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ABSTRACT 

Two tubes in tandem and normal to  flow were studied on  the basis of the 

unsteady-flow theory. Motion-dependent fluid forces were measured in a water 

channel, and the pitch-to-diameter ratio was 1.35. From the measured fluid forces, 

fluid damping and stiffness were calculated as a function of reduced flow velocity 

and several Reynolds numbers. Once the fluid-damping and fluid-stiffness 

coefficients are known, coupled vibration and stability of the two tubes in crossflow 
can be predicted. 

INTRODUCTION 

Flow-induced vibration of two tubes in crossflow has been studied extensively, 

including vibration in stationary fluid, turbulent buffeting, vortex-induced 

vibration, and wake-induced flutter. Several reviews were published by Chen 

(1986) and Zdravkovich (1977). 

The flow field around two tubes is very complex and depends on Reynolds 
number and tube arrangement, as well as on conditions of incoming flow. The 
interaction of fluid flow with tube oscillation is even more complicated. Various 

approximate theories have been developed to  describe the tube response in 

crossflow. At this time, it remains difficult to predict the response of the two tubes 



because the fluid forces acting on the tubes and the motion-dependent fluid forces 

cannot be calculated with confidence. 

On the basis of the available information, the general characteristics of tube 

response in crossflow are not well understood in the various parameter ranges, 

because most of the experimental data were obtained for specific applications. A 
systematic study is needed to quantify the response of two tubes under different 

flow conditions. The objective of this paper is to present an unsteady flow theory for 

two tubes normal to  the flow and two tubes in tandem, with a pitch-to-diameter 

ratio of 1.35 (see Fig. 1, where D is tube diameter). 

For two tubes oscillating in crossflow, the fluid forces acting on the tubes are fi 

and gi (i = 1,2) in the x and y directions. The corresponding tube displacement 
components of the tubes are ui and vi. Fluid forces acting on the tube due to the 

tube motion are given by Chen (1987) as 

and 



where p is fluid density; R is tube radius; t is time; o is circular frequency of tube 

escalations; u is flow velocity; ajk, pjk, bjk, and zjk are added mass coeficients; a&, 

P;k, tsJ;n, and zik are fluid-damping coefficients; and cxjk, p&, ojk,  and Tik are 

fluid-stiffness coefficients. The main purpose of this study is to  measure the 

motion-dependent fluid-force coefficients for two tubes in crossflow. Once these 

fluid-force coefficients are obtained, tube response in various conditions can be 

analyzed on the basis of the unsteady-flow theory. 

I t  should be noted that Eqs. 1 and 2 look linear. However, fluid-force 

coefficients, in general, are functions of Reynolds number, tube oscillation 

amplitude, and oscillation frequency. Therefore, fluid forces given in Eqs. 1 and 2 in 

fact are nonlinear as long as the force coefficients are not considered as constants. 

EXPERIMENTAL SETUP 

The two tubes tested are shown in Fig. 1, where the tubes are normal to flow 

(Fig. la) or  in tandem (Fig. lb). A water channel 18 in. wide and 15 in. deep is used. 

Water is pumped into an input tank and then passes through a series of screens and 

honeycombs and finally into the rectangular channel. Water level is controlled by 
standpipes in the output tank, and flow is controlled by the speed of the pump 

motor. 

Flow velocity is measured with a current flow meter. The rate of propeller 

rotation is directly proportional to  stream velocity and therefore the sensor output 

signal is not affected by other factors such as water conductivity, temperature, or 

suspended particulates. 

Tubes are supported by flexible tubes attached to the stainless steel tubes with 

a 2.54-cm outer diameter (OD), a 0.071-cm wall thickness, and a 38.1-cm length. 



Two sets of strain gauges are placed on the outer surface of the smaller tube where 

the outer surface of the tube has been machined to give an octagonal cross section; 

the details have been published earlier (Chen, Zhu, and Jendrzejczyk 1994). These 

tubes are used as force transducers. The natural frequencies of the tubes are as 

follows: 

Tube No. Total Mass ( g )  Natural Frequencies (Hz) 

x Direction y Direction 

1 194 9.9 11.6 

2 198 10.3 10.3 

The force transducers are calibrated by the dynamic method. The tube is 
connected to  an exciter and is excited at a given frequency and amplitude in air o r  

water. Then, the inertia forces due to  the sinusoidal oscillations are used to  

determine the calibration constant. 

COUPLED VIBRATION IN STATIONARY FLUID 

When two tubes are positioned with a pitch-to-diameter of 1.35, fluid coupling 

can be significant. The fluid coupling effect can be accounted for using the added 

mass matrices (Chen 1975). The added mass was calculated from the potential-flow 

theory, and experiments were performed to confirm the theoretical results from the 

indirect measurement method of the effect of natural frequencies for tubes 

submerged in fluid (Chen and Jendrzejczyk 1978). 

In this study, a direct method is used to quantify the effect of fluid coupling. In 
stationary fluid, U = 0; Eqs. 1 and 2 can be written as 



where E&, pjk, 3;k, and Fjk are fluid-damping coefficients in stationary fluid. The 

theoretical values of the added mass coefficients for two tubes normal to flow with 

pitch-to-diameter ratio of 1.35 are given as follows: 

1 -all a 1 2 ] = [  1.0526 -0.2845 
a21 a22 -0.2845 1.0526 

In stationary fluid, added mass can be determined by measuring the forces 
acting on the tubes due t o  a sinusoidal excitation. Figures 2a-2d show force 

components fi and gi due to the excitation of ul (Fig. 2e). It is noted that fi and g2 

are approximately in phase with ul, while f2 and gl are approximately out of phase 

with ul. From the time histories and Eqs. 3 and 4, the added mass coefficients, ajk, 

pjk, Ojk and T j h  and damping coefficients, E&, f&, 8&, and Z&, can be calculated. 
Figure 3 shows the experimental data of the added mass and fluid-damping 
coefficients as a function of excitation amplitude at  three frequencies (0. The 

measured added mass coefficients, all  and a21, agree well with the analytical 

solution. Fluid-damping coefficients in stationary fluid are small. In this case, ojk 

and Zjk are zero theoretically and approximately zero experimentally. This direct 

measurement method can be used t o  measure added mass and fluid damping 

efficiently. 



MOTION-DEPENDENT FLUID FORCES 

The unsteady flow theory is used in this study. If tube 1 is excited in the x 

direction, its displacement is given by 

The fluid force acing on the two tubes can be written 

f2 = -pu 1 2  c21u cos(& + ($21) 
2 

where c i i ,  cz1, d l iy  and d2l are coefficients and $11~ $21, ~ 1 1 ,  and ~ 2 1  are phase 

angles. From Eqs. 1,2, and 6, we can also write the fluid-force components as 



Comparing Eqs. 7 and 8 yields 

and 

Other fluid-force coefficients can be measured by exciting tube 1 in the y direction 
and tube 2 in the x and y directions. 

The following tests have been performed: 

Two tubes normal to flow (Fig. la): Tube 1 was excited in the x and Y 

directions. 



Two tubes in tandem (Fig. lb): The upstream tube (tube 1) and the 

downstream tube (tube 2) are excited in the x and y directions. 

In each test, the excitation frequency ranges from 0.1 to 2.3 Hz. For two tubes 
normal to flow, five flow velocities are tested: 0.05,0.07,0.113,0.146, and 0.166 d s .  

For all other tests, three flow velocities are tested: 0.07, 0.11, and 0.15 m/s .  The 

corresponding Reynolds numbers are 1250 (0.05 d s ) ,  1750 (0.07 d s ) ,  2830 (0.113 

d s ) ,  3660 (0.146 d s ) ,  3760 (0.15 d s ) ,  and 4160 (0.166 d s ) .  In all tests, when the 

flow speed was set at  0.15 d s ,  different excitation levels were given to determine 

the fluid-force coefficients as a function of excitation level. 

Fluid-damping and fluid-stiffness coefficients are obtained for two tubes 

normal to flow and two tubes in tandem. The following data are available: 

Two Tubes Normal to  Flow: Fluid-force coefficients due to the motion of tube 1 

in the x and y directions. 

Two Tubes in Tandem: Fluid-force coefficients due t o  the motion of tube 1 in 

the x and y directions and due to the motion of tube 2 in the x and y directions. 

To limit the length of this paper, only the data for two tubes normal to flow are 

presented (Figs. 4-9). Readers interested in additional data can contact the authors 
for additional force coefficients. 

Note that Figs. 4-7 show the fluid-force coefficients as a function of reduced 
flow velocity at several flow velocities, while Figs. 8 and 9 show the fluid-force 

coefficients as a function of excitation level. 



From the data, some general characteristics of motion-dependent fluid-force 

coefficients are noticed: 

Hiah Reduced Flow Velocity 

When the reduced flow velocity, Ur (= U/fD; f is the oscillation frequency of the 

cylinder in flow and D = 2R), is high, e.g., >20 and some >IO, all fluid-force 

coefficients are approximately independent of reduced flow velocity. This shows 

that when the flow velocity is high relative to cylinder velocity, the fluid forces 

resulting from tube motion can be quantified at a specific velocity and the results 

can be applied to other flow velocities. In this range, measurements of fluid forces 

can be significantly reduced. This characteristic is no t  only valid for circular 

cylinders, but also for other geometries (Chen and Chandra 1991). 

Revno Ids Nu mber 

At low reduced flow velocity, fluid-force coefficients depend on the reduced flow 

velocity, Reynolds number, and excitation amplitude. Similar characteristics have 

been noticed for a single cylinder (Chen, Zhu, and Cai 1995). This can be seen from 

the results given in Figs. 4-9. For example, the coefficients for Ur <8 are shown in 

Fig. 10. The peak values decrease with flow velocity and are shifted toward larger 

Ur. This trend is similar to those of a single tube. At lower reduced flow velocity, 
fluid-force coefficients are much more complicated. 

Questions may be raised on the reliability of the force transducers. The 

motion-dependent fluid forces may be very small. Are the force transducers 

sensitive enough to  measure these forces? Three different force transducers were 

designed and tested. The force transducers used in this test were found to  be 



reliable. This can be seen from the comparison of the added mass coefficients in 
stationary fluid; the measured values and theoretical results agree very well. 

In the figures, fluid-force coefficient curves are plotted by simply connecting 

the experimental points. There are many lumps and bumps in these curves. There 

are several possibilities such as experimental uncertainty and metastable flow 

(Zdravkovich 1991). At this time, it is difficult to  pinpoint the exact cause of each 

bump. It is recognized that force transducers developed for this test are not perfect; 

however, with perfect force transducers, it would still not be possible to generate a 

fluid-force coefficient curve without bumps in some flow regimes because the flow is 

bistable. The data will depend of the flow regime. 

In this study, due to the capacity of the water channel, tests were performed 
for Reynolds number from about 1200 to  4200. This is lower than the Reynolds 

numbers in many practical cases. From test results, it is noted that fluid-force 

coefficients are a function of Reynolds number at lower reduced flow velocity range. 

Additional tests are needed to quantify fluid forces at higher Reynolds numbers. 

DYNAMIC RESPONSE OF TWO TUBES IN CROSSFLOW 

Consider two identical tubes with radius R subjected to crossflow, as shown in 

Fig. 11. The axes of the tube are parallel to  the z-axis and flow is parallel to  the 

x-axis. The subscript j is used to denote variables associated with tube j. Variables 
associated with the motion in the x and y directions are flexural rigidity EI, cylinder 

mass per unit length m, structural damping coefficient Cs, and displacement Uj and 
Vj. The equations of motion for tube j in the x and y directions are (Chen 1987) 



where f j  and gj are the excitation forces. Note that fluid-damping coefficients and 

fluid-stiffness coefficients are functions of reduced flow velocity Ur. 

The in-vacuum variables are mass per unit length m, modal damping ratio Cv 
and natural frequency fv (= %/27c). The values for fv and cv can be calculated from 

the equation of motion and appropriate boundary conditions or from tests in 

vacuum (practically, in air). The modal function of the cylinder vibrating in vacuum 
and in fluid is ~ ( z ) ;  

where 1 is the length of the cylinders. Let 



where aj(t) and bj(t) are hc t ions  of time only. Calculation of Eqs. 11 and 12 yields 

where the dot denotes differentiation with respect to time and, 

U u -- 
- fvD’ 



When one of the tubes is all wed to  oscillate in a specific direction while the 

other tubes are rigid, the equations of motion can be simplified significantly. For 
example, when tube 1 oscillates in the x direction, its equation of motion based on 

Eq. 15 becomes 

d a i  P j 
2 d a i  

+2C,o-+m a j =  dt2 dt l+yaj j '  

where 

Note that o and 5 are the circular frequency and modal damping ratio, respectively, 

for the tube in crossflow. CM is called an added mass coefficient for the tube in flow; 

when Ur = 0, it is equal to ajj. When Ur is not equal to  zero, CM depends on Ur as 

well as on aj'j, which in turn, depends on Ut and oscillation amplitude. 

From Eqs. 19 it is noted that when 4 is positive, it will contribute to negative 
damping to  the system. In some cases, the resultant damping may become zero and 

the system will become unstable. From Eq, 19 the critical reduced flow velocity at  

which the modal damping ratio is zero can be calculated from 



where 8 is a mass-damping parameter (8 = 27cCvm/pD2). This is the critical flow 

velocity for fluidelastic instability. 

Equations 18-20 can also be applied to oscillations in the y direction. Replacing 

all a by p in Eqs. 18-20 yields the equations of motion and stability criterion for 

constrained mode in the y direction. From Eqs. 19 and 20, it is noted that when the 

value of the fluid-damping coeflicient, ah or p i ,  is positive, the tube may become 

unstable. The region depends on tube arrangement, location, and flow velocity. 
From the fluid-force coefficients, ai is found to be positive in the regions given in 

Table 1. Fluid-damping coefEcients in the y direction pi1 and g2 are always 

negative; this means that oscillation in the y direction will not become unstable. 
These results agree qualitatively with the general experimental observations 

(Zdravkovich 1982). 

The natural frequencies of constrained modes are affected by aij and pij. When 

the fluid-stiffness coefficient is positive, the frequency is reduced. The regions in 

which ail and ~4~ are positive are given in Table 2. Fluid stiffness for oscillations 

in the y direction, p i ,  is negative for two tubes normal to flow and the upstream 

tube. The downstream tube, pi2, becomes positive when U, is 9 . 2 .  

Coupled Vibration 

In flowing fluid, from Eqs. 15 and 16 the natural frequencies and modal 
damping ratios of the system can be calculated as follows: 



It should be noted that the fluid-damping and fluid-stiffness coefficients are 

functions of Ur (= UKD); therefore, a numerical method is needed to  calculate f and 

6 .  

Stability of a cylinder array is determined from Eqs. 15 and 16. The 

nondimensional parameters in Eqs. 15 and 16 are y, cv, Uv, aJl, ojk, %,k, pJl, $k, $k, 
$, &, c$k, Oik, $k, and &k. Therefore, the critical flow velocity can be written in a 
functional form as 

For two tubes, if fluid-force coefficients are independent of Ur, then 

i.e., the critical flow velocity is a function of mass ratio and damping ratio only. 



In a light fluid, fluid inertia and damping associated with the quiescent fluid 

can be neglected. Equations 15 and 16 can be written 

o r  n 

All fluid-force coefficients in a light fluid are approximately independent of Ur, and 
the oscillation frequency is approximately equal to  o, (i.e., o, = of). Then y U: 
plays the same role as cv; both contribute t o  system damping. Modal damping for a 

particular mode can be written 

5 = cv - c y ut, 

where C depends on fluid-damping and fluid-stiffness coefficients. Instability 
occurs if 6 = 0; i.e., 

0.5 

or 



0.5 

f,Dx( pD2 ) * 

U 2xc,m 

Thus, the critical flow velocity is a function of the mass-damping parameter and is 

proportional to its half-power. 

CLOSING REMARKS 

In the past, the motion-dependent fluid forces for two tubes were not quantified 

in general. In this study, fluid-damping and fluid-stiffness coefficients for two tubes 

normal to flow and two tubes in tandem with the pitch-to-diameter ratio of 1.35 are 

presented as a function of reduced flow velocity for a series of Reynolds numbers. 

At high reduced flow velocity, the fluid-force coefficients are practically independent 

of reduced flow velocity. However, at low reduced flow velocity, fluid-damping and 

fluid-stiffness coefficients depend on reduced flow velocity, Reynolds number, and 
oscillation amplitude. 

Once fluid damping and fluid stiffness are known, the response of two tubes in 

crossflow can be predicted on the basis of the unsteady-flow theory. Fluid damping 

and fluid stiflness play an important role in determining tube response. The system 

may become unstable due to motion-dependent fluid forces. For example, fluid- 

damping-controlled instability can occur even in the constrained mode. 

The force transducers used to measure motion-dependent fluid forces in this 

test were designed for the low flow velocity range. For different flow conditions with 

different flow velocity and water channel depth, new force transducers will be 

needed. It is important to design a force transducer so that it is sensitive but rigid 
enough to  resist flow excitation; it is a delicate balance of sensitivity and rigidity. 



Various approximate theories, some ignoring fluid coupling and some ignoring 
fluid stiffness, for two tubes in crossflow are useful in specific conditions. The 

unsteady-flow theory presented in this paper accounts for the interaction of tube 

motions and flow field adequately; it can be applied to various conditions. The key 

elements of the unsteady-flow theory are the motion-dependent fluid forces. An 
extensive effort is needed to obtain these forces experimentally. Some studies have 

been published to  calculate these forces numerically (Sadaoka and Umegaki 1993, 

Ichioka et  al. 1994). It is expected that once developed, the computational fluid 

dynamics method will be more economical. 
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Table 1. Regions of reduced flow velocity in which fluid- 
damping coefficients ail and are positive 

Fluid-Damping Coefficients Flow Velocity Reduced Flow 
W S )  Velocity 

ai1 or $2 0.05 1.7 to 4.3 
0.07 1.8 to 4.7 
>O. 13 2.3 to 5.6 

Two Tubes Normal to Flow 

Two Tubes in Tandem 
ail 

ai2 

0.07 >6.0 
0.11 >7.1 
0.15 >7.4 
0.07 >3.2 
0.11 >3.6 
0.15 >3.6 



Table 2. Regions of reduced flow velocity in which fluid- 
stiffness coefficients ail and &2 are positive 

Fluid-Stiffness Coefficients Flow Velocity Reduced Flow 

Two Tubes Normal to Flow 
W S )  Velocity 

ail or 42 0.05 c1.7 
0.07 <2.1 
0.113 c2.5 
0.146 <3.2 
0.166 c3.4 

Two Tubes in Tandem 
ai1 0.07 

0.11 
0.15 
0.07 
0.11 
0.15 

>12.5 
>14.0 
>15.8 
>1.8 
>2.2 
>5.2 
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NORMAL TO (b) TWOTUBES 
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Fig. 1. Arrangements of two tubes in crossflow 

used in this study 
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Fig. 2. Motion-dependent fluid forces f1 (Fig. Za), gl  (Fig. Zb), f2 (Fig. 24, and g2 

(Fig. 2d), acting on two tubes with pitch-to-diameter ratio of 1.35 (Fig. la) 
due to motion ul (Fig. 2e) 
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Fig. 7. Fluid-damping and fluid-stiffness coefficients pal, oal, pi,, and oil for two 

tubes normal to flow 
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