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Abstract 

We consider a model system of a permanent magnet above a semi-infinite superconductor. 

We introduce a modified critical-state model, and carry out derivations of the levitation 

force acting on the magnet. A key feature of the modification allows the current density 

to be less than the critical value. The theoretical results show an exponential relationship 

between the force and the distance. Analytical expressions are developed for permanent 

magnets in the form of a point dipole, a tip of a magnetic force microscope, and a cylindri- 

cal magnet. In the latter case, the exponential relationship has been observed in numerous 

experiments but without previous interpretation. 

PACS numbers: 85.25.-Ly, 41.20.Gz, 74.72.-h, 61.16.Ch 

Keywords: high-Tc superconductor, Meissner effect, critical-state model, magnetic levitation, 

magnetic force microscope 
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1 Introduction 

With the discovery of high Tc superconductors, magnetic bearings which use these ma- 

terials have become feasible [1,2]. In this field, many groups reported early experimental 

investigations 13-81, and a few theoretical papers were also published [g-l’i]. 

A4s far as the theoretical approaches are concerned, there are a numbers of models 

t o  evaluate the levitation forces for various configurations [9-171. Generally, we study 

the system consisting of a permanent magnet and a (type-II) superconductor. 13-hen 

the magnet is far from the superconductor, the perfect diamagnetic model (assuming the 

superconductor in complete Meissner state) is fairly good for evaluating the interaction 

force, because the magnetic induction from the magnet on the superconductor is below 

the lower critical induction (< &I). However, if the magnet moves closer to the supercon- 

ductor, the perfect diamagnetic model no longer accurately predicts the levitation force 

in the system. As a theoretical approach, the London theory of superconductivity was re- 

cently employed to derive the forces [ll-141. Extending the aproach based on the London 

theory, coffey [15] derited a formula of the lifting force acting on a tip of a magnetic force 

microscope from a vortex in a type-I1 superconductor. Using the critical-state model, 

Davis [9] initiated an approach to evaluate the lateral restoring force acting an infinite 

long current wire above a type-I1 superconductor. Afterward, Dal-is’ result was extended 

to  some more practical magnets by Yang el al. [lG]. However, neither Davis’ result nor the 

extended results could be used to estimate the levitation forces. Using the critical-state 

models [18, 191, some papers have been published based on the numerical calculations 

f201. These numerical calculations are not convenient to see the clear relationships among 

the physical parameters involved. For instance, it is generally accepted that the levitation 

forces are basically determined by the critical current density J,. However, in what kinds 

of relationships, linear, power-law. and/or other functions. no quantitative expression has 

been gil-en from these (numcrical calculation) papers. 

Experiments shon-ed that. as a permalielit niagnet ~iio\-es toward a superconductor, 



the levitation force is an exponential function of the distance between them (for review, 

see [3]). However, there is no satisfactory (phenomenological) theory to esplain the es- 

ponential relationship. 

A clear picture of the quantitative description is needed for understanding the physics 

and applying it to  engineering design. In this paper, we introduce a modified critical- 

state model, and obtain an analytical expression for the relationship between the levita- 

tion forces and the current flowing in the superconductor. The model is applied to the 

derivations of the forces acting on three permanent magnet geometries. 

This paper is arranged as follows: The basic equations for a point dipole are given in 

Section 2. In Section 3, we show the difficulty of using the Bean’s critical-state models 

to derive the levitation forces. The modified critical-state model is introduced, and the 

relevant derivations for the levitation forces are carried out in Section 4. Discussion is 

given in Section 5. Section 6 is a short summary. 

2 Basic Equations 

We consider a (permanent) magnetic dipole with moment m placed at distance CL above a 

semi-infinite superconductor filling the lower half space, as shown in Fig. 1. 11-e consider 

only the particular configuration, in which the direction of the magnetic moment is along 

the z-axis (0 = 0). From Maxwell’s equations, the equations of the vector potential 

A(r, z) in the free space and the magnetic induction B(T,  z )  in the superconductor [in the 

cylindrical coordinates ( T ,  8, z ) ]  are 

V2A(r, Z )  = -poV x m b ( r 2 / 2 ) S ( ~  - U )  

v x B ( r ,  5 )  = p o J ( r ,  Z )  

Z > O  

2 5 0 .  

where PO is the vacuum permeability, h ( x )  is the Dirac 6-function. and J (  I.. :) is t h c  

current density. Here, the Coulomb gauge (V.A=O) is used in Eq. (1). For Eq. ( 2 ) .  t l l c  
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vector potential A ( r ,  t) can also be introduced via the general relationship 

B ( r , z )  = V x A ( r , z )  . ( 3 )  

Due to  the cylindrical symmetry of the system, J(T,z) has only the 0-component, Le., 

J ( r ,  z )  = J ( T ,  z)ee;  and the vector potential A(r, z )  can be expressed as 

A ( r , z )  = -4(r,z)ee (4) 

with the proper selection of the gauge. Thus, Eqs. (1) and (2) can be simplified to  be 

where S’(r2/2) = (d /dr )b ( r2 /2 ) .  Via Eqs. ( 3 )  and (4), the magnetic inductions can be 

derived explicitly by 

d 
d z  

I d  
--A( T ,  z )  BT(7-,4 = 

&(V) - - --[TA(T, z) ]  . 

The solutions to  Eqs. (5) and (6) can be written in the form 

Al(r, Z> + Az(T,  Z )  z > 0 

-43(r, z )  + A 4 ( T ,  z )  z 5 0 
A ( r , z )  = 

where Al(r, z )  is the direct term (contributed directly from the dipole); -42(r, z> is the 

induced term due to the existence of the superconductor: -43(r.z) is the current term: 

and the A ~ ( T ,  z )  is the penetration term. Mathematically, -4l(r, z )  and -43(~, z )  are the 

particular solutions to Eqs. (3) and (6). respectively. 

Correspondingly, the magnetic inductions can be expressed in the form 



The boundary conditions are given by 

B1 ( T ,  0’) + B2( T,  O+) = B3( T ,  0-) + B4( T ,  0-) . 

The self-interaction energy between the dipole and the superconductor is 

I U ( u )  = - - m . B 2 ( 0 , a )  . 
2 

The levitation force acting on the dipole is obtained to be 

3 Difficulty of the Old Models 

In 19GO’s, Bean introduced the so-called critical-state model to study the magnetization 

for type-I1 (or called hard) superconductors [18]. Bean’s model was the first successful 

model to explain the magnetic properties of hard superconductors. However, as shown 

below, it is difficult to use this model to evaluate the levitation force in the magnet 

superconductor system. 

According to Bean [18], when an external magnetic induction is applied, the super- 

current density J ( r ,  z )  is either zero or a critical current density flowing in the supercon- 

ductor and is a constant, i.e., 

J ( T ,  z )  = J,  = const. (1-1) 

in Eq. ((3). Substituting Eq. (14) into Eq. (6 ) ,  the only particular solution to Eq. ( 6 )  is 

1 
3 

A & Z )  = --p()Jcr2 . 

[Note: It is prerequisite that the solution needs to satisfy Eq. (2) too.] 

The magnetic induction has only the :-component. which reads 

(13) 



treatment can be carried out for other critical-state models. None of the available critical- 

state models [19] provide a convergent solution. 

From a mathematical point of view, if J ( r ,  z )  is a constant, the corresponding magnetic 

induction B3(r,  z )  must be proportional to 1x1 [R= re,  + (z  - a)ez ] ,  and A 3 (  r, z )  must be 

proportional to IRl2. No physical solution can be obtained. Furthermore, if IB3(r, =)I is 

the order of IRl'-' ( E  < l), IJ(r,z)l must be the order of lRl'-2. In fact, all conventional 

critical-state models do not satisfy these conditions. 

In the studies of magnetic properties based on the critical-state models, one l-ery 

important assumption is that a uniformly external magnetic field is applied to the super- 

conductor sample. However, this condition docs not hold at all for the present system. 

When a dipole (as the external field source) is placed at ( r  = 0,z = a).  the magnetic 

induction applied to the superconductor is not uniform, but a decreasing function with 

the power of IRI-3 for large IRI from the center ( r  = 0 , z  = a).  Correspondingly, the 

amplitude of the magnetic induction IB3(r, z)l must be a decreasing function of r and 2 .  

Modified critical-state models that fulfil the mat hematical and physical restrictions are 

needed for the investigation of levit at ion force in the present system with a nonuniform 

external magnetic field. Modification of the critical-state model can be achieved in several 

ways. One physical approach is to assume that: (i) There are a series of (cylindrical- 

symmetrical) critical current loops in the superconductor. (ii) Each of the (critical) current 

loops has the critical current density J,, but the loop density (how many loops per unit 

length) is a decreasing function with increasing r .  (iii) -111 current loops have r-dependent 

cut-off in the z-direction. Due to the nonuniforniitg of the applied induction from the 

dipole, the interface (the cut-off function) in the superconductor is \-er>- complicated. This 

complication results in the n~athematical difficulty, which is almost impossible to overconic 

for obtaining an analytical solution. -4s an alternative approach, we consich continuous 

decreasing €unctions to model the current. 113th this approsiniation. analytical solutions 



of the levitation forces are obtained and provide agreement with experimental data. 

4 Modified Critical-State Model 

In order to obtain a convergent solution to Eq. (6), we need to  modify the current density 

term [the RHS of Eq. (G)]. It is informative to look at the formula of the current circulating 

in the superconductor obtained from other theoretical approaches. 

Previously, using the London theory of superconductivity we introduced a theoretical 

approach to  estimate the levitation force for the same kind of problem treated here Ill, 141. 

The current density from the London model reads 

where X is the effective penetration depth. Here, the basic (self-consistent) solution is 

exp ( d m  z/X)JI(kr), where J ~ ( x )  is the 1st-order Bessel function of the first kind. 

One may show that the basic solution to the homogeneous equation of Eq. (6) is 

e”Jl (kr) .  [It would be much clearer after reading Appendix A]. The current is a re- 

sponding current, no matter what models are used in theoretical derivations. From a 

physical point of view, we could use a function in a similar form as the basic solution to 

simulate the current density in the critical-state. To modify the basic solution e“J l (kr ) ,  

we can realize it by two ways: to  modify the radial part J l ( k r )  and/or to  reforin the 

vertical part ekz.  For simplicity, in this section, we introduce the basic model. -A more 

complicated model and relevant derivations are given in appendices. 

Hinted from the results of the London model, for our basic modified critical-state 

model we consider the current density 

where J ,  is the maximum currerit density in the supercoilduct or, arid I<: a n t 1  I<;’ 

have the length dimensions. In the following derivations, J ,  is assumed to be a constant 
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I ,  

determined by the materials. Ii;' is a measure of the depth in the z-direction the current 

flows in the superconductor, and IT;' is a measure of the range along the r-direction. 

In the following three subsections, we present the derivattions of the levitation forces 

for three typical geometries: point dipole, a pair of magnetic charges (model for a tip of 

the magnetic force micrroscope), and a cylindrical permanent magnet. 

4.1 Point Dipole 

For a point dipole above a type-I1 superconductor as illustrated in Fig. 1 with 13 = 0, 

we consider Eq. (18) decribing the supper-current flowing in the superconductor. For 

simplicity, we choose ITz = ITT = I<- in this subsection. 

Substituting Eq. (18) into (6)) we solve Eqs. ( 5 ) )  (6) and (11). The solutions are 

Using Eqs. (7) and (8), magnetic inductions are 



Using Eqs. (12) and (26) the self-interaction energy is 

Using E.q. (13) the levitation force is 

4.2 Tip of the MFM 

The magnetic force microscope (MFM) [21] is a powerful tool to  probe the magnetic 

defects in a material. We present a derivation of the lifting force acting on a straight 

(wire/line) tip of the MFM from a superconducting plane. For simplicity, we model the 

tip as a long straight wire/line magnet (dipole wire) with a length of b polarized along the 

line direction. The magnetic induction from the dipole wire is equivalent to the induction 

from a pair of magnetic charges located at (0, a) and (0, Q + E ) ,  respectively as illustrated 

in Fig. 2. For the sake of convenience, we can use the scalar potential method to  solve 

the magnetic induction for the upper space z > 0. Eq. (5) is thus replaced by the scalar 

potential equation 

1 3  
[Y& (.g) + 3 V ( v )  = -poq6(r)6(z - a) +poqS(r)6(z - Cl - r )  , (33) 

where q is the magnetic charge, the moment density per unit length. The magnetic 

induction can be obtained by 

Equation (10) does still hold for the problem. Now, the problem is to solve Ecls. (6 )  and 

(33) with boundary condition (11). 

Because the sources are a pair of charges. correspondingly. Eq, (18) is replaced by 
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?. 

Using this current density formula with KT = Kz = K ,  the z-component of the induced 

magnetic flux density is obtained to be 

The self-interaction energy is obtained by integnting over the length of the tip 

Here, KZ >> 1 was used in the last step. 

The levitation force is 

4.3 Cylindrical Magnet 

Let us consider a more practical problem: a cylindrical permanent magnet with radius 

c,  height I, and uniform magnetization M along the z-direction over a semi-infinite su- 

perconductor, as shown in Fig. 3. Physically, the magnetic induction around the cylinder 

is equal to the induction from a pair of magnetic charged-disks with radius c and charge 

density M (per unit area). The centers of the charged-disks are ( 0 , a )  and (0 ,u + Z), 
respectively. Similar to above treatment for the tip of MFII, the direct induction, which 

is only determined by the source, can be derived from the scalar potential I*';( r ,  z ) ,  which 

reads 

10 



IC 

Using (34)) the direct magnetic induction is obtained to be 

For the source of a pair of charged-disks, correspondingly, Eq. (18) is replaced by 

J ( r ,  2 )  = - J ,  eKz(z-a)(l  - e - K z ' ) f ( r )  . 

where the amplitude of function f ( r )  is a decreasing function of r for large r .  Physically, 

f ( r )  should reflect the effect of the radius of the cylindrical magnet. For simplicity, we 

let f ( r )  = Jl(KTr) in this paper. 

When the radius of the cylindrical magnet is large, it is reasonable to assume KT # IiFz 
in E,q. (42). (Note: for KT = Kz = K ,  the derivation are given in Appendix C.) The 

magnetic inductions are obtained to be 

(47) 
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The levitation force is 

We have the formulae for extreme conditions 

( 5 2 )  

where q = 27iMc2, the magnetic charge (moment density per unit length). These two 

formulae give the lifting force acting a semi-infite tip of the MFM for ICr # Iiz. Equa- 

tion (51) is for the cylinder-shaped tip, and Eq. (52) is for the wire/line tip. 

The force pressure is 

When Krc << 1 and I + m, it reduces to 

Physically, for a large cylindrical magnet, the super-current in the superconductor is 

to maximize at T = c, i.e., at  the same radius as the Ampkrian current in the magnet. 

Empirically, one expects this to  correspond to the maximum of J~(z), i.e., Krc = 1.84. 

Here, the value of Ii;. is set by the radius of the magnet, i.e., Ii;. = 1.84/c. Thus, the 

force pressure is proportional to IUCJ,. Explicitly, as E -+ cm and u + 0, we haye 

(33)  

This is in agreement with the experimental observation. It is worthy to compare this 

result with that between two permanent magnets. If we replace the superconductor by 

a semi-infinite permanent magnet (PM1) n-ith magnetization -111 along the :-direction. 

the magnetic induction above the upper surface is 
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The force pressure is 

(37) 
PO.W.Wl 

2 P P M / P k i l  = 

(Yote: this result is also valid for two semi-infinite long permanent cylindrical magnets 

at a = 0. See Appendix D for details.) When 0.344~7, > MI, we expect 

(58) 

For instance, if poi441 = 1 T for PM1, thus we have P p ~ p ~ s  > P p ~ ~ / p ~ ~ ~  when cJc > 2.31 x 

lo6 A/m. This condition is achievable nowadays via so-called melt-testurred technique. 

This has very high-valued implication in engineering. If one can make the HTS materials 

with very high Jc-value, the levitation force from the PM/HTS system might be greater 

that from the PM/PMl system. 

5 Discussion 

The basic model is very simple, and the results, Eqs. (32), (38)) and (ZO), show directly 

the exponential dependence of levitation on height, in agreement with many experiments. 

We note that the force at zero height is independent of K .  Using a semi-log plot for thc 

measured data, the penetration depth and critical current density can be acquired from 

the slope and intercept, respectively. 

For comparison, two sets of experimental data were presented in Fig. 4. Set 1 data 

were obtained froin a sintered Y123 disk with diameter 7 cni and thickness T mm a i d  

a cylindrical Yd-Fe-B permanent magnet with height and diameter 5 mm. The moment 

of the magnet was measured to be 8.59x10-' .Ani2. Set 2 data were obtained from a 

melt-testured Y123 disk with diameter 2.54 cni and thickness 10 mm and a cylindrical 

Sd-Fe-B permanent magnet with height and diameter 12.7 mm. The nionierit of t l i t  

magnet was estimated to be 1.41 -Ani2. (Sote: that the cylinder is approsiniated as it 

sphere is a fairlj- good approximation for the square cylinder. The field 1-aluc has less t l l m  
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10% relative error when the distance from the center of the cylinder is equal to or larger 

than the height/dianieter of the cylinder. The magnetic induction around a spherical 

magnet is equal to  that from a point dipole with the same moment located at the center 

of the sphere.) Via the semi-log plot, as illustrated in the figure, it is easy to see that 

both sets of experimental data could reasonably be fitted by the exponential functions. 

From a mathematical point of view, the theoretical and experimental data can be rescaled 

into one curve because the two group data have the same curvature in the semi-log (or 

log-log) plots. The exponential relationships were previously reported by many groups 

(for review, see [3]). However, to the best of our knowledge, there is no quantitative (phe- 

nomenological) theory published to explain the experimental observation. The present 

work is the first theoretical approach leading to the exponential function. 

Using Eq. (32), via rescaling the experimental data, we obtained that Jc = 2.6 x 

lo2  A/cm2 and l /K  = 4.7 mm for Set 1 data, and J ,  ,=  1.9 x lo4  A/cm2 auld l/I< = 

3.1 mm for Set 2 data. To illustrate the clarity, Fig. 5 shows the rescaling of the experi- 

mental data Set 2 against Eq. (32). It is easy to see the fairness of the rescaling. 

If the data set 2 are rescaled to the curve of Eq. (50)) the critical current density 

J, = 1.2 x lo* A/m2 with choosing K r c  = 0.5. (Note: I<;' = 4.6 mm is calculated.) 

According to  the theory of classical electrodynaniics, the interaction energy for a 

magnetic dipole r n  in an external magnetic induction Be,, is given by 

Comparing this equation with Eq. (31), we may see the corresponding relation: po.JC/.I< fx 

IBeXtl. Compared with the Bean's critical-state model [lS], it becomes clear that I<-' is 

a measure of depth that the external magnetic induction can penetrate in the supercon- 

ductor. 

Ph\-sically, it is standing that the current is esponeiitial decreasing function of z ,  

which is used in this paper. However. it is difficult to sirnulate the currents aloiig t h  

r-direction. Consider the source induction from the dipolc, JBI .x r-3 as r is large 



enough, it is reasonable to believe that the r-part of the function in the basic model 

[Eq. (18)+ m] is too slowly decreasing. One may see that the super-current 

in Model-11, given in Appendix A, [Eq. (GO)+ e-K1r as T ---$ a] is too fast decreasing. 

Even so large difference between these two models, the two models could yield good 

agreement results. This agreement indicates that the z-part of the currents plaj-s more 

fundamental r6le compared with the r-part. 

as T 

It is worthy to compare the present approach with the London model 111, 141. The 

London theory gives the power-law (with exponent -2) relationship between the levita- 

tion force and the distance as the magnet is close enough to the superconductor. However, 

the present modified critical-state models yield the exponential dependence of the levi- 

tation force on the distance. In the London theory, the current is proportional to the 

vector potential, and the self-consistent condition is described by the linear relationship. 

Somehow, in the present model, the linear relationship does not hold, and the e-=" terms 

are artificially introduced to  the current formulae for self-consistent adjustment. This 

self-consistent adjustment is physically needed due to  the non-uniformity of the external 

field from the dipole. The current density has to change as the external field changes. 

It is worthy to point out that the levitation forces are linearly proportional to the criti- 

cal current density J,  from the present simple model calculations. This linear relationship 

provides a clear guidance how to achieve higher levitation force through enhancing the 

critical current density of the levitator. On the other hand, we can make an esperimental 

setup to evaluate the quality of the levitators via measuring the levitation forces. 

Siiiiilar to the result of the dipole, the liftingforce acting on a tip of the MFlI. Eq. (35). 

has two undetermined paranieters, J,  and IC. Via rescaling the force and distance, it 

is straightforward to obtained these two parameters. An important iniplication of the 

present result [Eq. (38)] is to measure the local distribution of the critical current density 

J ,  by using the UFU. Compared to other electromagnetic iiieasurcments, the non-cont act 

If Fl l  technique has many advantages in experiments. In particular. the non-cont act 
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measurement would be very useful for the film specimens, because the contact-resistance 

is a big trouble-matter for the high-current transportation measurements. 

The present theoretical approach has some weakness. First, the demagnetization of the 

permanent magnet from the induced magnetic flux density is very small for the currently 

used Nd-Fe-B materials, we assume this effect can be ignored. Second, some results 

[Eqs. (32), (38), and (50)] are valid only when U K  (or u K Z )  is small. When the magnet is 

far away from the superconductor, the magnetic induction applied to the superconductor 

is weak, the superconductor will not be in the critical-state. Fortunately, we do not need 

to  use the present models to deal with the problem when the magnet is far away from the 

superconductor (i.e., aK or a K Z  >> 1) )  because the perfect diamagnetic model is good 

enough to study the problem. 

6 Summary 

In this paper, after presenting the field equations for the magnet superconductor (levita- 

tion) system, we generally discussed the possibility to calculate the levitation forces via 

using the critical-state model. To overcome (or go around) the mathematical difficulty of 

the Bean's model, a modified critical-state model is introduced for solving the problem 

when the magnet is close to the superconductor. Using the new model, we showed that (i) 

the maximal levitation force is linearly depending on the critical current density, (ii) the 

levit ation force is exponentially increasing as the magnet iiio\-es closer to the supercon- 

ductor, which was observed and reported by many research groups n-ithout interpretation. 

and (iii) it is possible that the levitation force between a permanent magnet and an HTS 

is large than that between two permanent magnets. 
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Appendix A, Model-I1 

Similar to the basic model Eq. (18), we consider a more complicated function to simulate 

the current density 

where Jcl has the same physical meaning as Jc in the basic model, I<{' and It-;' have 

the same physical meanings as I<;' and Ii;' in the basic model. Here, Jv(z)  are the 

v'th-order Bessel functions of the first kind. 

Here, we take Iill = 1i-L = h; for convenience. The solutions to Eqs. (5) and (6) can 

thus be expressed in the form 

Using Eqs. (7) and (8), magnetic inductions can be obtained to be 
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Using Eq. (ll), the coefficient functions C4k) and C4(k)  can be determined to be 

where 

The self-intemction energy is 

The levitation force is 

+ [r2 - 2n2 - 3ar + Kl(n  + .)(a2 + r2)]  J1(1tr1r)} . ( i s )  

To visualize the relationship between the levitation force and distance for Model-11, 

we plot [Eq. (73)] the force (in units of po?72Jc1/6) as a function of a [in units of l/I<l) in 

Fig. G(a). As illustrated in the figure, in the range of practical esperiniental measurements. 

the levitation force can reasonably be fitted as an exponential function of the distance. 

Using (i5)- via rescaling the esperiineiital data shown in Fig. 4. n-e obtained that 

Jcl = 2.9 x 10' -4/cm2 and 1/I< = 4.6 nini for Set 1 data, and Jcl = 2.1 x lo4 -4/cni2 and 



1/K = 2.9 mm for Set 2 data. These data are in good agreement with those obtained via 

the basic model. 

Appendix B, Model-I1 for tip of the MFM 

Using this formula with Kll = 1t-L = K1, the z-component of the induced magnetic flux 

density is obtained to be 

where 11(k,K1) and 12(k,K1) are defined by Eqs. (72) and (73). 

The interaction between the tip and the superconducting plane is 

1 a + E - r  
4-7- e (1 - e-K1') Srn dr e-K1T PoqJcl -Kla cy a )  = -- 

GKl 0 

The approximation a << E was used in the last step. 

The lifting force acting on the tip is obtained to be 

(78) 

To visualize the relationship in Model-11, Eq. (79), the force (in units of pomJCl/GI<1) 

as a function of a (in units of 1/11-1), is plotted in Fig. 6(b). -4s illustrated in the figure. i t  

is easy to see that the force is an exponential function of a1<1 in the range of esperinicntal 

interest. 
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Appendix C, Cylindrical Magnet for Kr = Kz = K 

Using Eq. (39) with Ii;. = Kz = K ,  we obtain the magnetic inductions as 

The self-interaction energy is obtained by integrating over the volume of the cylinder 

The levitation force is 

When KZ >> 1 and very small K c ,  we have q = iLl.rrC' and J 1 ( z )  z x / 2 .  and thus. this 

result reduces to  Eq. (38). 

The force pressure is 
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Appendix D, Two Permanent Cylindrical Magnets 

Consider two semi-infinite long permanent cylindrical magnets aligned symmet trically as 

shown in Fig. 7. The magnetizations are M and M I ,  respectively. The radii are c and 

c1. Without loss of generality, let c1 > c. 

From Section 4.2, we know that the z-component of the magnetic induction from the 

lower magnet is 

B1, = I”OM1clsgn(z) 2 /m 0 dk J l ( k ~ ~ ) J ~ ( k r ) e - ~ ’  . 

The z-component of the levitation force acting the upper magnet is 

&(a) = im dk J1 (kc l )  1‘ dr  r J”” de Jo( kr)ebkQ 
0 0 

When a = 0, we have 

The force pressure is 

21 
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Figure Captions 

Fig. 1. Diagram of magnetic dipole (m) placed above semi-infinite superconductor. 

Fig. 2. Diagram of long wire/line tip of magnetic force microscope placed above senii- 

infinite superconductor. 

Fig. 3. Diagram of cylindrical permanent magnet with magnetization M ,  radius c, and 

height I placed above semi-infinite superconductor. 

Fig. 4. Two sets of the experimental data. The parameters of experiments are: n z  = 

8.59 x 10-2 Am2 for Set 1 (0,  the solid line is the fitted curve via an exponential function), 

and m = 1.41 Am2 for Set 2 (0, the broken line is the fitted curve via an exponential 

function). Set 1 data were obtained for a sintered Y123 disk with diameter 7 cm [14], and 

Set 2 data were obtained for a melt-textured Y123 disk with diameter 2.54 cm. 

Fig. 5. Illustration of rescaling experimental data into theoretical curves, Eq. (32), for 

data Set 2. 

Fig. 6. (a): Eq. (75), the levitation force (in units of p,pzJc l /G)  acting on a niagnetic 

dipole a s  a function of the distance ali;  (0). The fitted exponential function is plotted 

by the solid line. (b): Eq. (79), the lifting force (in units of poqJcl/GK1) acting on a 

semi-infinitely wire/line tip of the MFM as a function of the distance a1i-l (0). The fitted 

exponential function is plotted by the solid line. 

Fig. 7. Sideview of two semi-infinite long cylindrical permanent magnets with magneti- 

zation M and MI, radii c and c1. 
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