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-4bstract. An n-ary Steiner law f(zl,z2,-.-,zn) on a projective curve I' 
over an algebraically closed field k is a totally symmetric n-ary morphism f 
from I'" to I' satisfying the universal identity 

An element e in r is called an idempotent for f if f(e,e,-..,e) = e .  The 
binary morphism z * y of the classical chord-tangent construction on a non- 
singular cubic curve is an example of a binary Steiner law on the curve, 
and the idempotents of t are precisely the inflection points of the curve. 
In this paper, we prove that if f and g are two 5 a r y  Steiner laws on an 
elliptic curve r sharing a common idempotent, then f = g .  We use a new 
rule of inference rule =(gL)=+ , extracted from a powerful local-to-global 
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principle in algebraic geometry. This rule is implemented in the theorem- 
proving program OTTER. Then we use OTTER to automatically prove the 
uniqueness of the 3-ary Steiner law on an elliptic curve. Very much like 
the binary case. this theorem provides an algebraic characterization of a 
geometric construction process involving conics and cubics. The well-kno\vn 
theorem of the uniqueness of the group law on such a curve is shown to be 
a consequence of this result. 

1 Introduction 

The so-called identity theorems of classical function theory state that if two 
functions (belonging to  a “nice” class) agree on a dense open set, they agree 
everywhere. This is the heart of several uniqueness theorems of algebraic 
structures in mathematics. An analog in algebraic geometry is the so-called 
Chow’s theorem 17, p. 671: “Every compact complex manifold has a t  most 
one algebraic structure, and moreover, every compact 1-dimensional com- 
plex manifold admits a unique algebraic structure”. These are analytically 
isomorphic to projective varieties. This is a deep theorem, and the unique- 
ness of a group law on an elliptic curve T is a special case. We say that 
an algebraic curve I’ admits an algebraic law, say f(zl,22, - .  e ,  xn), if f is a 
n-ary morphism (i.e., a regular function or a rational function) on the curve 
I?. The nonsingular cubic curves are pregnant with a number of universal 
algebras all of which are morphisms of the curve: every algebraic curve in- 
duces a rational operation on cubic curves via a complete intersection cycle 
(see, e.g.. Fig. 1 for the binary linear process and Fig. 3 for the 5-ary conic 
process). 

In this paper, we give a pure equational characterization for the 3-ary 
morphism determined by the conic process. We believe that the blending 
of universal algebra and algebraic geometry is an important application of 
universal algebra and a new tool for algebraic geometry. And the addition 
of automated theorem proving will do a great deal to bring attention to the 
role of computers in symbolic reasoning in real mathematical questions. 

LQith this theme as our backdrop, let us now rephrase the uniqueness of 
the group law in the language of first-order logic with equality: 

2 



X 

72 

Figure 1: Chord-Tangent Construction 

This gives rise to a model-theoretic question of whether one can extract some 
first-order properties from the theory of projective curves and formulate and 
prove the various uniqueness theorems within the framework of first-order 
logic with equality. The answer is an emphatic yes: the following rigidity 
lemma-a powerful local- to-global principle valid for morphisms of complete 
varieties-proves the validity.of the above implications. 

Lemma 1 Let X be a projective curve and Y and Z be irreducible algebraic 
varieties, all defined over an algebraically closed field k. Let f be a regular 
mapping from X x Y into Z such that f (X x {yo})  is a singleton 20 for 
some yo E Y .  Then f ( X  x { y}) is a singleton for every y E Y .  

Proofs of this basic fact may be found in [lo,  p. 1561, [5 ,  p. 1041, or in [ll, 
p. 1561. I 
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2 Methodology and Theorems 

We now rewrite the rigidity lemma as a formal implication, where (gL) 
stands for “Local to global”, “geometric Logic”, “geometric Law”. 

We view the rule (gL) as an equation-deriving principle extending the scope 
of the usual equational logic. Whenever the program meets the local equality 
f ( z ,yo )  = 30 for some word f and some elements yo, 20, it churns out the 
global multivariable identity f(z, y) = f(z, y) (multivariable because here 2, 
y, or z could be vectors, namely, 2 = (q, 22, .., xm), because 2, y,  or I could 
themselves be product spaces). This idea of viewing (gL) as an inference 
rule was first stated and systematically used by R. Padmanabhan in [7]. 
See R. W. Quackenbush [9] for the history of a closely related and recently 
discovered concept of “term condition”. 

We use the following notation. If C is a set of identities and if D is an 
identity in the language of C, we write 

if C U (gL) u in the usual equational logic. Whenever convenient, we also 
say that the axioms C “(gL)-implies” D ,  etc. 

Using the rule (gL), let us now give a “mindless” proof of the powerful 
four-variable median law just from the relatively weak two-variable Steiner 
quasigroup laws (2 . ( y  2) = y, (y  - 2) - z = y}. 

Theorem 1 {z(yz) = y, ( y z ) t  = y} =(gL)+ { ( z y ) ( s t )  = ( z z ) ( y t ) ) .  

Proof. Define the 5-ary composite operation f by 

By the law ~ ( y x )  = y, we have f ( z , c , c , t , d )  = d for all 2. Thus by the 
rule (gL), the 5-ary expression f ( x ,  y, 2, t ,  u) does not depend upon z for all 
y, z ,  t ,  u. In particular, we have 
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Hence, one right-cancellation of the common term u( ( s z ) ( y t ) )  immediately 
yields the desired median law ( z y ) ( z t )  = (zz)(yt). 

Let us now apply this to  the geometry of plane cubic curves without any 
further reference to the geometry or the topology of curves. 

Corollary 1 Every binary morphism ‘‘e’ defined on a nonsingular cubic 
curve I’ over an algebraically closed field satisfying the Steiner quasigroup 
identities must be medial (see Fig. 2). 

X 
~~ ~~~ 

Figure 2: The Medial Law 

Historical remark. This corollary was first proved for plane cubic curves by 
I. AI. S. Etherington using the classical Bezout theorem (see [l]). In [7], 
Padmanabhan gave a proof for elliptic curves over an arbitrary algebraically 
closed field k (see also Knapp [2, pp. 67-74]). 
Proof. A nonsingular cubic curve is an Abelian variety and hence, as men- 
tioned in the introduction, satisfies (the rigidity lemma and consequently) 
the rule (gL) for all morphisms. 
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3 OTTER and the Implementation of =(gL)* 

OTTER [3] is a computer program that attempts to prove theorems stated 
in first-order logic with equality. Here we restrict our attention to its ca- 
pabilities in equational logic. The user inputs axioms and the denial of 
the goal(s), and OTTER searches €or a contradiction by working both for- 
ward from the axioms and backward from the goal(s). Equational reasoning 
is accomplished by paramodulation and demodulation. Paramodulation is 
an equality substitution rule extended with unification: if the two terms in 
question can be made identical by instantiating variables, then equality sub- 
stitution is applied to the corresponding instances. Demodulation is the use 
of equalities as rewrite rules to simplify other equalities. The following ex- 
ample illustrates the interplay between paramodulation and demodulation. 
Consider {f(z,f(g(z),y)) = y,f(u,g(u)) = e , f ( w , e )  = w}, where e is a 
constant; OTTER can infer z = g(g(z)) “in one step” by unifying f(u,g(u)) 
and f(g(z) ,y))  (which instantiates u to  g(z) and y to g(g(z))), replacing 
f(g(z),g(g(z))) with e ,  and then demodulating with f(w,e) = w. 

The  rule (gL) was implemented in OTTER in two ways that  are analo- 
gous t o  paramodulation and demodulation. Let F[a l ,  z] represent a term 
that contains a subterm a1 at a particular position, with z representing ev- 
erything else in the term. Suppose we have F[al,zc] = Ffaz,y],  (i.e., a l ,  
and a2 are in corresponding positions), with a1 and a2 unifiable. By (gL) 
we infer F [ z ,  2’1 = F [ z ,  y’], where t is a new variable, and x‘ and y’ are the 
appropriate instances of z and y. For example, from 

we can (gL)-infer 

by unifying u and f (z ,z )  and introducing the variable w. We also use (gL) 
as a rewrite rule whenever possible. That is, we rewrite F[a,  Z] = F[u,  y] to 
F[z ,  z] = F [ z ,  y] (again, t is a new variable). 

OTTER Proof Notation. Each derived clause has a justification. The 
notation “m -+ n” indicates paramodulation from m into n; “: i, j ,  b ,  . . .” 
indicates rewriting with the demodulators i , j ,  k, . . .; and “,flip” indicates 
that  equality was reversed (usually so that the complex side occurs on the 
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left). The  justification “[(gL)” indicates the use of d,gL)+ as an inference 
rule, and “:(gL)” indicates its use as a rewrite rule. 

4 Uniqueness of 5-ary Steiner Law 

Let I’ be a nonsingular cubic, and let 5: y,  z ,  t, u be five points on the curve. 
Let Q be the unique conic determined by these five points. By the cele- 
brated Bezout theorem of classical geometry, we have /I‘ n QI = 6, counting 
multiplicities. Let now F ( z ,  y, z ,  t ,  u )  be the 5-ary morphism on r defined by 
the complete intersection cycle I’ n Q = {z, y, z, t ,  u,  F ( z ,  y, 2, t ,  u) } .  Then 
the unique sixth point F ( z , y , z , t , u )  can be found by a simple ruler con- 
struction as shown in Figure 3; a proof using the rigidity lemma was given 

Figure 3: The Sixth Point of Intersection 

by N. S. Mendelsohn, R. Padmanabhan, and B. Wolk in [4]). Here we 
characterize the above synthetic geometric process by means of equational 
identities. ’ 

The  5-ary law is totally symmetric in all of its five arguments, and every 
inflection point is an idempotent for f: f(e, e, e, e,  e) = e. The  geometric 
reason for this is that the intersection multiplicity at  an inflection point e is 
six. Moreover, it satisfies the Steiner identity !(e ,  e, e ,  2, f(e,  e ,  e, 2, y)) = y. 
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We claim that a nonsingular cubic curve over an algebraically closed field 
admits at most one such 5-ary morphism. First we prove the universal 
Steiner identity. 

Line 332 is the universal Steiner identity. 

Theorem 2 Let S be the set of identities of type (5 ,5,0)  defined by 

f is symmetric, 
g is symmetric, 

f ( e , e ,  e, e , e )  = e ,  
g ( e ,  e ,  e ,  e ,  e )  = e ,  

f ( e ,  e ,  e ,  r, f ( e ,  e ,  e ,  I, y)) = Y, 
g ( e ,  e ,  e ,  2, g ( e ,  e ,  e l  I, y)) = y s= { 

Then s =(La)* (f(2, Y, 2, t ,  4 = g(z, Y, 2, t ,  4. 
By Lemma 2, we may assume the general 5-ary Steiner laws 

f (~ ,ur 'w ,2 , f (U ,u , 'w ,2 ,Y) )  = Yt 
g('lL, 0, 'w, 4% v, 'w, 2, Y)> = Y. 

Full symmetry of the operations causes an explosion in the OTTER search 
space; to constrain the search, we incompletely specify symmetry with 

f(% v, w, 2, Y) = f(% 0, 'uf, Y, 4 
9(u, v, w, 2, Y) = g(% u, 'w, 3, $1 
g(z, Y, 2, u, w) = f(z, Y, z, '117.1 + g(Y, t 7  u7 w,.) = f ( Y ,  z, 2 1 7  0 7  4- 

Proof (found by O T T E R ~ . O . ~ +  on gyro at  400.44 seconds). 
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[363.2]  
[8 -+ 375, flip] 

[300 - 4081 
[8 -.+ 471, flip] 

Line 6.52 completes the proof of Theorem 2 .  

unique sixth point f(x, y, z ,  t ,  u )  on the cubic. 
\Ye now apply Theorem 2 to derive a ruler construction to locate the 

Corollary 2 f ( x ,  u,  z ,  t ,  u )  = ( ( x  * y) IC ( z  * 2 ) )  * u, where ‘% 
binary morphism of secant-tungent construction on the cubic. 

stands for the 

Proof. Define g ( x ,  y, z ,  t ,  u) = ( ( x  * y) * ( z  t t ) )  t u. It is clear that  g is totally 
symmetric and that every inflection point is an idempotent for 9. Moreover, 
g satisfies the 5-ary Steiner law g(e ,e ,e ,x ,g(e ,e ,e ,x ,y ) )  = y. Hence, by 
Theorem 2, f = g .  

In a similar fashion, we can derive the well-known theorem of the unique- 
ness of the group law on such a curve is shown to be a consequence of this 
result. 

Corollary 3 If x + y and x - y are two group law on an elliptic curve, and 
if e + e = e e = e ,  where e is an inflection point, then x + y = x - y for all 
points x and y on the curve. 

ProoJ Let “+” and ‘‘e“ be two group laws having the same identity element, 
say e. Using t h e  group law x + y, define the rj-ary law f ( x ,  y, z ,  u, v) = 
-x - y - 2 - u - v, where -x  is the inverse morphism corresponding to the 
law x + y. Similarly, using the second group law x - y, define the 5-ary law 
g ( x ,  y, z, u, v )  = x y z u v . Clearly both f and g are Steiner laws sharing 
a common idempotent. Hence, by the Theorem 2, -x  - y - z - u - v = 
x’y fz fu fv f .  Substitute y = z = t = u = e to get the equality -x = x’. 
Finally, substitute z = u = v = e to get (-2) + (-y) = (-z)( - y). Hence, 
2 + y = xy .  

f f I 1 1  
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