study is to evaluate the
performance of the spatial estimator on data
from a complex put well known geological
formation - the Paleozoic rock at the Nevada
Test Site {NTS}. The mile NTS s one of the
most exhaustively studied areas in exis-
tence. We studied the depth to the top of
the Paleozoic racks from 93 borehole data
and the effect of a fault on the estimated
depth, First, the variogram was estimated
from the raw data. A set of estimated an-
isotropic {directional) variograms are shown
in Fig, 5. These variograms are biased be-
cause of the presence of drift in all direc-
tions.

Various tested structural models are summa-
rized in Table IV and the identification and
validation results are summarized in Table
V. The RMS errors for those models without
fault are slightly smaller than those for
the equivalent models with fault. There are
probably two reasons behind this observa-
tion. First, the vertical throw due to
fault is relatively small as compared with
the error. Second, there are fewer data
points to estimate because the fault effec-
tively divides the data into two sets and no
correlation is assumed between them. Never-
theless, the RMS error from all models are
not too different from the RMS error of 77.8
m estimated from gravity data based on 20
measurements of depth between 500 and 1000 m
which validates the results.

The contour maps based on the estimated
depth for the case with the fault together
with the corresponding uncertainty maps are
shown in Figs. 6 and 7. Although the esti-
mated depths shaw discontinuity near the
fault, the contour routine smooths out these

residuals (see Table V) using the same
initia) variogram but constant drift is
quite good {0.941) indicating that the esti-
mated drift is reasonable.

The structure for the rock depth is much
more complicated than those from the water
level case studied before, However, with
simple linear variogram and constant drift,
the Paleozoic rock depth can be reasonably
reproduced.

This concludes the application of spatial
estimation techniques to a simpie ground-
water aguifer System and complex geological
formations.

SUMMARY

In this paper we developed spatial esti-
mators for correlated data irregularily
distributed in a region. The practice of
spatial estimation was then discussed and it
was shown that the most crucial area of spa-
tial estimation is the identification of the
statistical structural model - the varioz:am
and drift, Techniques to estimate and iden-
tify the underlying variogrem and drift from
raw data were discussed and & validation
technique discussed.

The spatial estimators were applied to two
case “tudies: (%) Toppenish Creek Basin,
and (11} Nevada Test Site, The first case
was a simple groundwater aquifer and the
second a complex geological formation. The
spatial estimator yielded reasonable contour
maps of the regions under investigation.
Results of the estimator for the Nevada Test
Site data were confirmed by using additional
information (gravity measurements), Spatial
estimation techniques can be an effective
tool to characterize proposed rapository
sites from limited data (see Cancy {(3980));
however, much care must be taken when iden-
tifying the structural model from the raw
data.
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The purpose of this study is to evaluate the
performance of the spatial estimator on data
from a complex but well known geological
formation - the Paleozoic rock at the Nevada
Test Site (NTS). The mile NTS is one of the
most exhaustively studied areas in exis-
tence. We studied the depth to the top of
the Paleozoic rocks from 93 borehole data
and the effect of a fauit on the estimated
depth. First, the variogram was estimated
from the raw data. A set of estimated an-
isotropic {directional) variograms are shown
in Fig. 5. These variograms are hiased be-
cause of the presence of drift in all direc-
tions,

Various tested structural models are summa-
rized in Table IV and the identification and
validation results are summarized in Table
V. The RMS errors for those mndels without
fault are slightly smaller than those for
the equivalent models with fault. There are
probably two reasons behind this observa-
tion. First, the vertical throw due to
fault is relatively small as compared with
the error. Second, there are fewer data
points to estimate because the fault effec-
tively divides the data into two sets and no
correlation is assumed between them. Never-
theless, the RMS error from all mpdels are
not too different from the RMS error of 77.8
m estimated from gravity data based on 20
measurements of depth between 500 and 1000 m
which validates the results.

The contour maps bhased on the estimated
depth for the case with the fault iogether
with the corresponding uncertainty maps are
shown in Figs. 6 and 7. Although the esti-
mated depths show discontinuity near the
fault, the contour routine smooths out Lhese
differences, The contour map has the gross
features of a map based on gravity data,
surface yeology data as well as the borehole
data.

The contour maps indicate a quadratic drift.
We calculated this drift with 7 spherical
variogram of range 3,000 m and sil} 16,800
m. From the variograms of the drift

removed residuals it was evident that the
anisotropy has bee~ greatly reduced. The
standard error for the drift removed

SUMMARY

In this paper we developed spatial asti-
mators for correlated data irregularily
dist-ibuted in a region. The practice of
spatial estimation was then discussed and it
was shown that the most crucial area of spa-
tial estimation is the identification of the
statistical structural model - the variogram
and drift. Techniques to estimate and iden-
tify the underlying variogram and drift from
raw data were discussed and a validation
technique discussed.

The spatial estimators were applied to two
case studies: (i) Toppenish C-eek Basin,
and (ii) Nevada Test Site. The first case
was a simple groundwater aquifer and the
second a complex geological formation, The
spatial estimator yielded reasonable contour
maps of the regions under investigation.
Results of the estimator for the Nevada Test
Site data were confirmed by using additional
information {gravity measu~ements). Spatial
estimation techniques can be an effactive
tool to characterize proposed repository
sites from limited data (see Candy (1980));
however, much care m:st be taken when iden-
tifying the structural model from the raw
data.
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