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Abst rac t  

The temperature dependence o f  1-D d i f f u s i o n  r a t e  of s o l i t o n s  i n  t rans -  

polyacetylene is determined by time-domain analys is  o f  ESR measurements. 

d i f f u s i o n  r a t e  appears t o  obey a simple power law. 

1-D d i f f u s i o n  process i n  impure chains i n d i c a t e s  t h a t  ove ra l l  d i f f u s i o n  can be 

much slower than t h a t  wi thout  traps. 

The 

Monte Car lo simu'lat ion o f  
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I. INTRODUCTION 

Pristine polyacetylene, (CH) , ,  has recently been studied extensively by 

magnetic resonance spect roscopi es The d i  f f usi on rate of unpai red spins 

inferred from ESR measurements i s  smaller than tha t  by nuclear relaxation 

measurements. Reconci 1 ia tory arguments assuming the exi stence o f  two s p i n  

species were proposed by Nechtschein e t  a l e 7  

sion constant, a homogeneous lorentzian lineshape i s  assumed for the whole 

range of 4 K t o  room temperature. However, i t  i s  known that below 100 K the  

ESR lineshape deviates from lorentzian and contains inhomogeneous compo- 

nents. AS a consequence, their analysis on the temperature dependence of the 

diffusion constant cannot be complete. I n  a previous paper,' we have pointed 

out t h a t  quantitative resul ts  of the on-chain diffusion rate can be extracted 

by time-domain ana lys i s  of ESR measurements even i f  the lineshape i s  not 

lorentzian. In t h i s  paper, we present resul ts  on the temperature dependence 

of one dimensional ( l - D )  diffusion rate process i n  trans-(CH), by time-domain 

analysis. A simple model of diffusion i n  impure chains i s  provided t o  explain 

why the apparent observed diffusion rate of spins decreases i f  traps are 

present . 

In the i r  analysis of t h e  d i f f u -  

11. THEORY AND MPERIMENTS 

In  the bond-a1 ternation domain-wall ( so l i ton)  model, 'O-'' the unpaired 

spins are delocalized over abou t  fourteen C-H units,  and are h ighly  mobile 

a long  the chain. 

lorentzian hopping  process between chains, i t  has been shown tha t  the spin 

correlation function i s  given by 

If one assumes a 1-D diffusive motion of the soli ton,  and a 

9 
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where y i s  the off-chain hopping rate ,  a is  t h e  1-0 diffusion rate, and AJ i s  

the effective second moment of the hyperfine and dipolar f ie ld .  

diffusion rate i s  scaled by a factor 1 / N 2  as a consequence of s p i n  delocaliza- 

t ion over 2N C-H units, 

formula13 as 

The  1-1) 

The tirne-domain signal can be derived by Kubo's 

The analytical expression of the above integration is  given in our previous 
9 paper , 

Standard X-band ESR measurements were performed on stretched films of 

both air-exposed and unexposed trans-(CH),, w i t h  about 80% of the C-H chains 

preferenti a1 ly  oriented a1 ong magnetic f i  el d o  The exposed sample was degassed 

and sealed i n  helium atmosphere a f te r  the exposure. The field-domain deriva- 

t i ve  ESR spectra were recorded for 40 and 100 G sweep f ie ld  ranges, employing 

from 0.01 to  0.05 G f i e ld  modulation with microwave power of 0.01 t o  0.1 mW. 

The time-domain signal can be obtained by a Fourier transformation of the 

absorption spectrum obtained by integrating the f i r s t  derivative spectrum. 

The values of aor and y were f i r s t  obtained by f i t t i n g  d a t a  a t  l i q u i d  h e l i u m  7 

temperature where the l - D  diffusion rate 

y. To improve the accuracy o f  f i t t i n g  t 

t u r e s ,  both AJ and y were fixed, and on 

i s  negligibly small as compared t o  

me-domain data a t  various tempera- 

y one paramenter, the l - D  diffusion 

rate,  was var ied.  The assumption of constant y i s  jus t i f ied  by both NMR 

resu1tsl4 and the small temperature dependence of the ESR linewidth of cis-  

(CH) , .  The off-chain hopping of spins may involve Heisenberg exchange. 
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By curve f i t t i n g ,  we f i n d  that AW = 8.7 x l o 7  rad s - l ,  y = 1.1 x io8  S-1 

for the unexposed sample, and AU = 9.1 x lo7  rad s - l ,  y = 1.1 x lo8  s-l for  

the sample exposed a t  room temperature t o  a i r  for ten minutes. Assuming a 

s p i n  distribution function as i n  the Su-Schrieffer-Heeyer model ,11 i t  was 

shown that9 AJ = 2 I ( I + l )  a$/9N, where a H / 2 n  ( -  316) i s  the hyperfine con- 

s tant  for an unpaired s p i n  localized to  a single C-H u n i t . 1 5  

t ion  factor N for both samples i s  found to  be about 6 and is close t o  the 

theoretical 

be due to  the difference i n  the dipolar interaction. 

T h e  delocaliza- 

prediction. The slight difference i n  AW between two samples may 

The l - D  diffusion rates  of both samples a t  various temperatures are shown 

The  i n  F ig .  1( a )  and 1( b) . The data appear to  be 1 inear i n  the log-log plot. 

slope for the unexposed sample i n  F i g  l ( a )  i s  2.6, and the slope of the a i r -  

exposed sample i n  F i g  l ( b )  i s  about  2.3.  The temperature dependence of d i f f u -  

sion rate is  different  from Nechtschein's analysis7 and i s  much simpler. The 

observed temperature dependence is different from the prediction by the Wada- 

Schrieffer model16 of a quadratic dependence. 

Maki 's  prediction of a power law a = T ( 2 - d ) / 2  where d i s  the spatial  dimension 

of the acoustic phonon i n v 0 1 v e d . l ~  

because the l a t t e r  two models do not consider the effects  of trapping centers, 

the observed temperature dependence of diffusion rate  can be very different  

froin ideal cases. 

Our data also d i f f e r  from 

Such disagreement is  not unexpected 

The measured l-D diffusion rate a t  room temperature i s  about 10'' s-l. 

I f  the scaling factor N2 ( N  - 7 for Su-Schrieffer-Heeger model) i s  taken i n t o  

account, the actual diffusion rate is  about  5 x 10l1 s-l.  

orders of magnitude smaller than t h a t  from NMR relaxation  measurement^.^ 
apparent discrepancy may be due t o  a difference i n  the time-scale t o  which ESR 

1 i newidth measurements and NMR relaxation measurements are sensit ive.  In tne 

T h i s  value i s  two 

T h e  
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ESR linewidth broadening process, slow motions a t  a rate 

fine field are important. However, in the NMR spin- la t t ice  relaxation 

process, fast  motion close t o  electron Larmor frequency dominates. As a 

resul t ,  the ESR linewidth senses the long time behavior of the diffusive 

process and NMR spin- la t t ice  relaxation senses a much shorter time behavior. 

To support t h i s  argument, a Monte Carlo simulation of a l - D  random walk 

process in the presence of trapping centers was performed. 

comparable t o  hyper- 

In the long time l imit  where Tt >> 1 ( T  i s  the escape rate  from 

trapping s i t e s )  , the effect ive diffusion rate i s  significantly reduced in the 

presence of a small amount of traps i f  the escape rate i s  much sma 

the diffusion rate  of non-trapping s i t e s ,  CQ. The effective diffus 

the long  time limit  from Monte Carlo simulation i s  shown in Fig. 2 

t o  follow a simple relation as18 

1 er t h a n  

on rate i n  

and appears 

where p i s  concentration of trapping centers. 

Tt << 1 << %t, however, the effective diffusion rate deviates from the above 

relation and i s  close t o  %. 

spin species and may assume t h a t  only the spins a t  non-trapping s i t e s  contri- 

bute t o  nuclear spin relaxation . However, i n  t h e  long time scale  of ESR 

linewidth broadening (which i s  about  three orders of magnitude lonyer t h a n  

time scale involved i n  NMR relaxation process) one may not  distinguish these 

two spin species, b u t  rather observes a slower overall effective diffusion 

rate. These simulated resul ts  support the view t h a t  the effective diffusion 

rate being measured depends on the time scale t o  which a particular spectro- 

scopic tool is most sensit ive.  

In the short time l imi t ,  

In  th i s  l imit ,  one may deal with two  dis t inc t  

7 

As a consequence, i t  i s  not  unexpected t h a t  
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the  e f f e c t i v e  d i f f u s i o n  r a t e  i n f e r r e d  from ESR l i n e w i d t h  measurements i s  

smal ler  than t h a t  by NMR nuc lear  sp in r e l a x a t i o n  measurements. 

111. CONCLUSIONS 

I n  conclusion, t h e  temperature dependence of the  l - D  d i f f u s i o n  r a t e  of 

s o l i t o n s  i s  determined by time-domain ana lys is  o f  ESR measurements. Even 

though the  l ineshape i s  no longer  l o r e n t z i a n  a t  low temperature, t he  d i f f u s i o n  

r a t e  can be determined by curve f i t t i n g  t o  time-domain data. The dependence 

o f  the  d i f f u s i o n  r a t e  on temperature fo l lows a simple power law. 

o f  oxygen-increases t h e  ESR l i n e w i d t h  and decreases s l i g h t l y  t he  power o f  t he  

temperature dependence o f  d i f f u s i o n  rate.  Monte Car lo  s imulat ions o f  t he  l - D  

The presence 

d i f f u s i o n  process i n  presence o f  t raps i n d i c a t e s  t h a t  the  e f f e c t i v e  d i f f u s i o n  

r a t e  i s  reduced if observed i n  a longer  t ime scale. These r e s u l t s  'may exp la in  

why the  d i f f u s i o n  r a t e  observed by ESR l i n e w i d t h  measurements i s  slower than 

t h a t  by NMR s p i n - l a t t i c e  re laxa t i on  measurements. 
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FIGURE CAPTIONS 

FIG. 1. Temperature dependence of l - D  diffusion rate  a i n  units of  

l/nanosecond. B o t h  se t s  of d a t a  obey a simple power law as a 

2.6 for the unexposed sample ( F i g .  l . ( a ) )  and n = 2.3 for the sample exposed 

t o  a i r  for ten minutes ( F i g .  l . ( b ) ) .  

T", where n = 

FIG. 2. Results of Monte Carlo simulation of l - D  diffusion process w i t h  

traps.  The calculated diffusion rates for various t r ap  concentration follow 

closely the relation shown i n  eq. ( 3 )  as represented by the solid and dashed 

l ines .  
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