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ABSTRACT. The  aim of data assimilation is to infer the state of a system from a geophysi- 
cal model and possibly incomplete or nonuniformly distributed spatiotemporal observational 
data. Used extensively in engineering control theory applications, data assimilation has rel- 
atively recently been introduced into meteorological forecasting, natural-resource recovery 
modeling, and climate dynamics. 

Variational data assimilation is a promising assimilation technique in which it is assumed 
that the state of the system is an extrema of a carefully chosen objective function. Provided 
that an adjoint model is available, the required model gradients can be computed by integrat- 
ing the model forward and its adjoint backward. The gradients are then used to extremize 
the cost function with a suitable iterative or conjugate gradient solver. 

The problem we address iri this study is the esplosive growth in both on-line computer 
memory and remote storage requirements of large-scale assimilation studies. This imposes a 
severe physical limitation on the size of assimilation studies, even on the largest computers. 
By using a recursive strategy, a schedule can be constructed that enables the forward/adjoint 
model runs to be performed in such a way that storage requirements can be traded for 
longer computational times. This generally applicable strategy enables data assimilation 
studies on significantly larger domains tlian would otherwise be possible given particular 
hardware constraints. IVe show that this tradeoff is indeed viable and that when the schedule 
is optiiuized, the storage and computational tinies grow at nlost logarithmically. I 
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[ 11. INT RO D u CT IO N 

Data assimilation has relatively recently become an importcant tool in many areas of 
geophysics, such as weather and climate forecasting [l-61, model sensitivity analysis [?, 
81, and in the inclusion of field data sets into theoretical model-studies 19-11]. In weather 
forecasting, field data that may be spatially and/or temporally heteregeneous is continu- 
ously blended into dynamical niodels as soon as the field data is available. -4s a result, 
the predictive capabilities of today's weather models have significantly improved (1,121, 
Ocean forecasting has, on the other hand. not experienced comparable success. Reasons 
for this are that (1) the spatial and temporal scales of the relevant oceanic dynamics are 
several orders of magnitude smaller and larger, respectively; (2) oceanic data gathering is 
at present very limited in coverage and soiiictinies of incompatible quality; (3) boundary 
fluses at tlie airlsea interface are poorly understood and yet have a major influence on 
oceanic flows; and (4) the computing demands of oceanic forecasting have only recently 
become marginally suitable for some but not all of the types of studies at reasonable 
resolutions. 

A specific approach to data assimilation is called variational data assimilation [12]. An 
objective function is defined that provides a norm of the distance or misfit of the state set to 
observational data. The state set may comprise model predictions, parameters, boundary 
data, and/or initial conditions. The misfit is usually weighted in order to account for 
measurement errors, model uncertainties, etc. The object is to  find the state set that 
extremizes the objective function. This procedure is usually carried out as a constrained 
optimization problem, which is generally solved iteratively by some extention of Newton's 
method or a descent algorithm. 

The optimization problem requires the computation of the gradient of the model with 
respect to the state set. One of the other strategies that accomplishes the calculation 
of tlie gradient is the "adjoint method" [3]. Provided an adjoint to the tangent linear 
model exists, the process of computing the gradient involves integrating the original model 
forward in time (the forward problem) recording the model's history, and then using the 
history in the acljoint model to integrate backward in time to the point of origin (the 
adjoint problem). Along the way the partial differentials that constitute the gradient of 
the results at some t final with respect to the state set at some particular time step are 
multiplied in reverse order until the adjoint model reaches the origin once again. By the 
chain rule, the multiplication will yield the gradient, and it  will do so at a computational 
cost rouglily twice tlint of the forward problem. 

-4s described above, the adjoint method is what we will call the "conventional approach.?' 
Its main advantage is its low computational cost. However, its disadvantage is that it 
quickly encounters computer memory storage problenis even in low-resolution studies. In 
this paper we present an alternative to the conventiod approach that circumvents in a 
significant way the storage problems of the adjoint method at the espellse of a possibly 
greater , but manageable computational expense. 

The problem is motivated in Section 2. The alternative graclient method is presented 
in Section 3 and is compared with the conventional approach. Section 4 demonstrates 
how such alternative is implemeiit,ed in practice in an ocean climate problem, and we 
describe how it  colnpares with the conventional approach in terms of coiiiputational effort 
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and memory usage. Section 5 summarizes our findings, provides details of the strategy’s 
computer implementation, and tells where to obtain code that implements the method. 

[2]. STATEMENT OF T H E  PROBLEM 
For tlie sake of clarity we will assume that the physical problem in question can be 

modeled by an evolutionary equation. The physical nz-dimensional real domain is ’R C R” 
with boundary &%. The evolution equation is discretized in time so that the problem is 
defined at physical times tl = t1-l + Str.  Without loss of generality we may assume that 
discrete time progresses in eciud-interval steps, hence 6t i  = S t  and t i  = ZSt. In the discrete 
forward/adjoint method of computing a gradient the state set is required at periodic time 
intervals of time. The state set is computed using the evolution equation, which, for 
simplicity, will be assumed to be computed at equally-spaced intervals of time At. In 
most instances 6t 5 At. We define the time-index i E 7 c Zs so that ;At = Est. The 
semi-discretized ‘Lforwaxd problem” is defined as 

(2.1) 

(2.2) 

where the conipletely or partially unknown U and V are respectively the initial and bound- 
ary data for tlie state set that minimize an objective function. The “reverse problem” is 
the adjoint of (Ll), 

(2.3) U :  = F:({uz}, { u j } )  

i = n..O, i 5 k 5 n, j E [O,n]. 

If the forward problem is a semi-discretization of an evolution equation, we think of ui and 
U: with domain R x 7 as vectors of the state variables and their adjoints. 

Equations (2.1) and (2.3) will be solved in some high-level computer language such as 
Fortran or C. Define S = U,sj and S” = U I , . S ~  as the set of computer memory addresses 
recluired to rcpresent the vector set { u }  and { u * }  at index location i, so that u j  and u; 
have temporary memory locations s, and sz, respectively. It is assumed that s, n SI,. = 8, 
s* 1 n sz = 0, and sJ n sz = g. We call this temporary computer storage medium the 
“register” . 

Let f and f* be the representations of F and F”, respectively in some high level 
coniimter program, or ‘.program” for short. These take the form of subroutines, functions, 
etc. The action of f : S + S and f *  : S* t S*. Define the m- and t- norms as the 
memory and time of execution of some program Q as IIQIITn and IlQllt, respectively. AS 
will be evident in what follows, these norms amount to simple direct sums. The register 
memory of the state set is llSllrn = R, and it  is safe to assume that IIS*llm 5 R. The other 
type of memory that will play an important role in the analysis is the available memory 
external to the progra~n. This is usually some esternal storage device such as a memory 
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disk or tape. For simplicity we call this recording device tlie “tape” and assume that i t  
has fised memory of size T .  The specific use of the term “\~riting’’ will be reserved for 
the process of recording to tape. Similarly, the term “reading” is reserved for the process 
of accessing information from tape. The distinction between a non-reading or non-writing 
program procedure fi a i d  the same procedure that reads or writes the state set on tape 
will be indicated as fi. It will be convenient to define tlie following specific m- and t- 
norms: 

(’3.4) 

respectively, the maximum memory required to restore 5 1  given S and the maximum 
computing time (wall-clock time) to esecute fi. It is worth noting that p is essentially 
fixed regardless of the number of processors, while r can vary significantly depending on 
the number of processors. Since f* is a linear mapping on S*, it can be assumed that 
T* 5 r and 

T*  5 c.i* 5 c’?, 

where T*  and .i refer respectively to analogous norms to (2.4) of f* and f^, and the e’s are 
positive multiplicative constants. Note that l l f j l l t  2 n, since the subroutines may require 
working registers. 

In the discretization and coding of a typical evolution equation (for example, of a climate 
or meteorology problem) we can identify fj as the collection of subroutines and functions 
that take the state set from time ti to tj+l (forward integration) in which Ilfi1lrn and IIfillt 
are approximately the same for each level 0 < i 5 n and thus equal to p and r ,  respectively. 
In the same fashion f;* is the collection of subroutines that take the state set from time 
tj to t i -1  (reverse integration) in which llf?llrn and IIfTIlt are approximately the same for 
each level 0 < i 5 n and thus equal to p* and T*  respectively. Let us consider the memory 
and tlie time norms of two strategies that may be used in the n-step gradient computation 
by the adjoint method. 

In one strategy the minimal memory norm is achieved by writing nothing on tape. It 
requires stepping forward from i t o  to ti,, using fi ,  followed by a single reverse step from un 
to u,-1 using f,*. The process starts again from uo forward to un-l using f; followed by 
a reverse fl-l from unV1 to U , , - ~ .  This process is repented until the reverse integration 
reaches step 0 once again. The t- and m- norms for this strategy are respectively 

(n - l)n (n + 1)n Y + Y * =  r + nr* 5 7- 
L I? 

(’3.5) 

where only register mernory is used. For simplicity we are ignoring here, its we will do 
from now on, the register memory that is used for working arrays, etc. For an explicit 
fourth-order Runge-Icutta time integration scheme, for example, this register memory can 
be significant but can bc easily accounted in the estimates provided. 



Another strategy is the conventional approach, which steps forward from (LO to 11, using 
fi. then steps in reverse using f;”, reading the appropriate state variables from tape. The 
time and nieniory norms for the latter strategy are 

(2.6) 

Hence the conventional approach yields the adjoint as a fixed multiple of the time for the 
forward program. However, the tape grows linearly in both number of steps and size of 
the state set, which for typical geophysical applications will quickly overwhelm even the 
largest storage capabilities of computer facilities [13]. 

[3]. RECURSIVE ADJOINT METHOD 

The recursive strategy or “schedule” is specifically designed to circumvent the storage 
limitations of the conventional adjoint method at the expense of a larger computational 
effort. The computational effort will be defined more precisely below, but for now it suffices 
to know that the computational effort is directly proportional to the wall-clock time, which 
in turn depends on the number of processors. One strategy that reduces the tape size is to 
produce the gradient by using the usual forward/adjoint sweep but writing less often than 
is redly required. While this alternative saves some tape space, it produces a degraded 
gradient. It will be shown below that the gradient produced by the recursive method will 
be identical to its nondegraded counterpart obtained in the conventional way. 

The description that follows will present a heuristic explanation of the theoretical de- 
velopment that appears in [14]. The basis of this strategy is to limit the tape size to 
dR, , where d 5 n snapshots (snaps, for short) of states ( u }  at any given point during 
the program execution. This is done by carefully overwriting. It requires at most an 
additional r-fold increase in additional full forward unrecorded computations, or “reps”. 
The recursive strategy is not unique. Hoxever, from Theorem 6.1 due to Griewank [14], 
among the partitioning algorithms the “binomial partitioning” schedule is optimal. The 
theorem states that an n-step gradient calculation with the adjoint method can be solved 
recursively by using up to  d 2 0 snaps and at most r >_ 0 reps if and only if 

(3.1) 
( d  + r)! 

72 5 n(d , r )  = d!r !  * 

Note that 12( d,  T )  = n ( r ,  d )  and 12( 0, r )  = 12(d, 0)  = 1. To illustrate the sense in which this 
metliod is superior we appeal to Stirling’s forinula and find that for a fixed cl or r ,  

(3.2) 

To see inore clearly the relationship lietween 12 and the nuniber of snaps and reps, a 
contour plot of In n as a function of the nunher of snaps arid reps based on (3.1) we present 
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FIGURE 1. Contours of Inn versus snaps d and reps T .  

Figure 1. Since the values that the binomial takes are discrete, the contours appear jagged. 
The figure clearly illustrates the logarithmic rate of growth of n when d x T .  In fact, when 
d = T these grow as log, n. 

The schedule for n = 56, r = 5 reps, and d = 3 snaps appears in Figure 2 and is worth 
explaining in some detail. Note that 

n = 5 6 =  (‘I”>- 
Along the horizontal is the number of reps, and along the vertical the time step i. The 
tree structure of the schedule is evident. Horizontal lines are drawn at locations in which 
writing is performed. As  is evident, when reading the figure from left to right, there are 
five self-similar groups or pennants. The top pennant and the first to be executed has 
three snaps at i = 0,35, and 50. A write occurs at 35 = (‘-:+$) and the write at time 
step 50 = 55 - T .  Esecution requires a forward sweep from i = 0 to 56. The state at 50 is 
restored once more, arid a forward sweep to 55 follows. -4 forward/adjoint from 55 to 56 
and back again to 55 is executed then. The first pennant is completely swept by repeating 
the last two steps until the adjoint reaches 50. State 35 is then restored and a forward 
sweep follows, writing at 45 = 49 - ( r  - 1). After the second uppermost triangle is swept 
through, state 35 is recovered, and a forward sweep follows, writing at 41 = 44 - ( r  - 2). 
After completing the first pennant, state 0 is restored, and a forward sweep is initiated that 
ends at 35 = (‘-f+”), writing along the way at (=-:+$). At this point, the schedule should 
be obvious. the last pennarit is performed when = 1. Note that at no instant will 
the depth of the tape be inore than three records long. In addition, if the tape is thought of 
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1 2 3 4 ;  

FIGURE 2. Schedule for n = 56, r = 5 reps, and cl = 3 snaps. 

as a stack, the order of the records is maintained, as a result of its last-in-first-out nature. 
It is evident from the figure that there are a total of 1 forward recorded sweep, 1 adjoint 
reverse sweep, and T forward unrecorded sweeps. 

From Figure 2 it may be concluded that the t-norm and m-norm of the recursive schedule 
are, respectively, 

(3-3) 
(3.4) 

Dl = Y + Y* + r'Y 5 (2  + r)n.i, 
D ,  = T + '2R = ( d  + 2)R, 

since T = CER. The first expression on the right-hand side of Equations (3.2) and (3.3) 
hold generally for any n(CE,r), d 2 0, and r 2 0 recursive adjoint problem and the far 
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right-hand side for any general recursive adjoint problem involving the evolution equation 
typically encountered in climate or meteorology studies. Also note that if the number of 
reps r and sweeps cl are similar, then 
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FIGURE 3. Conventional versus Recursive strategy comparison. The 
added effort due to increased reps T .  From left to right, the conven- 
tional case, then r = 1, T = 2, r = 3. The curve represented by stars 
corresponds to T = d. 

Comparison of (3.2) with (2.6) leads to a working measure of the “computational effort,” 
which is proportional to the wall-clock time: a convenient measure is the total number of 
forward steps. We shall employ this measure in this and in the following section, in which 
a comparison between the recursive and the conventional approach is effected. Table 1 
shows the schedule characteristics for several values of n, d, and T .  From Table 1 confirms 
some of the particulars of the recursive strategy which have previously been mentioned, 
such as the fact that the number of reverses and the n is identical. It can also be surmised 
that the nuinber of reads is one less than the number of reverses because every reverse 
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FIGURE 4. Conventional versus Recursive strategy comparison. The 
points on the conventional curve correspond to n in intervals of 5, the 
first point being n = 10. The other curves are labeled with their corre- 
sponding 72. 

requires a prior read, except for the last reverse. By inspection, the number of writes is 
( d T ' )  so that d / ( d  + r )  is the ratio of writes to n. 

The performance of the recursive method compared with the conventional one may be 
assessed grapliically. Figure 3 illustrates the relation of the memory, measured in snaps, and 
the wall-clock time, assuming it is proportional to the effort. The conventional approach 
is represented by the left-most curve. All other curves represent different snap and rep 
combinations. In both the conventional and the recursive case, the memory required to 
solve a problem will be equal to d R ,  where R is defined as before and depends on the 
resolution and the number of spatial dimensions in the problem. On the other hand, the 
effort for the conventional case is basically n, while in the recursive strategy it depends on 
the choice of snaps and reps. From left to right the recursive strategy curves correspond to 
decreasing the number of snaps. The line-connected curve in the lower corner corresponds 
to the case of snaps and reps being eclual. The conventional case is, in effect, the limit 
of snaps d equal to n in the recursive strategy. As can be surmized, the curves reflect 
the previously ineiitioned characteristic of the recursive method, namely, that the effort 
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T A B L E  1. Schedule details for several 
sets of snaps d, reps T ,  and steps n. 

4 3 1 7 4 3 3 
4 1 3 10 4 3 1 
3 2 1 5 3 2 2 
3 1 3 d G 3 3 d 1 
'I)  d 1 1 3 3 d 1 1 

increases for the recursive method when fewer snaps are used. Hence, in practice, the user 
wishes to masimize the number. of snaps in the calculation rather than the number of reps. 
Figure 4 illustrates in greater detail the meinory and computational effort dependence on 
the number of snaps and reps. In this figure it is possible to gauge the relative additional 
effort required by the recursive strategy over the conventional procedure for a given n. 
For example, for n = 50 the conventional strategy requires 50 snaps and an effort of 3.9, 
whereas the recursive strategy for the same n requires between 11 and 48 snaps with an 
effort of about 4.8. Hence, we expect an order of magnitude increase in the wall clock time, 
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a very reasonable price to pay for the significant savings in terms of tape memory. The 
non-smooth changes in the curves corresponding to the recursive strategy in the Figure 4 
are a result of changing the value of the rep count. A comparison of Figure 4 and Figure 
3 bears this conclusion. recursive curves 

12.0 

10.0 

8.0 

C jfi 6.0 

4.0 

2.0 

0.0 
0.0 2.0 4.0 6.0 8.0 10.0 12.0 

log (eff ort) 

FIGURE 5 .  Comparison of the conventional and recursive strategy. The 
memory requirement of the conventional case is n. The recursive curves 
are labeled according to the number of snaps d used. Natural logarithms 
are used. 

Figure 5 shows a comparison of the conventional strategy (the left-most solid curve) 
with the recursive strategy with regards to the effort given by n. The finite extent of the 
lines joining the points as well as the density of points per curve is a result of the way 
in wliich the graph was generated: the masinium number of snaps and reps was limited 
to '30. Bounding the snaps and reps this way limits the number of points belonging to 
each line and the density of points corresponding to d = 2, say, is much greater than the 
number of points corresponding to d = '20. The slope of the recursive curves gets closer to 
the slope of the conventional case the more snaps are used. Note that in the conventional 
case the number of snaps is equal to n. Hence, this figure shows the clear advantage of 
the recursive riiethod with regard to memory. Specifically, whereas an increase in n in the 
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coiiventional case leads to an increase in tape usage, the recursive strategy enables the 
user to consider a wider range of 12 for a fixed tape size dR. The feasibility of this latter 
strategy is dictated by the speed of the machine or the willingness to pay for the higher 
effort involved. Conipare this to the previous figure, which shows the price paid in higher 
wall-clock times a s  a result of the smaller number of snaps employed. It may be that the 
effort required in large problems is significant, but this must be weighed against the fact 
that these problems may be simply impossible to consider with the conventional strategy. 

[4]. APPLICATION TO A QUASI-GEOSTROPHIC OCEAN PROBLEM 

The recursive procedure’s viability will be demonstrated by applying it to a quasi- 

hereafter referred to as T&T. The dimensionless equations over a unit-square bos in 5 and 
Y are 

I 
I geostrophic model 1151 [16], which was considered in Tziperman and Thacker’s study [13], 

c t  + ,& + RJ($, e )  = - € b e  + E I , A ~  + curlr 
(W c = A+, 

where +(z, y , t )  and [ ( x ,  y,t) are the streamfunction and the vorticity, ~(5,y) is the wind 
stress, Jf.,.) is the Jacobian of its arguments, and A is the Laplacian operator. The 
dimensionless real parameters R, € 6 ,  and ~h are the Rossby number, the bottom friction 
factor, and the horizontal friction factor, respectively. The state variables evolve in time t 
and are subject to no-flux and no-stress boundary conditions at the edges of the box. 

The equations were discretized using nmltigrid finite-difference techniques. In what 
follows it will be understood that the state variables are defined only on the uniformly 
discretized grid in x and y. For the sake of clarity w e will omit explicit mention that these 
quantities are discretized in space. On a discrete time grid t = ;At, the state variables [’ 
and 9’ evolve to a steady state and 6. Following [13], an assimilation problem is defined 
as follows. The observational data will be the steady-state vorticity ?; which is independent 
of time. The state set is taken to be the forcing term curlT, the initial vorticity C0, and the 
parameters and ~ h .  The observations C are determined from a particular (fixed) choice 
of friction factors ?6 and Zh, initial vorticity Co and forcing curl?. The system is then 
integrated forward in time until a steady state is reached, at  which point the observations 
are written. For purposes of this artificial assimilation problem, we now ‘iforget’, the state 
set values which produced the olxervations. The task of the assimilation will then be to 
reconstruct the state set that generated the observations. To this end, a cost function is 
chosen that ineasures the fit of the model result to the observations. Since the observations 
represent the steady state, the cost function should measure the departure of the model 
from steady state as well as the departure from the observations. In [13] the authors use 
the following discrete cost function: 

- 

where the sun1 indicates a sum over all the discrete values of the variables over the unit 
bas. The first tcrni irieasures the deviation from the observations, while the second term 
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in conjunction with the first measures the deviation from steady state. The matrices C 
and D are the inverse of the covariance matrices of the observations. The final time step, 
n, is arbitrary in this problem. It is chosen to be sufficiently large so that steady state is 
achieved. A4 small value of n reduces the computational cost per optimization iteration; 
however, it increases the number of optimization iterations. Since the number of written 
histories depends on the number of time steps n, the storage requirements are reduced 
when l2 is small. 

The optimization task is to find the state set (curlr, c o ,  € 6 ,  e h }  for which H" is a mini- 
mum subject to the constraints of the model equations. A common strategy for computing 
the minimum is to introduce Lagrange multipliers and the corresponding Lagrange func- 
tions for which we seek ai unconstrained extremum. A gradient-based iterative algorithm 
such as the conjugate gradient method is then applied to this unconstrained problem. For 
the discrete quasi-geostrophic model, the Lagrange function has the form 

n 

L" = H" + pi [c*  - At+!Ji] 
i = O  

The descent algorithm requires the calculation of the gradient of L" with respect to 
the state set. The gradient involves the Lagrange multipliers { p i 7 A i } ,  which me deter- 
mined from the gradients of L" with respect to { c i ,  $ i ) .  Equating these gradients to zero 
generates the adjoint equations for { p i ,  A i } ,  which may be symbolically expressed a s  

(4.2) 

where \k is the forcing term arising from the gradients of the cost function with respect to 
{<*,$*}. The discrete adjoint equations are integrated backward in time to generate the 
Lagrange niultipliers A' used in computing the gradients of the cost function as needed 
by the conjugate gradient procedure. Thus, in the conventional approach, each conjugate 
gradient iteration requires a forward integration of n steps, which generates the value of 
the cost function, followed hy a lxtckward integration of the adjoint equations. This adjoint 
integration generates the gradients used in the conjugate gradient iteration. Observe that 
the state set is required to effect the calculation of the Lagrange multipliers from the 
adjoint cquations. Thus, in the conventional approach involving n time steps, n state sets 
have to be saved. Since only the state variables are time dependent in this particular 
problem, we need oiily to write the state variables C i ,  T ) ~  at each time step. The remaining 
components of the state set need to be written only once during the forward-backward 
sweep. The observations were synthesized by running the discretized version of (4.1) to 
steady-state using curl7 = - sin(.rrr) sin(.rry), e b  = 0.05, eh = 0.0001, and R = 0.01. 

To demonstrate the performance of the recursive forward-backward integration strategy 
for the calculation of the gradient, we compared model runs of this esperiment using the 
original multigrid Fortran code agaiiist a version of the code which was identical in d l  



respects to TkT’s code, escept for a subroutine that generates the schedule and for minor 
modifications to the program to enable us to implement the schedule. -As a first step, we 
verified that our program results yielded identical results to the conventional case. The 
wall-ciock tinie was negligibly higher for the recursive program running in the conventional 
mode, reflecting the additional computational expense of generating the schedule. 

In the experiments to be reported, the optimality tolerance for the NAG conjugate 
gradient routine was set to in all model runs. The square of $* - qi-’ summed over 
the box was used as the error tolerance in the conjugate-gradient calculation. The forward 
run used to create the observations stepped in time until the residual was below 
The multigrid depth was fised at four levels for all esperiments that follow. The codes 
were executed on a Sparc 10/51 running SunOS 4.1.3Ul. The Fortran Sun compiler used 
was Fortran Version 1.4 with optimization flags turned off. ,411 runs were performed in 
double-precision arithmetic. Wall-clock times reported encompass the solution to the full 
problem. In all experiments performed, the answers from both strategies were identical. 

In TkT’s study, n = 1. In their experiment such a choice is possible since the assimila- 
tion occurs at just one time level. The role of the integration time length in connection to 
TSLT’s problem was investigated by Marotzke 191, where he concluded that in this quasi- 
geostrophic model, advective phenomena would not adjust quickly enough. He suggested 
that the assimilation be carried out over longer time spans. Hence there is some flexibility 
in choosing the integration time, since the only requirement is that it must be longer than 
n*, where n* is the minimum number of steps for a steady-state solution. In the general 
case, assimilations may occur at multiple time levels, in which case the number of time 
steps used is determined by the problem and cannot be arbitrarily chosen. 

Suppose that for a particular resolution the problem “fits” and thus can be solved on 
a particular machine using the conventional approach. In order to double the spatial 
resolution, the conventional strategy would require a sixteenfold increase in tape storage: 
fourfold due to the increase in resolution, and fourfold for the increase in the number of time 
steps. The doubly resolved esperiment no longer could be performed on this particular 
machine. However, the problem could be solved by using the recursive approach as long 
as the maximum tape length was not exceeded. Suppose that the masimum tape length 
on this machines is 100000 floats. The requirement of the singly resolved T&T problem 
with n = 56 and a 32 x 32 spatial grid with four refinement levels is GO984 floats. Table 2 
provides the results of a couple of runs using the recursive strategy for the doubly-resolved 
problem. Supposing that the conventional procedure could be could be carried otlt, for 
n = ‘2’34, the tape length for the doubly-resolved problem would be 94G400 floats and it 
would have taken 153.56 seconds to execute. The table demonstrates that the doubly- 
resolved problem can be succesfully carried out in approsimately twice the amount of time 
that i t  would take to run the conventional procedure assuming that it could be possible to 
compute conventionally in the first place. 

A different situation in which tape length is a limiting factor in assimilation studies arises 
when the integration times are very long, causing the state set history stored on tape to be 
extremely large. Figure G shows a comparison of tape usage for the conventional and the 
recursive strategy. In the recursive trials the snap count was held fixed at five, explaining 
why its curve for tape usage is a vcrtical straight line. As mentioned previously, for the 
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FIGURE 6. Comparison of the conventional and recursive strategy on 
the T&T problem. In the recursive strategy the snap count was held 
fixed at d = 5. The recursive strategy has a fixed tape length of 10890 
floats. 

conventional case the tape usage is proportional to the number of time steps n. From 
Figure 6 the tape T = 108972 for the conventional case. It follows from this experiment 
that with a fixed amount of tape on a particular machine, the conventional approach 
would quickly fail as the number of time steps increased. Figure 7 shows the wall-clock 
time for the same experiment. In all trials the conjugate gradient procedure converged in 
three iterations. The conventional strategy took a wall-clock time o f t  = 0.14771 + 0.0571 
seconds. The recursive strategy tool;. longer to complete, and its growth is not linear. 
Table 3 contains further information on this particular set of trials. 

[SI. CONCLUSIONS 

We have shown in this study how a recursive strategy for the adjoint-method calcula- 
tion of the gradient may be applied to variational data assimilation studies of large-scale 
geophysical problems. The main result is that significantly larger assimilation studies can 
be performed with this recursive strategy than is possible with the conventional forward- 
adjoint methods, given the physical limitations of available computer storage hardware. 
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FIGURE 6. Comparison of the conventional (left) and recursive (right) 
strategy for the T&T problem. In the recursive strategy the snap count 
was held fixed at cl = 5. 

TABLE 2. Wall-clock time and tape length for the recursive 
approach in the T&T problem for a doubling of resolution. 

n Time (sec) Tape (floats) Snaps Reps 
234 356.94 42250 10 3 
224 I 315.92 I 54500 I 20 I 2 

While the recursive strategy requires additional computational effort (or wall-clock time) 
the strategy is viable. Furthermore, the recursive strategy yields the gradient with no 
degradation, as compared with the conventional approach. 

In theory, when the number of snaps and reps (i.e., the number of storage units measured 
in R, and the nuinber of additional unrecorded forward runs) is equal, these are both 
bounded by log, n, where n is the number of time steps in the evolution equation. In 
practice, the strategy is best used by picking the maximum number of snaps that the 
particular computer hardware can manage, thus minimizing the number of reps. 

Insofar as computer program design, the best strategy for large-scale problems is to con- 



TABLE 3.  Ratio of the wall-clock time for the 
recursive ( d  = 5 )  and conventional approach versus 

n, a i d  number of reps for the T&T problem. 

I 

2?; 1 Time Ratio 1 R y s  
1.7665 

fl 126 2.3139 
252 I 2.5274 1 5 

792 3.0425 

struct programs that are as compute-intensive as possible and the least memory-intensive. 
This yields the greatest variation in the computational effort for any given choice of snaps 
and reps. This is especially true in parallelized programs because the computational ef- 
fort will drop as more processors are used, whereas the storage requirements remain fixed 
independent of the number of processors. 

The implementation of the recursive strategy requires minimal modification of conven- 
tional codes that compute forward and adjoint problems. The requirements are that four 
modules be provided: (1) a forward module that runs without writing the state set be- 
tween a specified starting and an ending time step; (2) a module that computes a single 
unrecorded forward and a single adjoint step, given a specific time step; (3) a module 
that writes to tape the state set at the current time step; and (4) a module that retrieves 
from tape the last recorded state set. An additional module, which is to be considered the 
driver, runs the above-mentioned modules according to the recursive schedule. The driver 
requires as input the total number of time steps, the number of snaps, and the number of 
reps. 

One approach in the implementation of the schedule driver is to have the schedule 
computed only once at the top of the program. The schedule instructions are saved in 
integer arrays, which are then called in sequence to drive the four modules. The benefit of 
precomputing the schedule is not warranted in some applications. since the schedule module 
increases insignificantly the overall computational effort. The preferred alternative is to 
use the schedule driver to control the above-nlentioned modules, thus not wasting register 
memory for the schedule arrays needed in the first approach that could otherwise be used 
in the adjoirit problem. An estimate of the additional memory for the integer schedule 
arrays of the first approach is as follows: a ‘‘schedule array” with the instruction directives 
of size ‘37-n is required, plus one or two arrays of similar size that direct the writing and 
reading of snaps from tape. The total register overhead is then on the order of 4rn integers. 
The user’s particular application will clearly dictate which alternative works best. 

This schedule driver is available via anonymous ftp from inf 0. mcs . an1 . gov. The file is 
called /pub/tech-reports/restrepo/schedule .tar. Z. .4lternatively, the schedule Soft- 
ware is available in either Fortran or C versions from the Word-Wide-Web in the software 
section ofhttp://www.mcs.anl.gov/people/restrepo/index,html. 

I 
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