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Abstract

The goal of this project was to develop chaos analysis and neural network-based modeling
techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion
(FBC) system (a small scale prototype model) located at the Federal Energy Technology
Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos
control techniques and provide a suggestive prototype for possible real-time application to the
FBC system. The experimental pressure data were collected from a cold FBC experimental set-
up at the Morgantown Center. We have performed several analysis on these data in order to
unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed
from the one dimensional time series data, using the time-delay embedding method, for both
normal and abnormal conditions. Several identifying parameters were also computed from
these  attractors such as the correlation dimension, the Kolmogorov entropy, and the
Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between
the normal and abnormal operating conditions of the FBC system. It was found that, the
abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger
positive Lyapunov exponents as compared to the normal data. Chaotic system control using
neural network based techniques were also investigated and compared to conventional chaotic
system control techniques. Both types of chaotic system control techniques were applied to
some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A
prototype model for real-time implementation of these techniques has been suggested to
control the FBC system. These models can be implemented for real-time control in a next
phase of the project after obtaining further measurements from the experimental model. After
testing the control algorithms developed for the  FBC model, the next step is to implement
them on hardware and link them to the experimental system. In this report, the hardware
implementation issues of the control algorithms are also discussed.
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1. Executive Summary

This research report describes the work completed under the DoE Contract # DE-FG22-
94MT94015 titled “Neural Network-Based Monitoring and Control of Fluidized Bed” for the
period from October 1, 1994 to December 31,  1996.  The first goal of this project was to
develop chaos analysis and neural network-based modeling techniques and apply them on the
pressure-drop data. The second goal was to develop a neural network-based chaos control
techniques and provide a suggestive prototype for possible on-line or real-time application to
the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal
Energy Technology Center (FETC) at Morgantown.

The pressure data were collected from a cold FBC experimental mock up, at the
Morgantown Energy Technology Center (METC).. We have performed several analysis on
these data in order to unveil their dynamical and chaotic characteristics. We have constructed
the system attractor from the one dimensional time series measurements available for both
normal and abnormal conditions, using the time delay embedding technique. Several identifying
parameters were computed for the constructed attractors, such as the correlation dimension,
the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can
be used to discriminate between the normal and abnormal operating conditions of the FBC
system. It was found that, the abnormal data has higher correlation dimension, larger
Kolmogorov entropy and larger positive Lyapunov exponents as compared to normal data.

Chaotic system control using neural network based techniques were investigated and
compared to conventional chaotic system control techniques. Both types of chaotic system
control techniques were applied to some typical chaotic systems, such as the logistic map, the
Henon map, and the Lorenz system. These models can be implemented for real-time control in
a next phase of the project after obtaining further measurements from the experimental model.
After testing the control algorithms developed for the  FBC model, the next step is to
implement them on hardware and link them to the experimental system. In this report, we also
discuss the hardware implementation issues of the control algorithms.

Two graduate stuents and three undergraduate students were supported under this
contract. The graduate students developed their Masters thesis and published their work in
conferences. The undergraduate students were trained in the area of  Signal Processing, Neural
Networks, Fluid Bed systems etc.

We believe that the overall project goals and objectives are met and this is a successful
completion of the Contract including the submission of this Final Report.

2. Introduction

In the recent years lots of attention has been given to study systems that exhibit a type of
behavior known as chaotic. Those systems were confused in the past with stochastic systems.
Recently, it has been found that chaotic behavior can be driven by low order deterministic
phenomena.[1] Simple models for those phenomena are achievable. However, general solution
to those systems can not be found, and any long term prediction can not be realized. The
reason is the sensitive dependence of such systems on initial conditions. One example is the n-
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body system problem for which no general solution was found, and also known for its sensitive
dependence on initial conditions. Chaos has been sought for many years as undesirable
phenomena. It was found though that this is not always the case. On occasion, chaos is a
beneficial feature as it enhances mixing and chemical reactions and provides a vigorous
mechanism for transporting heat and/or mass.[2] It is also the secret behind the survival of
biological systems under extremely different conditions, due to their multiple attractor nature,
which enables those systems to easily switch their parameters to adapt to new environment and
maximize their performance. In the past few years, several methods have been developed to
control the behavior of chaotic systems.[1-6] These methods were applied to both theoretical
models and actual chaotic systems in many fields. They were applied to control chemical
reactions,[7] communication,[8] nonlinear oscillators, lasers,[9] diodes,[6] heat convection,[2]

mechanical vibrations, myocardial tissue (biological systems),[10] magnetoelastic systems,[1, 3]

and several other applications. Chaotic systems’ behavior control, in case it is achievable, gives
them an advantage over non-chaotic systems, due to the ability to switch the chaotic systems’
performance between several different modes.[1,4] For that same reason we might sometimes
wish to build chaos into a system where it is naturally absent. In this report, we will present
methods to monitor and control the chaotic behavior in a Fluidized Bed Combustion (FBC)
systems. These methods are based on analysis we performed on data obtained from an
experimental fluidized bed combustion system at the Morgantown Energy Technology Center
(METC). These data represent some normal and abnormal operating conditions of the FBC
system. Previous work in this area can be reviewed in references 11-13. A special type of a
recurrent neural network, called the Dynamic System Imitator (DSI),[14] will be adopted as a
neuro-controller and a short term chaotic time series predictor in the proposed monitoring and
control method. The DSI network was used to control the chaotic behavior in the Lorenz
system. Sample results from the analysis performed on the FBC data will be presented, and an
outline of the proposed method will be introduced. Also results for using a chaotic system
control technique developed by Edward Ott, Grebogi, and Yorke in 1990,[1,4] known as the
(OGY) technique, to control the chaotic behavior in some typical chaotic system using small
perturbations will be presented.

3. Fluidized Bed Combustor (FBC) Pressure Data Collection

Morgantown Energy Technology Center has built and operated a cold flow model to
emulate fluid dynamics in a Fluidized Bed Reactor (FBC). The cold flow verification test
facility consists of a ten foot high jetting fluidized bed made of clear acrylic and configured as a
half cylinder vessel to facilitate jet observation. An illustration of  the test facility is described in
Figure 1. A central nozzle, made up of concentric pipes, continuously fed solids at 0 to 8 psig
pressures. Separate flow loops controlled the conveyance of solids (inner pipe), the make-up
air flow (middle pipe), sparger flow (outer pipe), and six air jets on the sloping conical grid.
The half round fluid bed model provided useful information to study fluidization and design
issues including jet penetration, chaotic pressure fluctuations, and mass flow rates of particles
in various regions of the jetting fluid bed. The fluid bed tests were conducted using cork
particles to simulate the relative density of gases to scale for a high pressure coal conversion
reactor. As expected, the test generated chaotic pressure fluctuations. The differential
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pressures were measured at two location with each location consisting of two pressure taps
spaced four inches apart. The lower pair of pressure taps were placed at a height just above the
nozzle and the upper pair of pressure taps were placed at a height where the jet becomes
evenly distributed across the diameter of the reactor. Differential pressure data collected at the
higher sensor served as the primary data for the investigation of chaos. It clearly indicated the
fluidization regime of the bed supported by visual observations. Data were collected on a data
acquisition card at a rate of 50 Hz.

Moving
Bed

Fixed
Bed

Bubbling
Fluidized
Bed

Recirculation
Flow

∆P

Air

Figure 1 The general setup of the existing cold FBC experiment

4. Results and Discussion

4.1 The Chaotic Behavior in FBC Systems

Through the analysis of both the normal and abnormal FBC pressure data, it is evident that
they have strange attractors, and both belong to a chaotic system. This means that the
prospective control method needs to switch the system from one chaotic state to another
chaotic state, which has been achieved before in simple chaotic systems such as the logistic
map.[15] A two dimensional projection of the reconstructed attractor from a normal and
abnormal cases are shown in Figures 2 and 3, respectively.
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Figure 2 A plot of the FBC normal
attractor projected onto two dimensional
map.
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Figure 3 A plot of the FBC abnormal
attractor projected onto two dimensional
map.

As it appears in the two figures the normal data attractor looks much more well behaved than
the abnormal data. We performed several methods to compute the parameters of both
attractors. We computed the correlation dimension, the Kolmogorov entropy, and the
Lyapunov exponents of the normal and abnormal attractors. The correlation integral was
computed according to the following equation:[16]
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And the Lyapunov exponents were computed according to the Sano-Swada technique to
compute the Lyapunov spectrum from a chaotic time series.[18] The correlation integral graphs
for the normal and abnormal attractors in a range of embedding dimensions are shown in
Figures 4 and 5, respectively. The results of the chaos analysis of the FBC data are summarized
in Table 1. These analysis show that both the normal and abnormal modes of the system live on
a chaotic attractor, because both have fractal dimensions, positive Kolmogorov entropy, and
positive Lyapunov exponents.

Table 1 Results of chaos analysis of the FBC data.
Normal Data Abnormal

data
Correlation Dimension 3.07 17.35

Kolmogorov Entropy 8 100
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However, the correlation dimension for the abnormal attractor is much higher than the normal
one, which is an indication that when the system changes from its normal to its abnormal
behavior, it goes from low order to high order chaos. This situation is a big challenge to any
traditional control method. However, we believe that the system parameters can be adjusted
through chaos control method to move the system from its high order chaotic behavior to the
normal low order chaotic state. A proposed method for the FBC system monitoring and
control is discussed below. Even though the chaos analysis methods described above are the
best to define the condition of a chaotic system, they are not suitable for on-line monitoring
because they need intensive calculations that might run several ours on digital computers.
Instead, a chaotic time series predictor technique will be used.
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Figure 4 A plot for the correlation integral
of the FBC normal attractor, for embedding
dimensions 2-20.
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Figure 5 A plot for the correlation integral
of the FBC normal attractor, for embedding
dimensions 2-30.

4.2 The Proposed Monitoring and Control Method

For any control method to function properly with the prescribed system, there should be
some monitoring device that will monitor the system state and switch the controller on, in case
of detection of any abnormal behavior. We will monitor the system using a chaotic time series
predictor that we developed using the DSI neural network. This chaotic time series predictor
was able to predict the chaotic behavior of chaotic time series generated by several chaotic
systems such as the logistic map, the Henon map, and the cubic map. In all cases the DSI
predictor was able to predict the chaotic behavior of the time series for a short time starting
from some time history of the signal. It was also able to predict the state space system attractor
for the rest of the time. If we train the DSI predictor to predict the normal behavior of the
system, starting from some initial measurements, then the average error between the actual and
predicted time series over a certain period of time will give us an indication of how much drift
did the system make from its normal condition. Once a certain threshold is violated we can
switch the controller on. To be able to design a controller for such a system we need to study
the effect of different system parameter on the behavior, and find which parameters are
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responsible for the system drift from normal. If any of these parameters would be accessible for
control, we can implement a control method as illustrated in Figure 6. The only obstacle before
executing and testing this method is to find an appropriate model that will describe the
prescribed system behavior in all modes. This model will be used to study the effect of system
parameters on the system behavior and to test the performance of the proposed control
methodology. The reason we chose to use the DSI neural network in this situation is the
known dynamic characteristics of such a network. The DSI is a fully recurrent neural network
that was specially designed to model a wide variety of dynamic systems. It has feedback
connections and integrators to form a compact representation of time lags and interactions in
real systems. It is suitable for on-line applications due to its fast response and realistic interface
with the outside world. It is also equipped with a multidimensional optimization technique and
dynamic windowing which allows it learn system dynamics from long time series. The DSI
network has been used to control the chaotic behavior in the Lorenz system, and stabilize it
into either a fixed point or a periodic orbit. In that application, one state variable was fed back
as an input to the DSI, and the output of the DSI was used to control the system. The error
between the actual output of the system and a target behavior was used to train the DSI
network. State point perturbation control and parameter perturbation control methods have
been demonstrated. The details of such technique will be discussed below. We wish that a
similar technique will work with the FBC system, even though we believe that the FBC system
is a much more difficult problem, due to its complex behavior under both normal and abnormal
conditions.

+

−

A DSI Chaotic
   Time Series
     Predictor

A DSI controller
Output

The FBC System

The system desired output

z-k

Actutor

Σ

Training

Figure 6 An illustration of the proposed control method for the chaotic FBC system.
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4.2.1 The Dynamic System Imitator (DSI) neural network

The neural network used for the chaotic time series prediction in this project is a dynamic
neural network called Dynamic System Imitator (DSI). The DSI is a fully recurrent neural
network that is specially designed to model a wide variety of dynamic systems. [19, 20] As shown
in Figure 7, the DSI has a three layer structure: input, hidden, and output layer. Connections
have both weights and integrators in parallel to model short term and long term memory
mechanisms that handle modeling of time behaviors and time lags in real systems. Every node
in the input layer has one input, xk(t), and two outputs defined by: [19]
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The input layer is fully connected to the hidden and output layers. Every node in the hidden
layer is connected to every other node in the hidden and output layers and to itself. The two
outputs of every neuron are computed according to the relationship: [19]
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where ψj is a nonlinear transformation function, and Aj, Bj, Cj, and Dj are adjustable weights
associated with the hidden neuron j, which are used to shape the transfer function for every
node. B and D are used to adjust the steepness of the function, while A and C are used to
adjust its min-max value. Also m and n are the number of processing nodes in the input and
hidden layers respectively; w1 and w2 refer to weights associated with direct and delayed
outputs, respectively. The superscript h refers to the hidden layer, i refers to the input layer, hi
refers to weights from the input to hidden layer, and hh refers to weights from the hidden to
hidden layer. The integrators and feedback connections promote enough asynchrony and
interaction in the network to model several system state variables as a function of time. When
enough intermediate state variables are generated, the network output can be a function of
those state variables. The output layer has only one output per node, which is computed
according to the following equation: [19]
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OUTPUT
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+1 Integrator

Weight

Figure 7 Schematic diagram of the Dynamic System Imitator (DSI) Network.

where m and n are the number of nodes in the input and hidden layers respectively, and Ej and
Fj are two constants associated with each node in the output layer to shape its own transfer
function when needed. The superscript o refers to the output layer, i refers to the input layer, h
refers to the hidden layer, oi refers to weights from the input to output layer, and oh refers to
weights from the hidden to output layer.

By looking at the complete DSI network design, it is easy to observe that the node
interaction, information feedback, and action transfer time lags generate an activity in the
network that is similar to the internal activity in real dynamic systems. Even with a simple
configuration, the DSI has a complex structure, which makes it very difficult to train. A multi-
dimensional optimization technique that adopts the simplex method is used to train the DSI. 6

There are two other difficulties in the training of such a network. One is that a very long time
series cannot be introduced to the network at one time and must be divided into reasonably
sized sections. The other is that the behavior of the network is dependent on the initial
conditions of its state variables, and a certain set of initial conditions has to be found in
conjunction with every network design. In other words, whenever the network is updated, a
new set of initial conditions must be found. The first problem was overcome by using a moving
time window that cascades the introduction of the time series segments to the network during
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training. The network final conditions at the final training step of every segment is taken as the
initial conditions for the next segment, to keep the physical association between the consequent
segments of the time series. The second problem was overcome by adding initial conditions
search method that runs after every training iterate to find updated initial conditions for every
modified version of the network. An arbitrary set of initial conditions can be used at the start of
the training process.

4.3 Using The DSI Neural Network for Chaotic Behavior Control

In this section we will demonstrate how a special type of a neural network, Dynamic
System Imitator (DSI), can be used for chaotic behavior control. The DSI network is specially
designed to model a wide variety of dynamic systems. It is a multi-layer recurrent neural
network supplied with integrators and extensive feedback connections to model the asynchrony
and time lags in the real systems. The DSI neural network was used before for modeling
complex dynamic behaviors through very simple configurations due to its temporal and spatial
representations. The DSI network used in this project has one node in the input layer three
nodes in the middle layer and one node in the output layer. This DSI controller was applied to
control the chaotic behavior of the Lorenz system to a stable fixed point or a stable periodic
orbit. Both system state point control and system parameter perturbation control strategies
were implemented.

4.3.1 Introduction to Chaos Control

Scientists in many fields often encounter systems that exhibit chaotic time evolution.[1]

Chaos is abundant both in nature and man-made devices, to an extent that many scientists
believe that it is the rule rather than the exception.[2] The chaotic behavior is known to be
unpredictable, which may be unsafe to the operation of many devices, and make it unwelcome
in many situations. On occasion, chaos is a beneficial feature as it enhances mixing and
chemical reactions and provides a vigorous mechanism for transporting heat and/or mass.
However, in many other situations, chaos is undesirable phenomena which may lead to
vibrations, irregular operation, fatigue failure in mechanical systems, temperature oscillations
which may exceed safe operational conditions in thermal systems, and increasing drag in flow
systems.[2] Chaotic motion has been regarded for many years as a troublesome property that is
neither predictable nor controllable. Recently researchers have realized that chaos can actually
be advantageous in many situations, and when it is unavoidably present, it can often be
controlled to obtain desired results.[1,3] In 1990, Ott, Grebogi, and Yorke (OGY) demonstrated
that one can convert the motion of a chaotic dynamical system to periodic motion by
controlling one of the system’s many unstable periodic orbits embedded in the chaotic
attractor, through only small time-dependent perturbations in an accessible system parameter.[4,

5] Ott and Spano [1], stated that if chaos control is practical in a system, then the presence of
chaos can be an advantage. Any one of a number of different unstable orbits, in a chaotic
system, can be stabilized, and one can select the orbit that gives the best system performance.
Thus we have the flexibility of actually switching the system behavior by stabilizing another
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periodic orbit. On the other hand, if the system is actually stable and periodic, we can use
control to only slightly change its performance, and we do not have similar flexibility to what is
available in a chaotic system. We may even sometimes wish to build chaos into a system.
Several other methods to control a chaotic system have emerged from the OGY method, such
as the “Occasional Proportional Feedback” (OPF).[6, 7] , and  the “Proportional Perturbation
Feedback” (PPF).[8]  Chaotic system control has been applied usefully in several fields of
science and engineering. It was applied to control chemical reactions,[9, 10] communication,[11, 12]

nonlinear oscillators,[11], lasers,[1, 6] diodes,[7] heat convection,[2] mechanical vibrations,
myocardial tissue (biological systems),[8] magnetoelastic systems,[1, 3] and several other
applications.

In this section, we will demonstrate how the Dynamic System Imitator (DSI), can be used
to control a chaotic system. For the purpose of demonstration, the method was applied to
control the Lorenz system. The Lorenz system is a system of non-linear differential equations
that was used by Edward Lorenz in the sixties to describe the atmosphere dynamics for
weather prediction:[21]

dx

dt
y x

dy

dt
rx y xz

dz

dt
xy bz

= −

= − −

= −

σ σ

(6)

The Lorenz system exhibits a chaotic behavior for a certain range of parameters. Figures 8 and
9 show the Lorenz system behavior for σ = =10 28,  ,  and b = 8 / 3.r  The same parameters are
used to generate the system behavior needed to test the control method demonstrated.
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Figure 8 The chaotic behavior of the
Lorenz system starting at (0.05,0.05,0.05).
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4.3.2 Methodology to Use the DSI to Control a Chaotic System

In the control method presented in this section, a DSI neural network is used to model the
controller. The DSI network used, has one node in the input layer, three nodes in the hidden
layer and one node in the output layer. From previous experience with the DSI network, we
believe this configuration is enough to model the desired controller. The general training
strategy for the DSI controller is shown in Figure 10. The DSI is trained to generate the
necessary control signal to achieve certain system performance. One or more reference values
in addition to feedback from the controlled system are used as inputs to the DSI. A pre-
specified output behavior of the system is also supplied to the network as a target for the
training. During training this pre-specified behavior is continuously compared with the actual
behavior of the system to adjust the DSI

Reference OutputInput

Desired output

Error

Measurements

External disturbances

System to

be controlled

DSI

controller

+

−

Figure 10 The general training strategy for the DSI controller.

controller parameters. We used the DSI controller to control the chaotic behavior of the
Lorenz system through both system state point perturbation and system parameter
perturbation. For state point perturbation we studied two cases, in one of them we insert the
control action (u(t)) in the second equation and in the other we insert the control action in the
third equation of the system. For system parameter perturbation we also studied the control of
the parameter ‘r’ in two ways, one of them using the control action as an additive control term,
and the other using the control action as a multiplicative control factor. The first case, where
we controlled the system state point through the second equation of the system is represented
in Equation 7:
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dx

dt
x y

dy

dt
rx y xz u t

dz

dt
xy bz

= − +

= − − +

= −

σ σ

( ) (7)

The control action is calculated using the DSI controller. The input to the DSI controller is the
x(t) signal of the Lorenz system. During training, system outputs (x(t), y(t), z(t)) are to be
monitored to achieve a target trajectory for the system. As a less restrictive requirement in this
case, only y(t) was monitored by the training algorithm to stabilize the system at a value near
one of the critical points (p or q). A training algorithm that adopts the simplex method for its
multidimensional minimization, was used. The objective function of such minimization included
the rms difference between the actual and desired output of the system. The system was
integrated using a fourth order Runge Kutta ordinary differential equation (ODE) solver. The
Lorenz system equations and the ODE solver were linked to the DSI network program, to
allow the interaction between the DSI and the Lorenz system, both during training and recall.

4.3.3 Sample Results

For all cases, the training achieved the target solution, through the DSI parameter
adaptation, within very reasonable number of iterations (around 30 iterations). Figures 11 and
12 show the time behavior and trajectory of the Lorenz system after applying and then
removing the control. The control action (u(t)) was applied shortly after the start of the run,
and then removed after system stabilized at one state point (time 4), as indicated in Figure 11.
We can notice that after removing the control action, the trajectory went back to the chaotic
behavior. The reason is that the stabilized point is obviously not a fixed point of the original
system, and the state point will not stay stable except if the control action is maintained. The
second test for this control strategy was to control the chaotic system to stabilize to a periodic
orbit by forcing its trajectory to pass through a pre-specified point in the space. Figures 13 and
14 show the time behavior and trajectory of the controlled Lorenz system. The control action
(u(t)) was applied at the beginning of the run as indicated in Figure 13. Both the time behavior
and the state space trajectory show how the system stabilized to a periodic orbit. After
removing the control, the trajectory went chaotic. We did not plot the results after removing
the controller, because it would elaborate the figure and hide some of the details of the
periodic orbit shown.
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Figure 11 The DSI control signal (u(t)),
and the time behavior of the Lorenz system
after applying and then removing the
control at the stabilized point.
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Figure 13 The time behavior of the Lorenz
system, controlled by the DSI to achieve a
periodic orbit, starting at (1,5,10).
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4.4 Iterative Prediction of Chaotic Time Series Using the DSI Neural Network

Chaotic systems are known for their unpredictability due to their sensitive dependence on
initial conditions. When only time series measurements from such systems are available, neural
network based models are preferred due to their simplicity, availability, and robustness.
However, the type of neural network used should be capable of modeling the highly non-linear
behavior and the multi-attractor nature of such systems. In this Section we use the DSI neural
network, that has been proven to be capable of modeling very complex dynamic behaviors.
The prediction method presented in this section is based upon predicting one step ahead in the
time series, and using that predicted value to iteratively predict the following steps. This
method was applied to chaotic time series generated from the logistic, Henon, and the cubic
equations, in addition to experimental pressure drop time series measured from a Fluidized
Bed Combustor (FBC), which is known to exhibit chaotic behavior. The time behavior and
state space attractor of the actual and network synthetic chaotic time series were analyzed and
compared. The correlation dimension and the Kolmogorov entropy for both the original and
network synthetic data were computed. They were found to resemble each other, confirming
the success of  the DSI based chaotic system modeling.

4.4.1 Introduction to Iterative Prediction of Chaotic Time Series

Chaotic systems are known for their unpredictability, due to their sensitive dependence on
initial conditions which is measured by positive Lyapunov exponents. [1] In other words, even
when the exact model of a chaotic system is available, it is impossible to predict a chaotic
system behavior for a long period of time. [22, 23] The reason is that our measurements and
calculations are never perfect and are susceptible to errors. Similar errors contribute to the
non-exact determination of initial conditions. Any minute error in the initial conditions for a
chaotic system will turn, with time, into great differences in the results. However, short term
predictions of chaotic systems are still possible. [22, 24] How short the time duration is for valid
prediction depends on the system average loss of information represented by its Lyapunov
exponents and Kolmogorov entropy. Some systems are less predictable than others due to
faster loss of information with time, represented by larger positive Lyapunov exponents and
larger positive Kolmogorov entropy. Since exact predictions are not possible for such systems,
approximate models may produce results as satisfactory as those produced by exact models.
This makes neural network based models very good candidates for such applications. Neural
network based models are known not to be exact models, but they are easy to implement,
robust, fast and data driven. Dynamic neural network models are preferable for such
applications, due to their ability to capture time behaviors. [25]

In this work we used a special type of dynamic neural network called the Dynamic System
Imitator (DSI). [26] We developed the DSI a few years ago and have used it for several
modeling and control applications. [26, 27, 28] The DSI is biologically motivated and is specially
designed to model a wide variety of dynamic systems. It has both short term and long term
memory mechanisms that enable the modeling of a system's transient and steady state behavior.
In addition, the DSI behavior depends on its initial conditions the same as any differential
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equation model does, even though no explicit differential equation solving is incorporated in
this case. What we know of the DSI characteristics encourages us to recommend it for
modeling non-linear systems in general and chaotic systems in particular. Since the dynamics of
most real systems are accessed via time series measurements, the focus in this section will be
on modeling chaotic time series. The way the chaotic time series model is implemented in this
section is through a one step predictor model. The dynamics of a chaotic time series are
modeled through training the DSI to perform a one step prediction. However, at any point of
time, the DSI response depends on the initial conditions at time zero, the history of inputs and
network state variables, and the current network input. Assuming the network was able to
capture the dynamics in the time series, we can start the trained network with any set of initial
conditions, use a number of initial data points to put the network on track, and iteratively feed
the output of the network back to compute next predicted values. Even though we applied this
methodology to several theoretical systems, the current motive is to use it in the proposed
strategy to identify normal/abnormal chaotic behavior modes encountered in an (FBC) system.
This identification can be achieved by comparing the actual measurement from the chaotic
system with the time series predicted by the DSI iterative predictor model, starting from a
short time history of the actual data. In this section, results from the DSI iterative predictor are
discussed for chaotic time series generated using the logistic, Henon and the cubic equations,
in addition to one experimental time series measured from an FBC system. The DSI network
model was evaluated based on comparison made on the time series, phase space trajectories,
and chaotic parameters computed from these trajectories. However, in this case, time series
similarities are not as important as similar phase space trajectories and similar chaotic
parameters. [25]

4.4.2 Using the DSI for iterative prediction of Chaotic Time Series

A simple configuration of  the DSI neural network was used for the iterative prediction of a
chaotic time series. This configuration has one node in the input layer, three nodes in the
hidden layer, and one node in the output layer. The network was trained to predict one point
ahead of the time series, using a set of previous values. These values are not explicitly used for
prediction, but are implicitly used by adjusting the state of the network from which the
prediction is performed. The prediction method is based upon the idea that once the network is
trained to predict one point ahead with good accuracy, this same point can be used as an input
to the network to predict the next point. This process can be repeated iteratively to predict
many points in the time series. Naturally, the accuracy of prediction will deteriorate over time.
During training, a time window of 200 points was used to cascade the time series to the
network. The algorithm was applied to three types of simulated chaotic time series generated
from the logistic, Henon, and cubic equations, in addition to one experimental time series
measurement taken from an FBC system. FBC systems are known for their chaotic behavior,
as discussed in several references. [29, 30, 31, 32] The network was able to learn simple one step
prediction in a reasonable number of training iterations. After training, the output of the DSI
was used iteratively to generate the time series. However, the training initial conditions
together with the first actual 25 points of the training time series should be used to start the
DSI, in case the time behavior of the training time series must be generated. If not, any
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network initial conditions and any starting points can be used to generate the state space
behavior of the system to which the training time series belongs.

Comparing the predicted time series to the actual time series, we found that the DSI was
able to track the training time series time behavior for a short period of time (around 30
points), when started from the training initial conditions , and activated by the first 25 points of
the training time series. However, it was able to track the state space attractor to which the
training time series belongs, starting from any initial conditions, activated by any arbitrary set
of starting points. The only case that fails is zero initial conditions together with zero starting
points, which leads to zero solution The actual and predicted time series for all cases are
shown in Figures 15-22, while the actual and predicted state space attractors are shown in
Figures 23-30. To quantitatively compare these attractors, the correlation integral and
Kolmogorov entropy for the actual and predicted attractors were computed according to
Equations 1 and 2 respectively. . The results of the correlation dimension and Kolmogorov
entropy of the different cases are summarized in Table 2. The correlation dimension is
computed, according to the box-counting method, from the slope of the lines representing the
correlation integral versus ε (the size of a computing box) on log-log curves for different
embedding dimensions.
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Figure 15 Actual logistic time series.
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Figure 16 Synthetic logistic time series.
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Figure 17 Actual Henon time series.
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Figure 18 Synthetic Henon time series.
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Figure 19 Actual cubic time series.
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Figure 20 Synthetic cubic time series.
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series.
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Figure 23 Actual logistic attractor.
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Figure 24 Synthetic logistic attractor.
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Figure 25 Actual Henon time attractor.
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Figure 26 Synthetic Henon attractor.
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Figure 27 Actual cubic attractor.
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Figure 29 Actual normal FBC attractor.
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Figure 30 Synthetic normal FBC
attractor.

TABLE 2: COMPARISON OF THE ACTUAL AND DSI SYNTHETIC
ATTRACTORS PARAMETERS

Time Series Correlation Dimension Kolmogorov Entropy
Logistic Map (actual) 1.0457±0.0057 0.6872±0.0198
Logistic map (synthetic) 1.2316±0.0374 0.6013±0.0435
Henon Map (actual) 1.2607±0.0331 0.3267±0.0135
Henon map (synthetic) 1.3171±0.0725 0.2962±0.0239
Cubic Map (actual) 1.2248±0.0090 0.4245±0.0183
Cubic Map (synthetic) 1.8171±0.01365 0.5340±0.0134
FBC normal (actual) 2.934±.065 5.034±.095
FBC normal (synthetic) 2.12±.07 6.3764±1.26

4.5 Using The OGY Technique to Control a Chaotic Behavior to a Stable
Periodic Orbit

The sensitivity to initial conditions and orbit complexity which characterize chaotic systems
give them a great flexibility to control as compared to non-chaotic systems. The motion of
chaotic dynamical systems can be converted to periodic motion through small time-dependent
perturbations, which is a technique developed by Edward Ott, Celso Grebogi, and James York
in 1990, known as the OGY technique. In this section, a systematic way to compute the OGY
control parameters from a chaotic time series is discussed. It is shown how to use
autoregressive modeling to estimate the linear map that describes the system iterative behavior
around a fixed point, which is essential for the OGY technique. It is also explained how to
experimentally compute the rate of change of a fixed point with respect to a control parameter.
And the procedure to be followed according to the order of the controlled periodic orbit is
presented. Finally, it is  demonstrated how these techniques can be applied to control the
chaotic behavior of some typical chaotic systems, such as the logistic and Henon maps, to any
periodic orbit. Similar techniques can be combined with neural network-based techniques,
discussed above, to control the abnormal chaotic behavior in FBC systems.
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4.5.1 Small Perturbation Control of Chaotic Systems

Chaotic systems are known for their unpredictability. Thus, they were mistaken in the past
with random systems. It was found later on that chaotic systems are driven by deterministic
phenomena, and their unpredictable behavior is due to their sensitive dependence on initial
conditions [1]. The presence of chaos may be a great advantage for control in some situations
[3]. In non-chaotic systems small control force will change the system dynamics slightly. On
the other hand, in chaotic systems small control force can cause a large change in the system
behavior. Also, a wide choice between a rich variety of  dynamical behavior is possible[3].
Based on this observation, several chaotic system control methods have been developed [1-6,
33]. Small perturbation control of chaotic systems is a technique developed by Edward Ott,
Celso Grebogi, and James York  in 1990, known as the OGY technique [4]. In this technique,
the chaotic system motion can be stabilized to one of its naturally unstable periodic orbits. This
can be achieved by applying time-dependent small pre-calculated perturbations to a system
parameter. These control perturbations are applied only when the system behavior  comes to a
vicinity of the fixed point corresponding to the periodic orbit to be stabilized.

 The first step in the OGY technique is to map the system behavior to a chosen surface of
section such that the periodic orbit to be stabilized appears as a fixed point. Second, the stable
and unstable manifolds at this fixed point are computed from the eigenvalues and the
corresponding eigenvectores of the linear map that describes the system behavior around the
fixed point. The rate of change of the fixed point with respect to the control parameter is also
computed. We wait for the system to come in the vicinity of the fixed point and then  apply a
small perturbation such that the system’s next iterate falls on the stable manifold of the fixed
point. In theory , once the system is on the stable manifold, its iterates will move toward the
fixed point by natural forces. For the OGY method to be implemented, a linear map that
describes the system behavior around the fixed point to be controlled is essential. This linear
map can be estimated from time series measurements from the system. No exact model for the
system is needed, which makes it possible for this method to be implemented in a wide range of
problems [7-10]. In this section, we present a systematic way to compute the OGY control
parameters from a chaotic time series. We show how to use autoregressive modeling to
estimate the linear map that describes the system iterative behavior around a fixed point. We
also explain how to experimentally compute the rate of change of a fixed point with respect to
a control parameter, and how to modify the algorithm according to the order of the periodic
orbit to be controlled. Finally, we demonstrate how these techniques can be applied to control
the chaotic behavior of some typical chaotic systems, such as the logistic and Henon maps, to
any periodic orbit.

4.5.2 Review for the OGY Technique

The OGY method is a technique to stabilize the chaotic behavior in an n-dimensional
chaotic system to one of its naturally unstable periodic orbits. First, the system behavior has to
be mapped on a chosen surface of section or a return map, in order to observe the system
dynamics as a sequence of points on a two dimensional map. Let ζ ζ ζ ζ1, , ,........  2 3 n denote
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the coordinates in the surface of section at the n’th piercing of the surface of section. Suppose
the iterates are represented by

ζ ζn nf p+ =1 ( , ) (8)

where P is some accessible system parameter

Then, we examine the unstable periodic orbits and select the one to be used for control, and
obtain its stability properties. For purposes of simplicity, let us assume that a first order return
map is constructed from a one dimensional time series x1, , x  ........,  x2 n , then the two

dimensional iterates ζn will be defined as:

ζ n
n

n

x

x
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+1 (9)

From this map a fixed point or a periodic orbit will be selected and examined. A fixed point is
defined as x xn n+ =1 , while a period k orbit is defined as x xn k n+ = . The period k orbit, as an
example, will appear as k distinct points on the first return map, while it will appear as a fixed
point on the k-order return map. We will always need to select the appropriate return map
order that shows the controlled periodic orbit as a fixed point

ζ F
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        (10)

The OGY technique assumes that there is an acceptable maximum perturbation δp m in the
system control parameter P. It is also assumed that the position of the periodic orbit is a
function of P, while the local dynamics around this periodic orbit do not vary much when the
parameter P is changed within the allowable perturbation [5].
In order to examine the stability of the selected periodic orbit we need to perform the
following computations:
1. We find the linear approximation of the map f  around the selected fixed point, as shown in
the following equation:

ζ ζ ζ ζn F n FM+ − = −1 ( ) (11)

where M is a two dimensional matrix.

2. Let λ λs u and  be the experimentally determined stable and unstable eigenvalues of the

matrix M, respectively, and ( , )e s  e u  are the corresponding stable and unstable eigenvectors.

The eigenvectors e s  and  e u  represent the stable and unstable directions of the map around the

selected fixed point, and are used to compute the unstable contravariant eigenvector according
to the relationships f eu u. = 1and f eu s. = 0   [4].
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3. The rate of change of the selected fixed point with respect to the system control parameter P
is computed as:

g
p p

F F= ≈
∂ζ
∂

∆ζ
∆

(12)

4. Given the maximum allowable perturbation in the control parameter δp m , we can compute
the maximum effective control distance around the fixed point as:

δζ
λ

λ
δm

u

u
m up g f=

−
( ) . )

1
  (     (13)

Knowing the parameters computed above, we can compute the necessary control force at
iterate n as:

δ ζ ζp C fn F u= −( ).  (14)

where     C g fu

u
u=

−
−( ) ( . )

λ
λ 1

1        (15)

The perturbation δp  is the control action necessary to put the system's next iterate on the
stable manifold of the fixed point. Then, in the following iterates the system behavior should
move towards the fixed point with the system's natural forces. However, to adjust for noise
and computation inaccuracies, we need to calculate a correcting control force δp at the end of
every period.

4.5.3 Methodology to Compute The OGY Parameters from a Chaotic Time Series

In this section, we present the details of our approach to compute the OGY parameters
and control action from chaotic time series measurements. The procedure is summarized in the
following steps:

Step 1. Determination of the System Periodic Orbits and                   Fixed Points

Starting from a time series measurement at a nominal value of the control parameter P0, we
need to localize the periodic orbits embedded in the system. Actually, we will be interested in
only one of these orbits with the targeted period. All periodic orbits embedded in a chaotic
system are unstable orbits. This means that the system will visit those orbits briefly at certain
instances. We need to catch this brief periodic behavior of the system, localize it, and
determine its behavior, in order to compute the control actions needed to stabilize it. The time
series measurements can be easily arranged in a two column matrix defined as:
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where n is the total number of data points in the time series, and k is the period of the targeted
orbit. Any two points on the same row of the matrix X are separated by k number of points. If
a pair of points x n  and xn k+ on the time series are equal, then any of the periods k, k/2,
k/3.....or k/k=1 is localized. Any of these periods, if exist, will appear as a fixed point on the k-
order return map ( xn n k vs.  x + ). If the target period k exists, any point on it visited by the
system for a complete cycle in the measured interval will appear as a distinct fixed point on the
k-order return map. If all k orbital points were visited, they will appear as k distinct fixed
points on the k-order return map. We compute the absolute value of the difference of the two
columns of the matrix X that comes to a vector of n-k values. We search this vector for any
value less than a minute tolerance ε. Any of the values passing the selection criteria will mark
one fixed point on the k-order return map. After marking a fixed point on a specific row, we
need to go back and unfold all points between xn and xn+k at the marked row. If points xn ...xn+k-

1 are all distinct, then this is one period k orbit, and the corresponding fixed point on the k-
order return map is a point of interest to the current control task. Any of the k fixed points
belonging to the orbit ( , ,......, )ζ ζ ζ01 02 0k can be used to control the system.

Step 2. Computing the Rate of Change of the Fixed Point with Respect to the Control
Parameter

New measurements from the system need to be recorded at values of the control parameter
p p0 ± δ . For every measurement we need to recalculate the location of the period k fixed

points on the k-order return map ( , ,......, )ζ ζ ζm m mk1 2 , using the method on step 1. In case we

have decided to use the fixed point ζ0 j to control the system, the change in its position will be

δζ ζ ζi ij j= − 0 , and the rate of change of that fixed point will be computed as g
pi

i

i

=
δζ
δ

, where

δp p pi i= − 0 . We repeat the computation for the available measurements (0, 1, . . . ., m) and

average them to get the value of g to be used.

Step 3. Estimating the Linear Approximation for the Map f around a Fixed Point
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As shown in equation 8 the map f correlates the consecutive points on a two dimensional map.
To apply the OGY method, we need a linear estimate of that map around the fixed point used
to control the system. This means we need to estimate the two dimensional matrix that maps
the consecutive points in a close vicinity of the fixed point. Equation 11 can be expanded as:
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From the second row equality of this equation, we can easily infer that m21 221 0= =,  and m .
On the other hand the first row equality is:

x x m x x m x xn F n F n F+ +− = − + −2 11 1 12( ) ( )    (18)

This equation means that the difference between an iterate and the fixed point can be obtained
from the difference of the two previous iterates to the fixed point. We can consider this
equation as an autoregressive model for the iterates, and use the least squares method to
estimate the parameters of that model. From the matrix X in equation 16, in which every row
represents an iterate on the two dimensional k-order return map, we collect all pairs of points
ζ ζn n and +1  that are in a close vicinity to the fixed point. In other words, we collect the pairs
that lie inside a small pre-defined circle around the fixed point. According to the least squares
estimate of the autoregressive model, we can estimate the m11 and m12 elements of the matrix
M as:
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where N is the number of pairs and D-1 is given by
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Step 4 . Finding the OGY Parameters

We compute the eigenvalues and the corresponding eigenvectors of the matrix M. Assume that
λ s  and λ u are the experimentally determined stable and unstable eigenvalues, respectively, and

e s and e u are the corresponding eigenvectors. The eigenvectors e s  and e u  represent the stable

and unstable directions around the fixed point. From the eigenvectors e s  and e u  we compute

the unstable contravariant eigenvector according to the relationships f eu u. = 1and

f eu s. = 0 [4]. Hence, the maximum allowable distance for control around the fixed point can

be computed according to equation 13 as:

δζ
λ

λ
δm

u

u
m up g f=

−
( ) . )

1
  (

and the necessary control perturbation for the n’th iterate can be computed by equation 14 as:

δ ζ ζp C fn F u= −( ).

where C g fu

u
u=

−
−( ) ( . )

λ
λ 1

1 

The way the OGY control method is applied, is to wait for the system until an iterate falls into
a circle with a radius δζ m  around the fixed point, then apply the perturbation p p p= +0 δ .

Then, we wait k iterates and check if the system falls back within the radius δζ m  around the
fixed point. If it does, we measure the distance between that iterate and the fixed point, re-
estimate the control force and reapply the necessary control action. These time dependent
kicks will stabilize the system around the selected periodic orbit.

4.5.4 Testing the OGY control Method Developed

The control procedure discussed above was applied to control the chaotic behavior in two
typical chaotic systems, the logistic map defined as:

x x xn n n+ = −1 1λ( ) (20)

and the Henon map defined as:

x x yn n n+ = − +1
21 α

y xn n+ =1 β (21)
The chaotic behavior in the two systems was stabilized to several periodic orbits. Figure 31
shows the results of applying and then removing the control on the logistic map ( λ = 3 825. ) to
stabilize it to a period-1 orbit. The computed parameters for this case are as follows:
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xF = 0 738504.

g = 





0 059

0 059

.

.

M =
−





18252 0 0001

1 0

. .

λ u = -1.8253

λ s = 4.3315e - 005

fu = 





-1.1402143

 0.0000493

C = −9 6.

δζm = 0 01822.

The control was applied at the iterate 500 and then removed at the iterate 2500. We notice that
the effect of the controller did not appear right after it was applied, the reason is that we have
to wait for the system iterates to fall within the vicinity of the fixed point to be stabilized before
we actually apply the control kicks. It is also clear that once the control was removed the
chaotic behavior has returned. This is due to noise and inaccuracies in the computation as
mentioned above. In addition, the system actually needs an infinite time until it becomes
exactly on the periodic orbit. In theory, once it is there the iterates should stay on the orbit
unless perturbed. Figure 32 shows the control action applied as a function of time. It is clear
that after few iterates from the control start, the kicks necessary to keep the system stabilized
at that orbit are very small, which makes this control algorithm very inexpensive and easy to
implement in many practical systems. Figures 33 and 34 show how the OGY method was used
to stabilize the logistic map to period-2 and period-5 respectively. Also, figures 35 and 36
show how it was used to stabilize the Henon map to period-1 and period-2 respectively.
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5. The Hardware Implementation of the Proposed System

We have developed techniques to control the chaotic behavior in the Fluidized Bed (FBC)
Systems using Artificial Neural Networks (ANNs), and the OGY technique. We have also
discussed a Data Acquisition Board setup that will enable communication between our
programs and external systems. Communication is planned to be enabled in both ways to
deliver feedback signals from a system to the control programs in one way, and the control
signals from the control programs to the controlled system in the other way. On the other
hand, since most of our programs are PC based, they have to follow the revolutionary progress
in the PC technology. Our programs for the DSI neural network were developed in the DOS
environment using an early version of Microsoft C compiler. For those programs to meet the
current needs of most PC users, we are working on converting those programs to the
Windows environment, using a very advanced and up to date C++ compiler. This compiler is
known as the Microsoft Visual C++ Version 4.0. This compiler enables the implementation of
very professional and sophisticated Windows 95, 32 bit applications. It also allows a simple
utilization of the Object Oriented Programming (OOP) techniques, and lots of powerful
graphical and communication tools known as the Microsoft Foundation Classes (MFC). This
compiler also allows creating Dynamic Link Libraries (DLLs) that can be liked to other
Windows programs. These two main aspects, the computer-system interface and the DOS-
Windows migration will give our programs a leap frog towards their real implementation.

5.1 How the Dynamic System Imitator (DSI) Programs Will be Modified

The DSI controller programs are simulations to the DSI recurrent and dynamic nature that
is capable of creating very sophisticated time behaviors [14, 19, 20]. This enables the DSI to
model a variety of dynamic systems and non-linear controllers. During training, the DSI has to
monitor the behavior of the controlled system and work on creating the necessary control
signal to modify the system behavior and bring it to a pre-specified time behavior. In the time
being the DSI simulation programs deal with models of the controlled system instead of the
real system. The system models are supplied through a Runge Kutta fourth order simulation
routines that solve a coupled system of ordinary differential equations. Outputs from those
simulation routines are passed to the DSI network and the output of the DSI network is also
passed as a control action to the simulation model. The desired output of the system is supplied
to the network through other set of routines that solve some pre-specified functions. In reality,
the network has to deal with the actual system, during its training and recall modes. Therefore,
modification need to be made to the DSI programs to communicate with the controlled system
through computer interface that performs the necessary Analog to Digital  (A/D) and Digital to
Analog (D/A) conversions. On the other hand almost all parts of the DSI programs will be
converted in the context of the Object Oriented Programming, Microsoft Foundation classes,
and Microsoft Visual C++ 4.0 compiler [34]. New classes and objects will be created to
represent the network nodes, variables, interfaces, and connections. User interface tools that
were not available in the old programs will be developed, such as menus, icons, pop up menus,
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radio buttons, and mouse handlers. Also all graphics concepts will be transferred to the
Application Programming Interface (API) tools that are controlled by the Microsoft
Foundation Classes.

5.2 The Data Acquisition System

An example Data acquisition system using a portable PC is illustrated in Figure 37. It
utilizes a National Instrument DAQ 1200 PC MCIA card, which is a multifunction I/O DAQ
unit that communicates with a PC through the parallel port on IBM PC/XT/AT and
compatibles, with a maximum sampling rate of 100 KHz. The DAQ-1200 has 12-bit Analog to
Digital Converters (DAC) with eight analog inputs, configurable as eight single ended or four
differential inputs [35]. It also have two 12-bit, double buffered Digital to Analog Converters
(DACs), and programmable gains of 1, 2, 5, 10, 20, 50, or 100.

Connection
Board

PC MCIA
Slot

DAQ
Card

Figure 37 An Example data acquisition system using a portable PC.
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6. Conclusions

In this report, analysis to data measured from an FBC facility has been presented. The
purpose of this analysis is to build basis for a neuro-controller design that can be used to
control some undesirable abnormal behavior in FBC systems. This analysis shows that both the
normal and abnormal behavior represented in the data available are chaotic. The system’s
normal and abnormal attractors have fractal dimensions, some positive Lyapunov exponents
and positive Kolmogorov entropy. However, the correlation dimension of the abnormal case is
much higher than the normal case. This indicates that when the system switches to its abnormal
situation it suffers a very complex behavior, most likely belongs to a higher order chaos. An
appropriate controller is desired to control the system abnormal chaotic behavior to its normal
chaotic behavior. A general method to monitor and control the chaotic behavior in an FBC
system has been outlined. A recurrent neural network called the Dynamic System Imitator
(DSI) was adopted. The only missing chain to test the proposed method is an appropriate non-
linear model that will describe the FBC in different modes. Finding this model, and testing the
proposed monitoring and control method, will be our main focus of future work in this project.

We presented the application of a special type of the DSI, for chaotic system control. The
proposed methodology was applied to the Lorenz system. Both the system state point control
and the parameter perturbation control strategies were explored. The control action generated
by the neural network was fed in several locations in the system of equations to demonstrate
the ability of the algorithm to perform in several configurations. This flexibility makes the
algorithm more applicable to real systems. In all cases, the DSI was able to control the Lorenz
chaotic behavior to a stable fixed point or to a stable periodic orbit, depending on the way it
was trained. We believe this technique can be further applied to many other dynamic systems.

A dynamic neural network based model for chaotic time series has been developed. A one
step predictor model was used to iteratively generate chaotic time series, using the DSI neural
network. The DSI has distinguishable dynamic features due to its special architecture. The DSI
time behavior depends on its initial conditions. After training, the DSI was able to generate the
chaotic time series in all test cases. For a short period of time, it was able to generate the same
time behavior of the training time series if started with the same initial conditions and the first
initial points of the time series. Furthermore, it was able to track the system attractor to which
the training time series belongs, for any period of time, for any initial conditions and any initial
points, in all test cases. The only case that fails is the zero initial conditions together with zero
starting points, which leads to a zero solution. This methodology was applied to three known
chaotic models, the logistic, Henon and cubic maps, in addition to one experimental time series
taken from an FBC system. The correlation dimension and the Kolmogorov entropy for the
actual and DSI network synthetic data were computed and compared. There is a very good
match between the actual and synthetic time series parameters in all cases which indicates that
the DSI was able to learn the dynamics in those chaotic time series to a very good extent.

We have presented a systematic way to compute the parameters of the OGY technique
from time series measurements, and to implement this method to control the chaotic behavior
in a chaotic system, and stabilize it into one of its naturally unstable periodic orbits. We have
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developed a technique to compute the linear map that describes the system behavior on a two
dimensional map around a fixed point, which is essential to the OGY method, using
autoregressive modeling. We have shown a detailed procedure to localize and separate a
naturally unstable periodic orbit in a chaotic time series. We have also explained how to
experimentally compute the rate of change of the fixed point corresponding to the periodic
orbit to be controlled with respect to a control parameter. Finally, we have applied the
techniques developed to control the chaotic behavior in some typical chaotic systems, such as
the logistic and the Henon maps, and stabilize it to one of its naturally unstable periodic orbits.
Stabilizing such chaotic systems to several example periods were presented. In the control
method described, we have to wait for the system until its iterates fall into a close vicinity of
the fixed point corresponding to the orbit to be stabilized, and then apply time dependent
sequence of kicks that stabilizes the system on that naturally unstable orbit. From the results
summarized above, it is clear that the control actions necessary to stabilize the system become
very small and almost negligible after few iterates from the start of the control, which makes
this method very inexpensive, and easy to implement in many practical systems. However, the
control kicks has to be maintained or control will be lost, and the system behavior will go back
to its naturally chaotic behavior.

Based on the results of FBC data analysis described above, we have developed some
chaotic system control techniques and applied them to some typical chaotic systems. However,
we were not able to test those techniques on an FBC system, because there is no suitable
model available. In the same time, it was not possible to build such a model from the available
data, because they are all one dimensional single variable measurements which is not enough to
model the input output relationships required to test our control techniques. However, we
were able to find a prediction model for those pressure measurement time series that can be
used for on line monitoring of the process. Two main types of chaotic system controllers were
developed. The first is based on a special type of a recurrent neural network developed, known
as the Dynamic System Imitator (DSI), which is specially designed to model a wide variety of
dynamic systems. The second technique is based on the chaotic system control method known
as the OGY, developed by Edward Ott, Yorke and Grebogi in 1990. We have developed an
autoregressive algorithm to estimate a system map matrix necessary for the OGY method. The
OGY control parameters can be estimated from one dimensional measurements from the
system to be controlled. However, also the sensitivity of the control parameters with respect to
the control variables in a form of derivatives has to be accurately measured. The OGY
technique is designed such that to control a chaotic system in the vicinity of a periodic orbit or
a fixed point and force it to stabilize to that periodic orbit or fixed point.

Other types of measurements are certainly necessary to build a simple model that well
describes the chaotic behavior of the FBC system at both normal and abnormal operation. On
the other hand, this model has to describe the input output relationships between the control
variables and the other variables and parameters in the system. In addition, this model has to
describe the system behavior under both transient and steady state conditions, and the system
transients from normal to abnormal and visa versa. This type of model is necessary to train and
test the neuro-controller and to test the OGY controller. Other specialized measurements are
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necessary to compute the derivative of a control parameter with respect to a control input
around the periodic orbit or the fixed point to be controlled using the OGY technique.

7. Future Work

We summarize the goals and objectives of the next phase of this project and the proposed
fluidized bed experimental setup in the following points:

1. Develop and execute an experimental setup that will enable collecting the data necessary to
develop a simple non-linear model for the FBC system, and further develop the chaotic
system control techniques developed in the first phase of the experiment, including neural
network control, and the conventional OGY method.

2. Build a simple and sufficiently fast computer model for the FBC system  that can be used to
train the neural controller and test its performance. This model will be also used to test the
performance of the OGY controller.

3. Train and test the neural network based control techniques for the purpose of chaotic
system control in general and FBC system control in particular.

4. Design and test a methodology to control an FBC system based on the OGY technique,
and another methodology based on a combination of both neural and OGY controllers.

Taking all previous considerations and the existing setup of the cold FBC experiment
shown in Figure 1 into account, we propose a setup that will enable the test procedure under
the following conditions:

1. System pressure at different levels, the operating pressure, the air flow rate, and the cork
flow rate, in addition to any other contributing inputs, parameters or conditions, such as
humidity or temperature, have to be measured simultaneously and recorded carefully at all
times in all tests. This is to simplify the utilization of such data and parameters in the
following analysis, modeling and parameter estimation procedure.

2. Input/output tests will be performed by doing the measurements during input disturbances
following some standard behaviors such as ramp, step, impulse, square, sinusoidal,
triangular, or random. The only known effective input to the system at the time being is the
air flow. However, other inputs might be considered, such as the cork feed rate and the
working pressure. The system outputs in the case are the differential pressures at different
levels.

3. Steady state tests will be performed for enough periods of times for both normal and
abnormal conditions. More specifically, the system inputs will be adjusted to allow certain
system condition either normal or abnormal, then they will be held constant at that level for
certain time during which the system variables will be recorded.

4. Transients from normal to abnormal situations and the opposite will be created and
monitored through measurements. First, certain condition will be created (normal or
abnormal), then the disturbance necessary to kick the system to the opposite condition
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(abnormal or normal) will be applied. The system variables and parameters will be recorded
during this process.

5. Steady state measurements will be performed at different values of operating parameters,
such as the working pressure. Steady state recording will be performed at some value for
that parameter, and then the measurement will be repeated with that parameter incremented
up and down around its original value.

8. Student Participation

The following are brief portrait for students under Tennessee State University (TSU) graduate
program who were supported under this project to do the research required for their master
thesis. In the same time they contributed to the overall objective of the project:

Mr. James Osa,  He has finishing his Master Thesis, and graduated summer 1996. 96. His
master thesis involvesd investigating using some static neural network techniques to control
the chaotic behavior in some typical chaotic system.

Mr. Jihad Ababneh,  He worked on his Master Thesis while supported by this grant. He has
been involved on research related to the using the OGY (Ott, Grebogi, and York) method to
control the chaotic behavior using small perturbations. He was the first author on one of our
publications to the SSSE. He is now investigating using neural network techniques to estimate
the OGY parameters from a chaotic time series.
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%
%
% Program name: Lya5.m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This program was written under the DOE contract # DE-FG22-94MT94015,
% period July, 1995-December 1996.
%
% Dr. Magdi A. Essawy, Postdoctoral Research Associate
% Dr. Mohammad Bodruzzaman, Principal Investigator
% Department of Electrical and Computer Engineering
% College of Engineering and Technology
% Tennessee State University, Nashville TN 37209
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program is to compute the Lyapunov exponents spectrum for a time series embedded 
% in the matrix "x" that sould be resident in the matlab environment when the program is running.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dim=3; % the embedding dimension
tau=.01; % the sampling time
tm=5; % the traveling time
ors=1; % the starting point
ori=5; % the step
orf=20; % the final point for the spectrum
rec=[];
rec1=[];
eps=1.0; % the size of the epsilon ball it needs to be about 2.5 % of the maximum extension
of the % attractor
count=0;
skip=0; % the number of points to be skipped in the beginng

lam=zeros(1,dim);
max=size(x,1)-tm; % the matrix x is the embedding matrix created by the embedd program
a=randn(dim);
be=eye(dim);
for orp=ors:ori:orf
maty=[];
%bn=zeros(dim);
aa=a*be;
for k=1:dim

rr(k,k)=norm(aa(1:dim,k));
qq(1:dim,k)=aa(1:dim,k)/rr(k,k);

for j=k+1:dim
rr(k,j)=qq(1:dim,k)'*aa(1:dim,j);
aa(1:dim,j)=aa(1:dim,j)-qq(1:dim,k)*rr(k,j);

end
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end
be=aa;
mat=x(orp,:); % the matrix x is the embedding matrix created by the embedd program
ny=0;
nmy=[];
for i=1:max
mat1=x(i,:);
dif=(mat1-mat);
rrr=norm(dif);
if rrr<eps
maty=[maty dif'];
ny=ny+1;
nmy=[nmy i];
end
if ny>20
break;
end
end
orp

if ny>dim
matz=[];
matm=x(orp+tm,:);
ny
for j=1:ny
matm1=x(nmy(j)+tm,:);
dif=matm1-matm;
matz=[matz dif'];
end
v=1/ny*(maty*maty');
c=1/ny*(matz*maty');
a=c*inv(v);
for i=1:dim
lam(i)=lam(i)+log(norm(a*be(:,i)));
end
if(orp-ors) > skip
ppp=lam*ori/(orp-ors-count-skip+1)/tm/tau;
rec=[rec ppp'];
rec1=[rec1 orp];
end
else
count=count+1;
end
end
plot(rec1,rec);
count
end
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%
%
% Program name: corr2.m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This program was written under the DOE contract # DE-FG22-94MT94015,
% period July, 1995-December 1996.
%
% Dr. Magdi A. Essawy, Postdoctoral Research Associate
% Dr. Mohammad Bodruzzaman, Principal Investigator
% Department of Electrical and Computer Engineering
% College of Engineering and Technology
% Tennessee State University, Nashville TN 37209
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program is to to compute the correlation integral points for a time series contained in the 
%  matrix "inp" that sould be resident in the matlab environment when the program is running.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

m=1; // embedding delay
mdim=2; // minimum embedding dimension
idim=2; // increment for embedding dimension
xdim=20; // maximum embedding dimension
mneps=.005; // minimum ball size
ieps=1.5; // ball size increment factor
mxeps=10; // maximum ball size
veps=[];
tn=[];
tnp=[];

eps=mneps;
while eps<=mxeps
veps=[veps eps];
eps=ieps*eps;
end
neps=size(veps,2);
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tn=zeros((xdim-mdim)/idim+1,neps);
ind=1;
for dim=mdim:idim:xdim
max=size(inp,1)-(dim-1)*m;
xx=[];
xa=[];
for j=1:dim
xa=[xa inp(1+(j-1)*m:max+(j-1)*m)];
end
xx=xa';
N=size(xx,2)
N=N-1;
for i=1:N
y=[];
dy=[];
p=[];
y=xx(:,i+1:N+1)-xx(:,i)*ones(1,N+1-i);
dy=sqrt(sum(y.^2));
for j=1:neps
p=find(dy<veps(j));
tn(ind,j)=tn(ind,j)+length(p);
end
end
ind=ind+1;
end
tnp=log(tn/(N^2));
vepsp=log(veps);
plot(vepsp,tnp);
hold on;
plot(vepsp,tnp,'+');
hold off;
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%
%
% Program name: Cplo.m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This program was written under the DOE contract # DE-FG22-94MT94015,
% period July, 1995-December 1996.
%
% Dr. Magdi A. Essawy, Postdoctoral Research Associate
% Dr. Mohammad Bodruzzaman, Principal Investigator
% Department of Electrical and Computer Engineering
% College of Engineering and Technology
% Tennessee State University, Nashville TN 37209
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program is to compute the linear regression fit for the correlation integral results computed 
%  by the "corr2.m" program listed above
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mdim=2; % minimum embedding dimension
idim=2; % embedding dimension inccrement
xdim=20; % maximum embedding dimension
ddd=[];
a=[];
b=[];

tnd=tnp';
veps=vepsp';
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ind=1;
for i=mdim:idim:xdim
ddd=[ddd i];
s=ii(ind,2)-ii(ind,1)+1;
sx=sum(veps(ii(ind,1):ii(ind,2)));
sxx=sum(veps(ii(ind,1):ii(ind,2)).^2);
sy=sum(tnd(ii(ind,1):ii(ind,2),ind));
sxy=sum(veps(ii(ind,1):ii(ind,2)).*tnd(ii(ind,1):ii(ind,2),ind));
dt=s*sxx-sx^2;
a(ind)=(sxx*sy-sx*sxy)/dt;
b(ind)=(s*sxy-sx*sy)/dt;
ind=ind+1;
end
ttt=figure;
plot(ddd,b,'+');
hold on
plot(ddd,b);
xlabel('embeding dimension');
ylabel('correlation dimension');
hold off

%
%
% Program name: kento.m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This program was written under the DOE contract # DE-FG22-94MT94015,
% period July, 1995-December 1996.
%
% Dr. Magdi A. Essawy, Postdoctoral Research Associate
% Dr. Mohammad Bodruzzaman, Principal Investigator
% Department of Electrical and Computer Engineering
% College of Engineering and Technology
% Tennessee State University, Nashville TN 37209
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program is to compute the Kolmogorove Entropy for the time series represented by the 
%  linear regression fit constants computed by the "cplo.m" program listed above.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ent=[];
m=1
ind=1;
xd=-4;
for i=mdim:idim:xdim-1
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ent=[ent (1/(m*idim)*(a(ind)+b(ind)*xd-a(ind+1)-b(ind+1)*xd))];
ind=ind+1;
end
dd=ddd(1:(xdim-mdim)/idim);
tt=figure
plot(dd,ent);
hold on;
plot(dd,ent,'+');
hold off;

/*

%
%
% Program name: news.c
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This program was written under the DOE contract # DE-FG22-94MT94015,
% period July, 1995-December 1996.
%
% Dr. Magdi A. Essawy, Postdoctoral Research Associate
% Dr. Mohammad Bodruzzaman, Principal Investigator
% Department of Electrical and Computer Engineering
% College of Engineering and Technology
% Tennessee State University, Nashville TN 37209
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This is a C program to simulate the Dynamic System Imitator (DSI) neural network
% in order to perform time series prediction.
% The program contains both training and recall algorithms
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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*/

#include "stdio.h"
#include "stdlib.h"
#include "graph.h"
#include "math.h"
#include "conio.h"
#include "nr.h"
#include "nrutil.h"
#define dd 1 
#define ord 4
#define mum 200
#define pmum 200
#define ccc 1
#define mmp 33
#define nnp 32
#define imp 9
#define inp 8
#define dddt 0.01900

double y=0,xp=0,enrg0;
float c1,c2,c3,c4,c5,c6;
float flag=0;

FILE *af,*bf,*az,*bz;
ord2=ord*ord;
int im=0,colf=1,colt=14,coll=15,colln=2,coltn=15,nplot=0;
float *op,*dop,*tmop,*tmdop,*inpm,*desop,*top,*err,*xx0;
float **w,**d;
/*float b[4]; */
int lpos[2]={0,0};

char fname[15]="inp.dat";
char sname[15]="opt.dat"; 
char oname[15]="sav.dat";
char rname[15]="rec.dat";
char cname[15]="comp.dat";
char lname[15]="out.dat";
char zname[15]="inc.dat";
char ename[15]="err.dat";
char mname[15]="info.dat";

double func(float x[]);
double funk(float x[]);
void title();
void perr(char *dc);
void mfopen(char *pp);
void fmfopen(char *pp);
void rein(void);
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/*void adjust2(int max,float **mat,int k);*/
/*void adjustm(int max,int **mot);*/
void recall(char *ocp);
void outside(int lim);
void outsid(int lim);
void start(int *ms);
void plot(int m, int n,float cp[],int nom);
void plotv(int m, int n);
void plote(int m, int n,int * icp,double y);
void myinput(char *np);
void mydoput(char *np);
void final();
void myout(char *onp);
void random(int m,int n,float **fp);
void randomb(int m,float *lp);
void incd(float x[],float y[]);
void incsav(float x[],float y[]);
void inscr(void);
void calcdop(register int i,float dt);
/*void setc();*/
double rmserr(int num);
double rms(int num);  
float calclop(int i);

void main(void)
{
register int kn=0,jm,km=0,in,j;
int count=0,fall,ndim=nnp,idim=inp;
int maxi=0,iiix;
float *incond,*dincon,*xx,*xy,*yy,*yx,*psum,*ptry,**pp,**pp0,**px;
int mm=0,k=0, sss=0, mslotn=0,nfunc,nfunk;

char arg,rf,rs,rt;
float  sum=0;
char buffer[10];

start(&mslotn);

ptry=vector((long int)0,(long int)ndim-1); 
psum=vector((long int)0,(long int)ndim-1);
incond=vector((long int)0,(long int)ord-1);
dincon=vector((long int)0,(long int)ord-1);
inpm=vector((long int)0,(long int)mum-1);
desop=vector((long int)0,(long int)mum-1);
w=matrix((long int)0,(long int)ord-1,(long int)0,(long int)ord-1);
d=matrix((long int)0,(long int)ord-1,(long int)0,(long int)ord-1);
pp=matrix((long int)0,(long int)mmp-1,(long int)0,(long int)nnp-1);
pp0=matrix((long int)0,(long int)mmp-1,(long int)0,(long int)nnp-1);
px=matrix((long int)0,(long int)imp-1,(long int)0,(long int)inp-1);
op=vector((long int)0,(long int)ord-1);
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dop=vector((long int)0,(long int)ord-1);;
tmop=vector((long int)0,(long int)ord-1);
tmdop=vector((long int)0,(long int)ord-1);
top=vector((long int)0,(long int)mum-1);
err=vector((long int)0,(long int)mum-1);
xx=vector((long int)0,(long int)nnp-1);
xx0=vector((long int)0,(long int)nnp-1);
xy=vector((long int)0,(long int)inp-1);
yy=vector((long int)0,(long int)mmp-1);
yx=vector((long int)0,(long int)imp-1);

for(in=0;in<mmp;in++){
  for(j=0;j<nnp;j++)

pp[in][j]=(in == (j+1) ? 1.0 : 0.0);
}

  
incd(incond,dincon);
/*setc();*/
printf("is this traning (t) ??   or recall (r) ??\n");
arg=getche();
switch(arg){
case 't' :
printf("\nwhat is the max number of iterations...??\n");
scanf("%d",&maxi);
/*printf("enter your choice for ...(dw)...\n");*/
/*scanf("%f",&dw);*/
printf("is this a traning from scratch...?? if not write ...n...\n");
arg=getche();
if(arg != 'n'){
/*randomb(b);*/
random(ord,ord,w);
random(ord,ord,d);
k=0;  

for(in=0;in<4;in++){
 for(j=0;j<4;j++){
pp[0][k]=w[in][j];
pp[0][k+ord*ord]=d[in][j];
k++;
}
}

}
else {
recall(oname);
k=0;  
for(in=0;in<4;in++){
 for(j=0;j<4;j++){
pp[0][k]=w[in][j];
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pp[0][k+ord*ord]=d[in][j];
k++;
}
}
}

myinput(fname);
mydoput(sname);
inscr();
title();
plotv(335,340);

for(in=0;in<mmp;in++){
  for(j=0;j<nnp;j++)

pp0[in][j]=pp[in][j];
}

for(in=0;in<imp;in++){
  for(j=0;j<inp;j++)

px[in][j]=(in == (j+1) ? 1.0 : 0.0);  ;

}

for(km=0;km<ord;km++){
tmop[km]=incond[km];
tmdop[km]=dincon[km];
}

rein();

for(jm=0;jm<maxi;jm++){
fseek(az,0,SEEK_SET); 
fseek(bz,0,SEEK_SET); 
_settextposition(15,73);
sprintf(buffer,"%d",jm+1);
_outtext(buffer);
/*if(jm>(maxi-2))mslotn=1;*/
 
iiix=0;
for(im=0;im<mslotn;im++){

enrg0=0;
 for(km=0;km<mum;km++){
if(fread(&inpm[km],sizeof inpm[0],1,az)!=1){
printf("read error");
exit(1);
}
if(fread(&desop[km],sizeof desop[0],1,bz)!=1){
printf("read error");
exit(1);
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}
enrg0 +=desop[km]*desop[km];
}

rein();
plot(70,135,inpm,pmum);
plot(70,340,desop,pmum);
outside(mum);
y=rmserr(mum);

plot(335,135,top,pmum);
plote(335,340,lpos,y);

/*for(kn=0;kn<3;kn++){*/

nplot=0;
for(in=0;in<mmp;in++){
  for(j=0;j<nnp;j++)

xx[j]=pp[in][j];
yy[in]=func(xx);

}
/*nfunc=99.;
_settextposition(0,0); 
printf(" aa cc bb xx  %f",ftol);*/
amoeba(pp,yy,ndim,func,&nfunc,psum,ptry);

for(j=0;j<nnp;j++) pp0[iiix][j]=xx0[j];

if(iiix>30)iiix=0;
for(in=0;in<mmp;in++){
  for(j=0;j<nnp;j++)

pp[in][j]=pp0[in][j];
}

/*
k +=10;
adjust2(ord,w,k);
k +=10;
adjust2(ord,d,k);
k +=10;
if(y<.2){
adjustm(ord,mw);
k=k+1;
adjustm(ord,md);
k=k+1;
}

if(k>(mum-20))k=0;
*/
rein();
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outside(mum);
y=rmserr(mum);
plot(335,135,top,pmum);
plote(335,340,lpos,y);
count=count+1;
if(kbhit())break;
if(y<.001)break;
/*}*/
iiix++;
for(km=0;km<ord;km++){
tmop[km]=op[km];
tmdop[km]=dop[km]; 
}

if(y<.001)break;
if(kbhit())break;
}

/*mum=2*mum;*/
im=0;

_setcolor(4);
_moveto(0,0);
_rectangle(_GFILLINTERIOR,162,-101,190,-86); 
fseek(az,0,SEEK_SET); 
fseek(bz,0,SEEK_SET); 

for(in=0;in<mum;in++){
if(fread(&inpm[in],sizeof inpm[0],1,az)!=1){
printf("read error");
exit(1);
}
if(fread(&desop[in],sizeof desop[0],1,bz)!=1){
printf("read error");
exit(1);
}

}

for(km=0;km<ord;km++){
tmop[km]=incond[km];
tmdop[km]=dincon[km]; 
}

rein();
outside(mum);
y=rmserr(mum);
plot(70,135,inpm,pmum);
plot(70,340,desop,pmum);
plot(335,135,top,pmum);
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plote(335,340,lpos,y);

 for(in=0;in<imp;in++){
  for(j=0;j<inp;j++)

xy[j]=px[in][j];
yx[in]=funk(xy);

}

amoeba(px,yx,idim,funk,&nfunk,psum,ptry);

for(in=0;in<ord;in++){
incond[in]=tmop[in];
dincon[in]=tmdop[in];
}

if(kbhit())break;
if(y<=.04)break;
}

_settextposition(20,71);
_settextcolor(colt);
_outtext("end of");
_settextposition(21,70);
_outtext("training");
myout(oname);
incsav(incond,dincon);
break;
case 'r' :

printf("\nwhat is the max number of slots (no more than 5) ...??\n");
scanf("%d",&maxi);
inscr();
title();
mfopen(ename);
fmfopen(lname);
plotv(335,340);
myinput(rname);
mydoput(cname);
recall(oname);

for(im=0;im<ord;im++){
op[im]=incond[im];
dop[im]=dincon[im];
}
fseek(az,0,SEEK_SET); 
fseek(bz,0,SEEK_SET); 

for(im=0;im<maxi;im++){
if(im>=1)
{flag=1.;
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 }
/* else
 { */
 for(km=0;km<mum;km++){
if(fread(&inpm[km],sizeof inpm[0],1,az)!=1){
printf("read error");
exit(1);
}
if(fread(&desop[km],sizeof desop[0],1,bz)!=1){
printf("read error");
exit(1);
}
}
/* }*/

plot(70,135,inpm,pmum);
plot(70,340,desop,pmum);

outsid(mum);

y=rms(mum);
sum=sum+y;
plot(335,135,top,pmum);
plote(335,340,lpos,y);
final();
perr(ename);

fall=getche();
}
sum=sum/maxi;
/*myout(oname);*/
fprintf(bf,"\n\n\n%f\n",sum);
fclose(af); 
fclose(bf);
fclose(az); 
fclose(bz); 
break;
default:
 printf("unrecognized letter");
}

fall=getche();
while(!kbhit());
_setvideomode(_DEFAULTMODE);

free_vector(yx,(long int)0,(long int)imp-1);
free_vector(yy,(long int)0,(long int)mmp-1);
free_vector(xy,(long int)0,(long int)inp-1);
free_vector(xx0,(long int)0,(long int)nnp-1);
free_vector(xx,(long int)0,(long int)nnp-1);
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free_vector(err,(long int)0,(long int)mum-1);
free_vector(top,(long int)0,(long int)mum-1);
free_vector(tmdop,(long int)0,(long int)ord-1); 
free_vector(tmop,(long int)0,(long int)ord-1);
free_vector(dop,(long int)0,(long int)ord-1);  
free_vector(op,(long int)0,(long int)ord-1);
free_matrix(px,(long int)0,(long int)imp-1,(long int)0,(long int)inp-1);
free_matrix(pp0,(long int)0,(long int)mmp-1,(long int)0,(long int)nnp-1);
free_matrix(pp,(long int)0,(long int)mmp-1,(long int)0,(long int)nnp-1);
free_matrix(d,(long int)0,(long int)ord-1,(long int)0,(long int)ord-1);
free_matrix(w,(long int)0,(long int)ord-1,(long int)0,(long int)ord-1);
free_vector(desop,(long int)0,(long int)mum-1);
free_vector(inpm,(long int)0,(long int)mum-1);
free_vector(dincon,(long int)0,(long int)ord-1);
free_vector(incond,(long int)0,(long int)ord-1);
free_vector(psum,(long int)0,(long int)ndim-1);
free_vector(ptry,(long int)0,(long int)ndim-1);

printf("%f   %d\n",y,count);
printf("successful end of program\n");
}

void rein(void){
register int i=0,j=0;
for(i=0;i<ord;i++){
op[i]=tmop[i];
dop[i]=tmdop[i];
}
 
}

/*void adjustm(int max,int **mot){

register int i=0,j=0;
double y1=0;
float tmp=0;

rein();
outside(mum);
rein();
y=rmserr(mum);
plot(335,135,top,pmum);
plote(335,340,lpos,y);

for(i=0;i<max;i++){
 for(j=0;j<max;j++){
tmp=mot[i][j];
mot[i][j]=!(abs(mot[i][j]));
outside(mum);
rein();
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y1=rmserr(mum);
if(y1>y){
mot[i][j]=tmp;
}
else{
y=y1;
}
}
}
}
*/
void mfopen(char *pp){

/* open file for output*/
if((bf=fopen(pp,"w"))==NULL){
 printf("Read error occured");
 exit(1);
}

}
void fmfopen(char *pp){

/* open file for output*/
if((af=fopen(pp,"w"))==NULL){
 printf("Read error occured");
 exit(1);
}

}

void perr(char *dc){

/* write output to file*/
fprintf(bf,"%f\n",y);

}

void final(){
register int i;

/* write output to file*/
for(i=0;i<mum;i++){
fprintf(af,"%f\n",top[i]);
}
}

void outside(int lim){
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register int k,i;
for(k=0;k<lim;k++){
op[0]=inpm[k];
calcdop(0,dddt);

for(i=1;i<ord;i++){
op[i]=calclop(i);
}
for(i=1;i<ord;i++){
calcdop(i,dddt);
}
top[k]=calclop(ord);
err[k]=(top[k]-desop[k]);
}
}

void outsid(int lim){
register int k,i;
for(k=0;k<lim;k++){
if(k<dd){
op[0]=fabs(flag-1)*inpm[k]+flag*top[mum+k-dd];
}
else{
  op[0]=fabs(flag-1)*inpm[k]+flag*top[k-dd];
     }
  
calcdop(0,dddt);

for(i=1;i<ord;i++){
op[i]=calclop(i);
}
for(i=1;i<ord;i++){
calcdop(i,dddt);
}

top[k]=calclop(ord);
err[k]=(top[k]-desop[k]);
}
}
double rmserr(int num){

register int i;
int j;
double sum;
double enrg;
double x,ee;

j=mum-1;
sum=0.0;
enrg=0.;
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for(i=0;i<num;i++){
sum +=err[i]*err[i];
enrg +=top[i]*top[i];
}
sum=sum/num;
ee=(enrg-enrg0)*(enrg-enrg0);
x=c1*sqrt(sum)+c2*sqrt(ee)/enrg0+c5*sqrt((err[0]*err[0]+.5*err[1]*err[1]+.5*err[2]*err[2]+.25*err[3]*err
[3]+.25*err[j/4]*err[j/4])/5.)+c6*sqrt((0.25*err[j/2]*err[j/2]+.25*err[j/4*3]*err[j/4*3]+err[j]*err[j]+.5*err[
j-1]*err[j-1]+.5*err[j-2]*err[j-2])/5.);
return x;
}
double rms(int num){

register int i;
double sum;
double enrg;
double x,ee;

sum=0.0;
enrg=0.;
for(i=0;i<num;i++){
sum +=err[i]*err[i];
enrg +=top[i]*top[i];
}
sum=sum/num;
x=sqrt(sum);
return x;
}

void inscr(void){

_setvideomode(_VRES16COLOR);
_setbkcolor(_RED);
_setcolor(coll);
}

void random(int m,int n,float **fp){

char r1;
char r2;
register int i,j;

for(i=0;i<m;i++){
 for(j=0;j<n;j++){
srand(1);
r1=rand();
r2=rand();
if(r2==0)r2=1;
fp[i][j]=pow(-1,r1)/((float) r2);
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}
} 
}

void randomb(int m,float *lp){
char r1;
char r2;

register int i;

for(i=0;i<m;i++){
srand(3);
r1=rand();
r2=rand();
if(r2==0)r2=1;
lp[i]=pow(-1,r1)/((float) r2);
}
}

void myinput(char *np){

register int i;
 
/* open file for input*/
if((az=fopen(np,"rb"))==NULL){
 printf("Read error occured");
 exit(1);
}
}
void mydoput(char *np){
register int i;
 
/* open file for input*/
if((bz=fopen(np,"rb"))==NULL){
 printf("Read error occured");
 exit(1);
}
}

void myout(char *onp){

FILE *a;

register int i;
register int j=0;
/* open file for output*/
if((a=fopen(onp,"w"))==NULL){
 printf("Read error occured");
 exit(1);
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}

/*write net to data file
for(i=0;i<ord;i++){
fprintf(a,"%f\n",b[i]);
}*/

for(i=0;i<ord;i++){
for(j=0;j<ord;j++){
fprintf(a,"%f\n",w[i][j]);
fprintf(a,"%f\n",d[i][j]);
}
}
/*for(i=0;i<ord;i++){
fprintf(a,"%f\n",op[i]);
fprintf(a,"%f\n",dop[i]);
fprintf(a,"%f\n",mov[i]);
fprintf(a,"%f\n",movd[i]);
fprintf(a,"%f\n",dev[i]);
fprintf(a,"%f\n",devd[i]);
}                        */

fclose(a);
}

void recall(char *ocp){

FILE *a;
register int i=0;
register int j=0;

/* open file for output*/
if((a=fopen(ocp,"r"))==NULL){
 printf("Read error occured");
 exit(1);
}

/* read net from data file
for(i=0;i<ord;i++){
fscanf(a,"%f\n", &b[i]);
}*/

for(i=0;i<ord;i++){
for(j=0;j<ord;j++){
fscanf(a,"%f\n", &w[i][j]);
fscanf(a,"%f\n", &d[i][j]);
}
}
/*for(i=0;i<ord;i++){
fscanf(a,"%f\n", &op[i]);
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fscanf(a,"%f\n", &dop[i]);
fscanf(a,"%f\n", &mov[i]);
fscanf(a,"%f\n", &movd[i]);
fscanf(a,"%f\n", &dev[i]);
fscanf(a,"%f\n", &devd[i]);
}                         */

fclose(a);
}

void plot(int m, int n,float cp[],int nom){
register int i,j;
char buffer[10];
float tim,tim1;

_setcolor(colf);
_setlogorg(m,n);
_settextcolor(coltn);
_rectangle(_GFILLINTERIOR,0,80,ccc*nom,-80);
_settextposition((n/15-6),(m/11+m/100*3+2));
tim=im*nom/300.;
sprintf(buffer,"%.2f",tim);
_outtext(buffer);
_settextposition((n/15-6),(m/11+m/100*3+27));
tim1=(im+1)*nom/300.;
sprintf(buffer,"%.2f",tim1);
_outtext(buffer);
_settextposition(16,64);
sprintf(buffer,"%d",im+1);
_outtext(buffer);
_setcolor(colln);
_moveto(0,0);
_lineto(ccc*nom,0);
_setcolor(coll);
_moveto(0,0);
for(i=0;i<nom;i++){
j=-80*cp[i];
if(abs(j)>80)j=j/abs(j)*80;
_lineto(ccc*i,j);
_moveto(ccc*i,j);
}

}

void plotv(int m, int n){
register int i,j;
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_setcolor(colf);
_setlogorg(m,n);
_rectangle(_GFILLINTERIOR,0,80,ccc*pmum,-80);
_setcolor(colln);
_moveto(0,0);
_lineto(ccc*pmum,0);
_setcolor(coll);
_moveto(0,0);
}

void plote(int m, int n,int * icp,double y){
register int i,j;

_setlogorg(m,n);
_moveto(icp[0],icp[1]);
_setcolor(coll);
i=icp[0]+5;
if(i>ccc*pmum){
i=0;
_setcolor(colf);
plotv(335,340);
_setcolor(coll);
}
j=-(80.0 * y);
if(abs(j)>80)j=j/abs(j)*80;
_lineto(i,j);
icp[0]=i;
icp[1]=j;

}

void title(){

/*_setcolor(13);
_rectangle(_GFILLINTERIOR,10,10,615,465);*/

_settextposition(15,14);
_settextcolor(colt);
_outtext("(a) input");
_settextposition(3,23);
_outtext("time [s]");
_settextposition(16,23);
_outtext("time [s]");
_settextposition(3,55);
_outtext("time [s]");
_settextposition(16,55);
_outtext("slot no");
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_settextposition(7,5);
_outtext("pu V");
_settextposition(7,38);
_outtext("pu V");
_settextposition(20,5);
_outtext("pu V");
_settextposition(28,14);
_outtext("(b) desired output");
_settextposition(15,46);
_outtext("(c) network output");
_settextposition(28,45);
_outtext("(d) rms error history");
_settextposition(14,71);
_outtext("It #");
_settextcolor(coltn);
_settextposition(4,6);
_outtext("+1");
_settextposition(14,6);
_outtext("-1");
_settextposition(17,6);
_outtext("+1");
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}

void start(int *ms){

FILE *df;

/* open file for input*/
if((df=fopen(mname,"r"))==NULL){
 printf("Read error occured");
 exit(1);
}

fscanf(df,"%15s\n",fname);
fscanf(df,"%15s\n",sname);
fscanf(df,"%15s\n",rname);
fscanf(df,"%15s\n",cname);
fscanf(df,"%15s\n",lname);
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fscanf(df,"%15s\n",ename);
fscanf(df,"%d\n",ms);
fscanf(df,"%f\n",&c1);
fscanf(df,"%f\n",&c2);
fscanf(df,"%f\n",&c3);
fscanf(df,"%f\n",&c4);
fscanf(df,"%f\n",&c5);
fscanf(df,"%f\n",&c6);

fclose(df);
}

void incd(float x[],float y[]){
FILE *cf;
int in=0;

if((cf=fopen(zname,"r"))==NULL){
 printf("Read error occured");
 exit(1);
}

for(in=0;in<ord;in++){
fscanf(cf,"%f\n",&x[in]);
fscanf(cf,"%f\n",&y[in]);
}
fclose(cf);

}

void incsav(float x[],float y[]){

FILE *cf;
int in=0;

if((cf=fopen(zname,"w"))==NULL){
 printf("Read error occured");
 exit(1);
}

for(in=0;in<ord;in++){
fprintf(cf,"%f\n",x[in]);
fprintf(cf,"%f\n",y[in]);
}
fclose(cf);

}

/*void setc(){
register im,jm;
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for(im=0;im<ord;im++){
mov[im]=1.;
movd[im]=1.;
dev[im]=1.;
devd[im]=1.;
}

for(im=0;im<ord;im++){
 for(jm=0;jm<ord;jm++){
mw[im][jm]=1;
md[im][jm]=1;
}
}
mw[3][0]=0;
md[3][0]=0;
}

   */

double func(float x[]){
register int i,j,k;
float yy;

k=0;
nplot++;

for(i=0;i<nnp;i++) xx0[i]=x[i];

for(i=0;i<ord;i++){
 for(j=0;j<ord;j++){
w[i][j]=x[k];
d[i][j]=x[k+ord*ord];
k++;
}
}

rein();
outside(mum);
yy=rmserr(mum);
if(nplot>100){
plot(335,135,top,pmum);
plote(335,340,lpos,yy);
nplot=0;
}
return yy;
}

/*void adjust2(int max,float **mat,int k){
register int i=0,j=0;
double y1=0.;
float tmp=0;
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rein();
outside(mum);
rein();
y=rmserr(mum);
plot(335,135,top,mum);
plote(335,340,lpos,y);
for(i=0;i<max;i++){
 for(j=0;j<max;j++){
if(kbhit())break;
tmp=mat[i][j];
mat[i][j]=mat[i][j]+dw*(err[k]);
outside(mum);
rein();
y1=rmserr(mum);
if(y1>y){
mat[i][j]=tmp;
}
else{ 
y=y1;
}
tmp=mat[i][j];
mat[i][j]=mat[i][j]-dw*(err[k]);
outside(mum);
rein();
y1=rmserr(mum);
if(y1>y){
mat[i][j]=tmp;
}
else{
y=y1;
}
}
}
}
*/

double funk(float x[]){
register int i;
float yy,yt1,yt2;

 nplot++; 

for(i=0;i<ord;i++){
tmop[i]=x[i];
tmdop[i]=x[i+ord];
}
rein();
outside(mum);
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yt1=sqrt(err[0]*err[0]+err[2]*err[2]+err[5]*err[5]);
yt2=rmserr(mum);
yy=c3*yt1+c4*yt2;
 if(nplot>10){ 
plot(335,135,top,pmum);
plote(335,340,lpos,yy);
 nplot=0;
 } 
return yy;
}

void calcdop(register int i, float dt){
dop[i]=/*tanh*/ sin((dop[i]+op[i]*dt));
/*dop[i]=dop[i]+op[i]*dt;*/
}

float calclop(int i){
float a=0.;
register int j;
i=i-1;
/*a=op[i];*/
for(j=0;j<ord;j++){
a=a+ w[i][j]*op[j] + d[i][j] * dop[j] ;
}
a=atan(a);
return a;
}

/* This is a C function modefied from the numerical recipe version, that simulates the Amoeaba
behavior for the simplex method */

#include <math.h>
#define NRANSI
#include "nrutil.h"
#define NMAX 5000
#define ftol 1e-6 
#define GET_PSUM \

for (j=0;j<ndim;j++) {\
for (sum=0.0,i=0;i<mpts;i++) sum += p[i][j];\
psum[j]=sum;}

#define SWAP(a,b) {swap=(a);(a)=(b);(b)=swap;}

void amoeba(float **p, float *y, int ndim,
double (*funk)(float []), int *nfunk,float *psum,float *ptry)

{
double amotry(float **p, float *y, float *psum, int ndim,

double (*funk)(float []), int ihi, float fac,float *ptry);
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int i,ihi,ilo,inhi,j,mpts=ndim+1;
float rtol,sum,swap,ysave,ytry/* ,*psum */;

/*      psum=vector((long int)0,(long int)ndim-1);*/
*nfunk=0;

/*        printf("xx %f",ftol);*/
GET_PSUM
for (;;) {

ilo=0;
ihi = y[0]>y[1] ? (inhi=1,0) : (inhi=0,1);
for (i=0;i<mpts;i++) {

if (y[i] <= y[ilo]) ilo=i;
if (y[i] > y[ihi]) {

inhi=ihi;
ihi=i;

} else if (y[i] > y[inhi] && i != ihi) inhi=i;
}
rtol=2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+fabs(y[ilo]));
if (rtol < ftol) {

SWAP(y[0],y[ilo])
for (i=0;i<ndim;i++) SWAP(p[0][i],p[ilo][i])
break;

}
if (*nfunk >= NMAX) return;
*nfunk += 2;
ytry=amotry(p,y,psum,ndim,funk,ihi,-1.0,ptry);

       /* printf("%f", ytry);*/
if (ytry <= y[ilo])

ytry=amotry(p,y,psum,ndim,funk,ihi,2.0,ptry);
else if (ytry >= y[inhi]) {

ysave=y[ihi];
ytry=amotry(p,y,psum,ndim,funk,ihi,0.5,ptry);
if (ytry >= ysave) {

for (i=0;i<mpts;i++) {
if (i != ilo) {

for (j=0;j<ndim;j++)
p[i][j]=psum[j]=0.5*(p[i][j]+p[ilo][j]);

y[i]=(*funk)(psum);
}

}
*nfunk += ndim;
GET_PSUM

}
} else --(*nfunk);

}
/*      free_vector(psum,(long int)0,(long int)ndim-1);*/
}
#undef SWAP
#undef GET_PSUM
#undef NMAX
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#undef NRANSI
/* (C) Copr. 1986-92 Numerical Recipes Software D0>4^c1&.5#Z>K'VIkaz. */

/* This is a C function modefied from the numerical recipe version, to test the different vertices for the
simplex */

#define NRANSI
#include "nrutil.h"

double amotry(float **p, float y[], float psum[], int ndim,
double(*funk)(float []), int ihi, float fac,float ptry[])

{
int j;
float fac1,fac2,ytry;

fac1=(1.0-fac)/ndim;
fac2=fac1-fac;
for (j=0;j<ndim;j++) ptry[j]=psum[j]*fac1-p[ihi][j]*fac2;

      /* printf("%f",ptry[j]);*/
ytry=(*funk)(ptry);
if (ytry < y[ihi]) {

y[ihi]=ytry;
for (j=0;j<ndim;j++) {

psum[j] += ptry[j]-p[ihi][j];
p[ihi][j]=ptry[j];

}
}

return ytry;
}
#undef NRANSI
/* (C) Copr. 1986-92 Numerical Recipes Software D0>4^c1&.5#Z>K'VIkaz. */

// A data file that have data file names information and training constants should be created 
// as follows

tbfb.dat // training input binary data file name
tbfdb.dat // training desired output binary data file name
tbfb.dat // recall input binary data file name
tbfdb.dat // recal desired output binary data file name
out.dat // actual output data file name
err.dat // the rms error data file name
11 // no of slots for training or recall
1.0 // one of the error computing coefficients
0.09 // one of the error computing coefficients 
1.07 // one of the error computing coefficients 
0.8 // one of the error computing coefficients 
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.4 // one of the error computing coefficients 

.3 // one of the error computing coefficients

// note that the numerical recipes library file NRUTIL.C should be included in the C program project
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ABSTRACT:
Chaotic systems are known for their unpredictability due to their
sensitive dependence on initial conditions. When only time series
measurements from such systems are available, neural network
based models are preferred due to their simplicity, availability, and
robustness. However, the type of neural network used should be
capable of modeling the highly non-linear behavior and the multi-
attractor nature of such systems. In this paper we use a special type
of recurrent neural network called the "Dynamic System Imitator
(DSI)", that has been proven to be capable of modeling very
complex dynamic behaviors. The DSI is a fully recurrent neural
network that is specially designed to model a wide variety of
dynamic systems. The prediction method presented in this paper is
based upon predicting one step ahead in the time series, and using
that predicted value to iteratively predict the following steps. This
method was applied to chaotic time series generated from the
logistic, Henon, and the cubic equations, in addition to
experimental pressure drop time series measured from a Fluidized
Bed Reactor (FBR), which is known to exhibit chaotic behavior.
The time behavior and state space attractor of the actual and
network synthetic chaotic time series were analyzed and compared.
The correlation dimension and the Kolmogorov entropy for both
the original and network synthetic data were computed. They were
found to resemble each other, confirming the success of  the DSI
based chaotic system modeling.

INTRODUCTION

Chaotic systems are known for their unpredictability, due to their sensitive
dependence on initial conditions which is measured by positive Lyapunov exponents.
1 In other words, even when the exact model of a chaotic system is available, it is
impossible to predict a chaotic system behavior for a long period of time. 2,3 The
reason is that our measurements and calculations are never perfect and are
susceptible to errors. Similar errors contribute to the non-exact determination of
initial conditions. Any minute error in the initial conditions for a chaotic system will



turn, with time, into great differences in the results. However, short term predictions
of chaotic systems are still possible. 2,4 How short the time duration is for valid
prediction depends on the system average loss of information represented by its
Lyapunov exponents and Kolmogorov entropy. Some systems are less predictable
than others due to faster loss of information with time, represented by larger positive
Lyapunov exponents and larger positive Kolmogorov entropy. Since exact
predictions are not possible for such systems, approximate models may produce
results as satisfactory as those produced by exact models. This makes neural network
based models very good candidates for such applications. Neural network based
models are known not to be exact models, but they are easy to implement, robust,
fast and data driven. Dynamic neural network models are preferable for such
applications, due to their ability to capture time behaviors. 5

In this work we used a special type of dynamic neural network called the
Dynamic System Imitator (DSI). 6 We developed the DSI a few years ago and have
used it for several modeling and control applications. 6,7,8 The DSI is biologically
motivated and is specially designed to model a wide variety of dynamic systems. It
has both short term and long term memory mechanisms that enable the modeling of a
system's transient and steady state behavior. In addition, the DSI behavior depends
on its initial conditions the same as any differential equation model does, even though
no explicit differential equation solving is incorporated in this case. What we know of
the DSI characteristics encourages us to recommend it for modeling non-linear
systems in general and chaotic systems in particular. More details about the DSI will
be discussed below. Since the dynamics of most real systems are accessed via time
series measurements, the focus in this paper will be on modeling chaotic time series.
The way the chaotic time series model is implemented in this paper is through a one
step predictor model. The dynamics of a chaotic time series are modeled through
training the DSI to perform a one step prediction. However, at any point of time, the
DSI response depends on the initial conditions at time zero, the history of inputs and
network state variables, and the current network input. Assuming the network was
able to capture the dynamics in the time series, we can start the trained network with
any set of initial conditions, use a number of initial data points to put the network on
track, and iteratively feed the output of the network back to compute next predicted
values. Even though we applied this methodology to several theoretical systems, the
current motive is to use it in a strategy to identify certain chaotic behavior modes
encountered in a Fluidized Bed Reactor (FBR) system. 9 This identification can be
achieved by comparing the actual measurement from the chaotic system with the time
series predicted by the DSI iterative predictor model, starting from a short time
history of the actual data. In this paper, results from the DSI iterative predictor are
discussed for chaotic time series generated using the logistic, Henon and the cubic
equations, in addition to one experimental time series measured from the FBR
experiment at the Morgantown Energy Technology Center. 9 The DSI network
model was evaluated based on comparison made on the time series, phase space
trajectories, and chaotic parameters computed from these trajectories. However, in
this case, time series similarities are not as important as similar phase space
trajectories and similar chaotic parameters. 5 The actual combination of DSI iterative
predictor and FBR system is published in other domains. 9

THE DYNAMIC SYSTEM IMITATOR (DSI) NEURAL NETWORK



The neural network used for the chaotic time series prediction in this paper is a
dynamic neural network called Dynamic System Imitator (DSI). The DSI is a fully
recurrent neural network that is specially designed to model a wide variety of
dynamic systems. 6,7 As shown in Figure.1, the DSI has a three layer structure: input,
hidden, and output layer. Connections have both weights and integrators in parallel
to model short term and long term memory mechanisms that handle modeling of time
behaviors and time lags in real systems. Every node in the input layer has one input,
xk(t), and two outputs defined by: 6
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The input layer is fully connected to the hidden and output layers. Every node in the
hidden layer is connected to every other node in the hidden and output layers and to
itself. The two outputs of every neuron are computed according to the relationship: 6
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where ψj is a nonlinear transformation function, and Aj, Bj, Cj, and Dj are adjustable
weights associated with the hidden neuron j, which are used to shape the transfer
function for every node. B and D are used to adjust the steepness of the function,
while A and C are used to adjust its min-max value. Also m and n are the number of
processing nodes in the input and hidden layers respectively; w1 and w2 refer to
weights associated with direct and delayed outputs, respectively. The superscript h
refers to the hidden layer, i refers to the input layer, hi refers to weights from the
input to hidden layer, and hh refers to weights from the hidden to hidden layer. The
integrators and feedback connections promote enough asynchrony and interaction in
the network to model several system state variables as a function of time. When
enough intermediate state variables are generated, the network output can be a
function of those state variables. The output layer has only one output per node,
which is computed according to the following equation: 6
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Figure 1: Schematic diagram of the Dynamic System Imitator (DSI) Network.

where m and n are the number of nodes in the input and hidden layers respectively,
and Ej and Fj are two constants associated with each node in the output layer to
shape its own transfer function when needed. The superscript o refers to the output
layer, i refers to the input layer, h refers to the hidden layer, oi refers to weights from
the input to output layer, and oh refers to weights from the hidden to output layer.

By looking at the complete DSI network design, it is easy to observe that the
node interaction, information feedback, and action transfer time lags generate an
activity in the network that is similar to the internal activity in real dynamic systems.
Even with a simple configuration, the DSI has a complex structure, which makes it
very difficult to train. A multi-dimensional optimization technique that adopts the
simplex method is used to train the DSI. 6 There are two other difficulties in the
training of such a network. One is that a very long time series cannot be introduced
to the network at one time and must be divided into reasonably sized sections. The
other is that the behavior of the network is dependent on the initial conditions of its
state variables, and a certain set of initial conditions has to be found in conjunction
with every network design. In other words, whenever the network is updated, a new
set of initial conditions must be found. The first problem was overcome by using a
moving time window that cascades the introduction of the time series segments to
the network during training. The network final conditions at the final training step of
every segment is taken as the initial conditions for the next segment, to keep the
physical association between the consequent segments of the time series. The second



problem was overcome by adding initial conditions search method that runs after
every training iterate to find updated initial conditions for every modified version of
the network. An arbitrary set of initial conditions can be used at the start of the
training process.

FLUIDIZED BED REACTOR (FBR) PRESSURE DATA COLLECTION

Morgantown Energy Technology Center has built and operated a cold flow model to
emulate fluid dynamics in a Fluidized Bed Reactor (FBR). The cold flow verification
test facility consists of a ten foot high jetting fluidized bed made of clear acrylic and
configured as a half cylinder vessel to facilitate jet observation. A central nozzle,
made up of concentric pipes, continuously fed solids at 0 to 8 psig pressures.
Separate flow loops controlled the conveyance of solids (inner pipe), the make-up air
flow (middle pipe), sparger flow (outer pipe), and six air jets on the sloping conical
grid. The half round fluid bed model provided useful information to study fluidization
and design issues including jet penetration, chaotic pressure fluctuations, and mass
flow rates of particles in various regions of the jetting fluid bed. The fluid bed tests
were conducted using cork particles to simulate the relative density of gases to scale
for a high pressure coal conversion reactor. As expected, the test generated chaotic
pressure fluctuations. The differential pressures were measured at two location with
each location consisting of two pressure taps spaced four inches apart. The lower
pair of pressure taps were placed at a height just above the nozzle and the upper pair
of pressure taps were placed at a height where the jet becomes evenly distributed
across the diameter of the reactor. Differential pressure data collected at the higher
sensor served as the primary data for the investigation of chaos. It clearly indicated
the fluidization regime of the bed supported by visual observations. Data were
collected on a data acquisition card at a rate of 50 Hz.

USING THE DSI FOR ITERATIVE PREDICTION OF CHAOTIC TIME
SERIES

A simple configuration of  the DSI neural network was used for the iterative
prediction of a chaotic time series. This configuration has one node in the input layer,
three nodes in the hidden layer, and one node in the output layer. The network was
trained to predict one point ahead of the time series, using a set of previous values.
These values are not explicitly used for prediction, but are implicitly used by
adjusting the state of the network from which the prediction is performed. The
prediction method is based upon the idea that once the network is trained to predict
one point ahead with good accuracy, this same point can be used as an input to the
network to predict the next point. This process can be repeated iteratively to predict
many points in the time series. Naturally, the accuracy of prediction will deteriorate
over time. During training, a time window of 200 points was used to cascade the
time series to the network. The algorithm was applied to three types of simulated
chaotic time series generated from the logistic, Henon, and cubic equations, in
addition to one experimental time series measurement taken from a Fluidized Bed
Reactor (FBR). FBR systems are known for their chaotic behavior, as discussed in
several references. 9,10,11,12 The network was able to learn simple one step prediction
in a reasonable number of training iterations. After training, the output of the DSI



was used iteratively to generate the time series. However, the training initial
conditions together with the first actual 25 points of the training time series should be
used to start the DSI, in case the time behavior of the training time series must be
generated. If not, any network initial conditions and any starting points can be used
to generate the state space behavior of the system to which the training time series
belongs.

Comparing the predicted time series to the actual time series, we found that the
DSI was able to track the training time series time behavior for a short period of time
(around 30 points), when started from the training initial conditions , and activated by
the first 25 points of the training time series. However, it was able to track the state
space attractor to which the training time series belongs, starting from any initial
conditions, activated by any arbitrary set of starting points. The only case that fails is
zero initial conditions together with zero starting points, which leads to zero solution
The actual and predicted time series for all cases are shown in Figures 2-9, while the
actual and predicted state space attractors are shown in Figures 10-17. To
quantitatively compare these attractors, the correlation dimension and Kolmogorov
entropy for the actual and predicted attractors were computed. The results of the
correlation dimension and Kolmogorov entropy of the different cases are summarized
in Table.1. The correlation dimension is computed, according to the box-counting
method, from the slope of the lines representing the correlation integral versus ε (the
size of a computing box) on log-log curves for different embedding dimensions. The
correlation integral was computed according to the following equation: 13
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where θ(x)=1 for x>0 and  θ(x)=0 for x<0. The Kolmogorov entropy was computed
according to the equation: 14
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Figure 2: Actual logistic time series.
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Figure 3:  Synthetic logistic time series.



0 200 400 600 800 1000
-1.5

-1

-0.5

0

0.5

1

1.5

TIME

Xn

Figure 4: Actual Henon time series.
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Figure 5: Synthetic Henon time series.
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Figure 6: Actual cubic time series.
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Figure 7: Synthetic cubic time series.
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Figure 9: Synthetic normal FBC time
series.
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Figure 10: Actual logistic attractor.
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Figure 11: Synthetic logistic attractor.
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Figure 12: Actual Henon time
attractor.
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Figure 13: Synthetic Henon attractor.
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Figure 14: Actual cubic attractor.
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Figure 15: Synthetic cubic attractor.



-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2
0

0.2

0.4

0.6

0.8

1

Xn

Xn+1

Figure 16: Actual normal FBC
attractor.
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Figure 17: Synthetic normal FBC
attractor.

TABLE 1: COMPARISON OF THE ACTUAL AND DSI SYNTHETIC
ATTRACTORS PARAMETERS

Time Series Correlation Dimension Kolmogorov Entropy
Logistic Map (actual) 1.0457±0.0057 0.6872±0.0198
Logistic map (synthetic) 1.2316±0.0374 0.6013±0.0435
Henon Map (actual) 1.2607±0.0331 0.3267±0.0135
Henon map (synthetic) 1.3171±0.0725 0.2962±0.0239
Cubic Map (actual) 1.2248±0.0090 0.4245±0.0183
Cubic Map (synthetic) 1.8171±0.01365 0.5340±0.0134
FBC normal (actual) 2.934±.065 5.034±.095
FBC normal (synthetic) 2.12±.07 6.3764±1.26

CONCLUSION

In this paper a dynamic neural network based model for chaotic time series has been
developed. A one step predictor model was used to iteratively generate chaotic time
series. A dynamic neural network called the Dynamic system Imitator (DSI) was
utilized. The DSI has distinguishable dynamic features due to its special architecture.
The DSI time behavior depends on its initial conditions. After training, the DSI was
able to generate the chaotic time series in all test cases. For a short period of time, it
was able to generate the same time behavior of the training time series if started with
the same initial conditions and the first initial points of the time series. Furthermore, it
was able to track the system attractor to which the training time series belongs, for
any period of time, for any initial conditions and any initial points, in all test cases.
The only case that fails is the zero initial conditions together with zero starting
points, which leads to a zero solution. This methodology was applied to three known
chaotic models, the logistic, Henon and cubic maps, in addition to one experimental
time series taken from differential pressure measurement of a Fluidized Bed Reactor
(FBR). The correlation dimension and the Kolmogorov entropy for the actual and
DSI network synthetic data were computed and compared. There is a very good
match between the actual and synthetic time series parameters in all cases which



indicates that the DSI was able to learn the dynamics in those chaotic time series to a
very good extent.
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Abstract

The sensitivity to initial conditions and orbit complexity
which characterize chaotic systems give them a great
flexibility to control as compared to non-chaotic systems.
The motion of  chaotic dynamical systems can be
converted to periodic motion through small time-
dependent perturbations, which is a technique developed
by Edward Ott, Celso Grebogi, and James York  in 1990,
known as the OGY technique. In this paper, a systematic
way to compute the OGY control parameters from a
chaotic time series is discussed. It is shown how to use
autoregressive modeling to estimate the linear map that
describes the system iterative behavior around a fixed
point, which is essential for the OGY technique. It is also
explained how to experimentally compute the rate of
change of a fixed point with respect to a control
parameter. And the procedure to be followed according to
the order of the controlled periodic orbit is presented.
Finally, it is  demonstrated how these techniques can be
applied to control the chaotic behavior of some typical
chaotic systems, such as the logistic and Henon maps, to
any periodic orbit.

Introduction

Chaotic systems are known for their unpredictability.
Thus, they were mistaken in the past with random
systems. It was found later on that chaotic systems are
driven by deterministic phenomena, and their
unpredictable behavior is due to their sensitive
dependence on initial conditions [1]. The presence of
chaos may be a great advantage for control in some
situations [3]. In non-chaotic systems small control force
will change the system dynamics slightly. On the other
hand, in chaotic systems small control force can cause a

large change in the system behavior. Also, a wide choice
between a rich variety of  dynamical behavior is
possible[3]. Based on this observation, several chaotic
system control methods have been developed [1-7]. Small
perturbation control of chaotic systems is a technique
developed by Edward Ott, Celso Grebogi, and James
York  in 1990, known as the OGY technique [4]. In this
technique, the chaotic system motion can be stabilized to
one of its naturally unstable periodic orbits. This can be
achieved by applying time-dependent small pre-
calculated perturbations to a system parameter. These
control perturbations are applied only when the system
behavior  comes to a vicinity of the fixed point
corresponding to the periodic orbit to be stabilized. The
first step in the OGY technique  is to map the system
behavior to a chosen surface of section such that the
periodic orbit to be stabilized appears as a fixed point.
Second, the stable and unstable manifolds at this fixed
point are computed from the eigenvalues and the
corresponding eigenvectores of the linear map that
describes the system behavior around the fixed point. The
rate of change of the fixed point with respect to the
control parameter is also computed. We wait for the
system to come in the vicinity of the fixed point and then
apply a small perturbation such that the system’s next
iterate falls on the stable manifold of the fixed point. In
theory , once the system is on the stable manifold, its
iterates will move toward the fixed point by  natural
forces. For the OGY method to be implemented, a linear
map that describes the system behavior around the fixed
point to be controlled is essential. This linear map can be
estimated from time series measurements from the
system. No exact model for the system is needed, which
makes it possible for this method to be implemented in a
wide range of problems [8-11]. In this paper, we present
a systematic way to compute the OGY control parameters
from a chaotic time series. We show how to use



autoregressive modeling to estimate the linear map that
describes the system iterative behavior around a fixed
point. We also explain how to experimentally compute
the rate of change of a fixed point with respect to a
control parameter. And how to modify the algorithm
according to the order of the periodic orbit to be
controlled. Finally, we  demonstrate how these
techniques can be applied to control the chaotic behavior
of some typical chaotic systems, such as the logistic and
Henon maps, to any periodic orbit.

The OGY Technique

The OGY method is a technique to stabilize the chaotic
behavior in an n-dimensional chaotic system to one of its
naturally unstable periodic orbits. First, the system
behavior has to be mapped on a chosen surface of section
or a return map, in order to observe the system dynamics
as a sequence of points on a two dimensional map. Let

ζ ζ ζ ζ1, , ,........  2 3 n denote the coordinates in the

surface of section at the n’th piercing of the surface of
section. Suppose the iterates are represented by

ζ ζn nf p+ =1 ( , )
(1)
where P is some accessible system parameter

Then, we examine the unstable periodic orbits and select
the one to be used for control, and obtain its stability
properties. For purposes of simplicity, let us assume that
a first order return map is constructed from a one
dimensional time series x1, , x  ........,  x2 n , then the

two dimensional iterates ζn will be defined as:

ζ n
n

n

x

x
=











+1

(2)
From this map a fixed point or a periodic orbit will be
selected and examined. A fixed point is defined as
x xn n+ =1 , while a period k orbit is defined as

x xn k n+ = . The period k orbit, as an example, will

appear as k distinct points on the first return map, while
it will appear as a fixed point on the k-order return map.
We will always need to select the appropriate return map
order that shows the controlled periodic orbit as a fixed
point

ζ F

F

F

x

x
=











(3)
The OGY technique assumes that there is an acceptable
maximum perturbation δp m in the system control

parameter P. It is also assumed that the position of the
periodic orbit is a function of P, while the local dynamics
around this periodic orbit do not vary much when the
parameter P is changed within the allowable perturbation
[5].
In order to examine the stability of the selected periodic
orbit we need to perform the following computations:
1. We find the linear approximation of the map f
around the selected fixed point, as shown in the
following equation:

ζ ζ ζ ζn F n FM+ − = −1 ( )
(4)

where M is a two dimensional matrix.

2. Let λ λs u and  be the experimentally determined

stable and unstable eigenvalues of the matrix M,
respectively, and ( , )e s  e u   are the corresponding stable

and unstable eigenvectors. The eigenvectors e s  and  e u

represent the stable and unstable directions of the map
around the selected fixed point, and are used to compute
the unstable contravariant eigenvector according to the
relationships f eu u. = 1and f eu s. = 0 [4].

3. The rate of change of the selected fixed point with
respect to the system control parameter P is computed as:

g
p p

F F= ≈
∂ζ
∂

∆ζ
∆

(5)
4. Given the maximum allowable perturbation in the
control parameter δp m , we can compute the maximum

effective control distance around the fixed point as:

δζ
λ

λ
δm

u

u
m up g f=

−
( ) . )

1
  (

(6)
Knowing the parameters computed above, we can
compute the necessary control force at iterate n as:

δ ζ ζp C fn F u= −( ).
(7)

where     C g fu

u
u=

−
−( ) ( . )

λ
λ 1

1 

(8)



The perturbation δp  is the control action necessary to

put the system's next iterate on the stable manifold of the
fixed point. Then in the following iterates should move
toward the fixed point with the system's natural forces.
However, to adjust for noise and computation
inaccuracies, we need to calculate a correcting control
force δp at the end of every period.

Methodology

In this section, we present the details of our approach to
compute the OGY parameters and control action from
chaotic time series measurements. The procedure is
summarized in the following steps:
Step 1. Determination of the System Periodic Orbits and
Fixed Points
Starting from a time series measurement at a nominal
value of the control parameter P0, we need to localize the
periodic orbits embedded in the system. Actually, we will
be interested in only one of these orbits with the targeted
period. All periodic orbits embedded in a chaotic system
are unstable orbits. This means that the system will visit
those orbits briefly at certain instances. We need to catch
this brief periodic behavior of the system, localize it, and
determine its behavior, in order to compute the control
actions needed to stabilize it. The time series
measurements can be easily arranged in a two column
matrix defined as:

X

x x

x x

x x

k

k

n k n
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+

+

−

1 1

2 2

. .

. .

                                    (9)

where n is the total number of data points in the time
series, and k is the period of the targeted orbit. Any two
points on the same row of the matrix X are separated by
k number of points. If a pair of points x n  and xn k+ on

the time series are equal, then any of the periods k, k/2,
k/3.....or k/k=1 is localized. Any of these periods, if exist,
will appear as a fixed point on the k-order return map
( xn n k vs.  x + ). If the target period k exists, any point on

it visited by the system for a complete cycle in the

measured interval will appear as a distinct fixed point on
the k-order return map. If all k orbital points were
visited, they will appear as k distinct fixed points on the
k-order return map. We compute the absolute value of the
difference of the two columns of the matrix X that comes
to a vector of n-k values. We search this vector for any
value less than a minute tolerance ε. Any of the values
passing the selection criteria will mark one fixed point on
the k-order return map. After marking a fixed point on a
specific row, we need to go back and unfold all points
between xn and xn+k at the marked row. If points xn ...xn+k-

1 are all distinct, then this is one period k orbit, and the
corresponding fixed point on the k-order return map is a
point of interest to the current control task. Any of the k
fixed points belonging to the orbit

( , ,......, )ζ ζ ζ01 02 0k can be used to control the system.

Step 2. Computing the Rate of Change of the Fixed Point
with Respect to the Control Parameter
New measurements from the system need to be recorded
at values of the control parameter p p0 ± δ . For every

measurement we need to recalculate the location of the
period k fixed points on the k-order return map

( , ,......, )ζ ζ ζm m mk1 2 , using the method on step 1. In

case we have decided to use the fixed point ζ0 j to control

the system, the change in its position will be

δζ ζ ζi ij j= − 0 , and the rate of change of that fixed

point will be computed as g
pi

i

i

=
δζ
δ

, where

δp p pi i= − 0 . We repeat the computation for the

available measurements (0, 1, . . . ., m) and average them
to get the value of g to be used.
Step 3. Estimating the Linear Approximation for the
Map f around a Fixed Point
As shown in equation 1 the map f correlates the
consecutive points on a two dimensional map. To apply
the OGY method, we need a linear estimate of that map
around the fixed point used to control the system. This
means we need to estimate the two dimensional matrix
that maps the consecutive points in a close vicinity of the
fixed point. Equation 4 can be expanded as:
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(10)
From the second row equality of this equation, we can
easily infer that m21 221 0= =,  and m . On the other

hand the first row equality is:



x x m x x m x xn F n F n F+ +− = − + −2 11 1 12( ) ( )      (11)

This equation means that the difference between an
iterate and the fixed point can be obtained from the
difference of the two previous iterates to the fixed point.
We can consider this equation as an autoregressive model
for the iterates, and use the least squares method to
estimate the parameters of that model. From the matrix X
in equation 9, in which every row represents an iterate on
the two dimensional k-order return map, we collect all

pairs of points ζ ζn n and +1  that are in a close vicinity

to the fixed point. In other words, we collect the pairs
that lie inside a small pre-defined circle around the fixed
point. According to the least squares estimate of the
autoregressive model, we can estimate the m11 and m12

elements of the matrix M as:
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where N is the number of pairs and D-1 is given by
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Step 4 . Finding the OGY Parameters
We compute the eigenvalues and the corresponding
eigenvectors of the matrix M. Assume that λ s  and

λ u are the experimentally determined stable and

unstable eigenvalues, respectively, and e s and e u are the

corresponding eigenvectors. The eigenvectors e s  and

e u  represent the stable and unstable directions around

the fixed point. From the eigenvectors  e s  and e u   we

compute the unstable contravariant eigenvector according
to the relationships f eu u. = 1and f eu s. = 0 [4].

Hence, the maximum allowable distance for control
around the fixed point can be computed according to
equation 6 as:

δζ
λ

λ
δm

u

u
m up g f=

−
( ) . )

1
  (

and the necessary control perturbation for the n’th iterate
can be computed by equation 7 as:

δ ζ ζp C fn F u= −( ).

 where C g fu

u
u=

−
−( ) ( . )

λ
λ 1

1 

The way the OGY control method is applied, is to wait
for the system until an iterate falls into a circle with a

radius δζ m  around the fixed point, then apply the

perturbation p p p= +0 δ . Then, we wait k iterates and

check if the system falls back within the radius δζ m

around the fixed point. If it does, we measure the
distance between that iterate and the fixed point, re-
estimate the control force and reapply the necessary
control action. These time dependent kicks will stabilize
the system around the selected periodic orbit.

Results and Discussion

The control procedure discussed above was applied to
control the chaotic behavior in two typical chaotic
systems, the logistic map defined as:
x x xn n n+ = −1 1λ( )
(13)
and the Henon map defined as:

x x yn n n+ = − +1
21 α

(14)
y xn n+ =1 β
The chaotic behavior in the two systems was stabilized to
several periodic orbits. Figure 1 shows the results of
applying and then removing the control on the logistic
map ( λ = 3 825. ) to stabilize it to a period-1 orbit. The
computed parameters for this case are as follows:
xF = 0 738504.

g = 





0 059

0 059

.

.

M =
−





18252 0 0001

1 0

. .

λ u = -1.8253

λ s = 4.3315e - 005

fu = 





-1.1402143

 0.0000493

C = −9 6.



δζm = 0 01822.
The control was applied at the iterate 500 and then
removed at the iterate 2500. We notice that the effect of
the controller did not appear right after it was applied,
the reason is that we have to wait for the system iterates
to fall within the vicinity of the fixed point to be
stabilized before we actually apply the control kicks. It is
also clear that once the control was removed the chaotic
behavior has returned. This is due to noise and
inaccuracies in the computation as mentioned above. In
addition, the system actually needs an infinite time until
it becomes exactly on the periodic orbit. In theory, once it
is there the iterates should stay on the orbit unless
perturbed. Figure 2 shows the control action applied as a
function of time. It is clear that after few iterates from the
control start, the kicks necessary to keep the system
stabilized at that orbit are very small, which makes this
control algorithm very inexpensive and easy to
implement in many practical systems. Figures 3 and 4
show how the OGY method was used to stabilize the
logistic map to period-2 and period-5 respectively. Also,
figures 5 and 6 show how it was used to stabilize the
Henon map to period-1 and period-2 respectively.
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Figure 1 logistic map control to fixed point
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Figure 2. The control perturbations necessary to
achieve the control shown in Figure 1.

End ControlStart Control

Number of Iterations

Xn

Figure 3. Controlling the logistic map to period two.
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Figure 4. Controlling the logistic map to period five.
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Figure 5. Controlling the Henon map to period one
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Figure 6. Controlling the Henon map to period two

Conclusions

In this paper, we have presented a systematic way to
compute the parameters of the OGY technique from time
series measurements, and to implement this method to
control the chaotic behavior in a chaotic system, and
stabilize it into one of its naturally unstable periodic
orbits. We have developed a technique to compute the
linear map that describes the system behavior on a two
dimensional map around a fixed point, which is essential
to the OGY method, using autoregressive modeling. We
have shown a detailed procedure to localize and separate
a naturally unstable periodic orbit in a chaotic time
series. We have also explained how to experimentally
compute the rate of change of the fixed point
corresponding to the periodic orbit to be controlled with

respect to a control parameter. Finally, we have applied
the techniques developed in this paper to control the
chaotic behavior in some typical chaotic systems, such as
the logistic and the Henon maps, and stabilize it to one of
its naturally unstable periodic orbits. Stabilizing such
chaotic systems to several example periods are presented.
In the control method described, we have to wait for the
system until its iterates fall into a close vicinity of the
fixed point corresponding to the orbit to be stabilized,
and then apply time dependent sequence of kicks that
stabilizes the system on that naturally unstable orbit.
From the results summarized above, it is clear that the
control actions necessary to stabilize the system become
very small and almost negligible after few iterates from
the start of the control, which makes this method very
inexpensive, and easy to implement in many practical
systems. However, the control kicks has to be maintained
or control will be lost, and the system behavior will go
back to its naturally chaotic behavior.
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ABSTRACT

Coal-fired power plants are very important source for electric power generation in the United States and
worldwide. This is because Coal is abundant and inexpensive compared to oil and gas. However, greater
use of coal is constrained by the difficulties of solid fuel use and of cleanup of combustion products
containing ash and gaseous pollutants. Results of innovative research can expand coal utilization by
making it more convenient to handle and by increasing its reliability to that of liquid and gaseous fuels.
Direct utilization of coal fluidized combustion is of interest because of potential cost savings and improved
environmental performance. Thus, pressurized fluidized-bed combustors (FBC) are becoming very popular,
efficient, and environmentally acceptable replica for conventional boilers in Coal-fired and chemical plants.
In this paper, we present neural network-based methods for chaotic behavior monitoring and control in
FBC systems, in addition to chaos analysis of FBC data, in order to localize chaotic modes in them. Both
of the normal and abnormal mixing processes in FBC systems are known to undergo chaotic behavior.
Even though, this type of behavior is not always undesirable, it is a challenge to most types of conventional
control methods, due to its unpredictable nature. The performance, reliability, availability and operating
cost of an FBC system will be significantly improved, if an appropriate control method is available to
control its abnormal operation and switch it to normal when exists. Since this abnormal operation develops
only at certain times due to a sequence of transient behavior, then an appropriate abnormal behavior
monitoring method is also necessary. Those methods has to be fast enough for on-line operation, such that
the control methods would be applied before the system reaches a non-return point in its transients. It was
found that both normal and abnormal behavior of FBC systems are chaotic. However, the abnormal
behavior has a higher order chaos. Hence, the appropriate control system should be capable of switching
the system behavior from its high order chaos condition to low order chaos. It is to mention that most
conventional chaos control methods are designed to switch a chaotic behavior to a periodic orbit. Since this
is not the goal for the FBC case, further developments are needed. We propose neural network-based
control methods which are known for their flexibility and capability to control both non-linear and chaotic
systems. A special type of recurrent neural network, known as Dynamic System Imitator (DSI), will be
used for the monitoring and control purposes.

INTRODUCTION

Coal fired power plants are important source of electric power in the united states and all around the globe.
Due to the large amounts of coal reserve around the world, it is expected that coal will stay as one of the
main sources of power for many decades to come. Improving the efficiency, performance, and safety of
such power plants, and minimizing toxic pollutants coming from their stacks, will make them more
economically and environmentally acceptable options.

In the recent years, attention was given to a new type of energy conversion device, a critical
component of any coal fired plant. This new type of energy conversion system is known as a Fluidized Bed
Combustor (FBC). In such a system, the direct utilization of the coal fuel enhances the energy conversion



process and reduces the energy losses as compared to conventional energy conversion systems.
Considerable efforts are being made to further improve the design and performance of FBC systems.

In this paper, we introduce a neural network-based system to monitor and control an undesirable
abnormal behavior observed in FBC systems. In addition, to chaos analysis to both of the normal and
abnormal behaviors. Such abnormal behavior may lead to inefficient performance, interrupted operation, or
poor fuel utilization in an FBC system. Previous research show that both of the normal and abnormal
behavior in FBC systems are chaotic.[1-4] A type of behavior known of its unpredictability, which makes it a
challenge to any conventional monitoring or control method. This makes artificial intelligence methods a
potential option due to their known abilities to deal with non-linearity, multidimensionality, and noise.
Furthermore, the learning ability of neural systems will simplify the design process and will lead to more
general and adaptive solutions.

Scientists in many fields often encounter systems that exhibit chaotic time evolution.[5] Chaos is
abundant both in nature and man-made devices, to an extent that many scientists believe that it is the rule
rather than the exception.[6] The chaotic behavior is known to be unpredictable, which may be unsafe to the
operation of many devices, and make it unwelcome in many situations. On occasion, chaos is a beneficial
feature as it enhances mixing and chemical reactions and provides a vigorous mechanism for transporting
heat and/or mass. However, in many other situations, chaos is undesirable phenomena which may lead to
vibrations, irregular operation, fatigue failure in mechanical systems, temperature oscillations which may
exceed safe operational conditions in thermal systems, and increasing drag in flow systems.[6]

Chaotic motion has been regarded for many years as a troublesome property that is neither predictable
nor controllable. Recently researchers have realized that chaos can actually be advantageous in many
situations, and when it is unavoidably present, it can often be controlled to obtain desired results.[5,7] In
1990, Ott, Grebogi, and Yorke (OGY) demonstrated that one can convert the motion of a chaotic
dynamical system to periodic motion by controlling one of the system’s many unstable periodic orbits
embedded in the chaotic attractor, through only small time-dependent perturbations in an accessible system
parameter.[8-14] Ott and Spano [5], stated that if chaos control is practical in a system, then the presence of
chaos can be an advantage. Any one of a number of different unstable orbits, in a chaotic system, can be
stabilized, and one can select the orbit that gives the best system performance. Thus we have the flexibility
of actually switching the system behavior by stabilizing another periodic orbit. On the other hand, if the
system is actually stable and periodic, we can use control to only slightly change its performance, and we
do not have similar flexibility to what is available in a chaotic system. Hence, we may even sometimes wish
to build chaos into a system where it is naturally absent.

In this paper, we present a method where a recurrent type of neural network can be used to control the
chaotic behavior in a chaotic system. We suggest to use this method to switch the abnormal chaotic
behavior in an FBC system to its chaotic normal state. This control system should be accompanied with an
on-line monitoring system that initiates the control actions once the abnormal behavior is monitored. We
present a neural network-based strategy to identify the different chaotic behavior modes encountered in an
FBC system. [15] This identification process can be achieved by comparing the actual measurement from the
chaotic system with the time series predicted by neural network-based iterative predictor model, starting
from a short time history of the actual data. A dynamic type of neural network will be used for both
monitoring and control tasks. Dynamic neural networks are considered due to their time behavior and their
ability to deal with transient conditions. A special type of recurrent neural network called the Dynamic
System Imitator (DSI) will be used.



LOCALIZATION OF THE CHAOTIC BEHAVIOR IN THE FBC DATA AVAILABLE

Morgantown Energy Technology Center has built and operated a cold flow model to emulate fluid
dynamics in an FBC system. As illustrated in Figure 1, the cold flow verification test facility consists of a
ten foot high jetting fluidized bed made of clear acrylic and configured as a half cylinder vessel to facilitate
jet observation. A central nozzle, made up of concentric pipes, continuously fed solids at 0 to 8 psig
pressures. Separate flow loops controlled the conveyance of solids (inner pipe), the make-up air flow
(middle pipe), sparger flow (outer pipe), and six air jets on the sloping conical grid. The half round fluid
bed model provided useful information to study fluidization and design issues including jet penetration,
chaotic pressure fluctuations, and mass flow rates of particles in various regions of the jetting fluid bed.
The fluid bed tests were conducted using cork particles to simulate the relative density of gases to scale for
a high pressure coal conversion reactor. As expected, the test generated chaotic pressure fluctuations. The
differential pressures were measured at two location with each location consisting of two pressure taps
spaced four inches apart. The lower pair of pressure taps were placed at a height just above the nozzle and
the upper pair of pressure taps were placed at a height where the jet becomes evenly distributed across the
diameter of the reactor. Differential pressure data collected at the higher sensor served as the primary data
for the investigation of chaos. It clearly indicated the fluidization regime of the bed supported by visual

observations. Data were collected on a data acquisition
card at a rate of 50 Hz.

Through our analysis of both the normal and
abnormal FBC pressure data, it is evident that they have
strange attractors, and both belong to a chaotic system.
This means that the prospective control method needs to
switch the system from one chaotic state to another chaotic
state, which has been achieved before in simple chaotic
systems such as the logistic map.[16] A two dimensional
projection of attractors from a normal and abnormal FBC
time series are shown in Figures 2 and 3, respectively. As
it appears in the two figures the normal data attractor
looks much more well behaved than the abnormal data. We
performed several methods to compute the parameters of
both attractors. We computed the correlation dimension,
the Kolmogorov entropy, and the Lyapunov exponents of
the normal and abnormal attractors. The correlation
integral was computed according to the following
equation:[17]
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And the Lyapunov exponents were computed according to the Sano-Swada technique to compute the
Lyapunov spectrum from a chaotic time series.[19]
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Figure.1 The general setup of the existing 
cold FBC experiment at METC.
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Figure 2 A plot of the FBC normal attractor
projected onto two dimensional map.
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Figure 3 A plot of the FBC abnormal attractor
projected onto two dimensional map.

The correlation integral graphs for the normal and abnormal attractors in a range of embedding
dimensions are shown in Figures 4 and 5, respectively. The results of the chaos analysis of the FBC data
are summarized in Table 1. These analysis show that both the normal and abnormal modes of the system
live on a chaotic attractor, because both have fractal dimensions, positive Kolmogorov entropy, and
positive Lyapunov exponents.

However, the correlation dimension for the
abnormal attractor is much higher than the
normal one, which is an indication that when
the system changes from its normal to its
abnormal behavior, it goes from low order to
high order chaos. This situation is a big
challenge to any traditional control method.
However, we believe that the system
parameters can be adjusted through chaos

control method to move the system from its high order chaotic behavior to the normal low order chaotic
state. A proposed method for the FBC system monitoring and control is discussed below.
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Figure 5 A plot for the correlation integral of the
FBC normal attractor, for embedding dimensions

2.30

Even though the chaos analysis methods described above are the best to define the condition of a
chaotic system, they are not suitable for on-line monitoring because they need intensive calculations that
might run several hours on digital computers. Instead, a chaotic time series predictor technique will be
used.

METHODOLOGY

For any control method to function properly with the prescribed system, there should be some monitoring
device that will monitor the system state and switch the controller on, in case of detection of any abnormal
behavior. We will monitor the system behavior using the difference of time history between the predicted
chaotic time series predictor that we developed using the DSI neural network, and the actual time series
collected using pressure sensors mounted on the FBC. Testing this chaotic time series predictor, we found
that it was able to predict the chaotic behavior of chaotic time series generated by several chaotic systems
such as the logistic map, the Henon map, and the cubic map. In all cases the DSI predictor was able to
predict the chaotic behavior of the time series for a short time starting from some time history of the signal.
It was also able to predict the state space system attractor for the rest of the time. If we train the DSI
predictor to predict the normal behavior of the system, starting from some initial measurements, then the
average error between the actual and predicted time series over a certain period of time will give us an
indication of how much drift did the system make from its normal condition. Once a certain threshold is
violated we can switch the controller on. To be able to design a controller for such a system, we need to
study the effect of different system parameters on the behavior, and find which parameters are responsible
for the system drift from normal. If any of these parameters would be accessible for control, we can
implement a control method as illustrated in Figure 6. The only obstacle before executing and testing this
control method is to find an appropriate model that will describe the prescribed system behavior in all
modes. This model will be used to study the effect of system parameters on the system behavior and to test
the performance of the proposed control methodology.

The reason we chose to use the DSI neural network in this situation is the known dynamic
characteristics of such a network. The DSI is a fully recurrent neural network that was specially designed
to model a wide variety of dynamic systems. It has feedback connections and integrators to form a compact
representation of time lags and interactions in real systems. It is suitable for on-line applications due to its
fast response and realistic interface with the outside world. It is also equipped with a multidimensional
optimization technique and dynamic windowing which allows it learn system dynamics from long time
series. The DSI neural network has been used before to control the chaotic behavior in the Lorenz system,
and stabilize it into either a fixed point or a periodic orbit. In that application, one state variable was fed
back as an input to the DSI, and the output of the DSI was used to control the system. The error between
the actual output of the system and a target behavior was used to train the DSI network. State point
perturbation control and parameter perturbation control methods have been demonstrated. We wish that a
similar technique will work with the FBC system, even though we believe that the FBC system is a much
more difficult problem, due to its complex behavior under both normal and abnormal conditions.



USING THE DSI NEURAL NETWORK FOR CHAOTIC BEHAVIOR CONTROL

In this section we will demonstrate how a special type of a neural network, the Dynamic System Imitator
(DSI), can be used for chaotic behavior control. The DSI neural network is specially designed to model a
wide variety of dynamic systems.[20] It is a multi-layer recurrent neural network supplied with integrators
and extensive feedback connections to model the asynchrony and time lags in a real systems. The DSI
neural network was used before for modeling complex dynamic behaviors through very simple
configurations due to its temporal and spatial representations. The DSI controller described above was
applied to control the chaotic behavior of the Lorenz system to a stable fixed point or a stable periodic
orbit. Both system state point control and system parameter perturbation control strategies were
implemented.

In this section, we will demonstrate how the DSI can be used to control the chaotic behavior in the
Lorenz system, which is a typical chaotic system. The DSI neural network used, has one node in the input
layer, three nodes in the hidden layer and one node in the output layer. The general training strategy for the
DSI controller is shown in Figure 7. The DSI is trained to generate the necessary control signal to achieve
certain system performance. One or more reference values in addition to feedback from the controlled
system are used as inputs to the DSI. A pre-specified output behavior of the system is also supplied to the
network as a target for the training. During training this pre-specified behavior is continuously compared
with the actual behavior of the system to adjust the DSI parameters. Figures 8 and 9 show how the DSI
neuro-controller was used to control the chaotic behavior in the Lorenz system, a typical chaotic system.
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Figure 6 An illustration of a hybrid neural network-based monitoring and control
method for the FBC abnormal behavior.
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ITERATIVE PREDICTION OF CHAOTIC TIME SERIES USING THE DSI NEURAL
NETWORK

Chaotic systems are known for their unpredictability due to their sensitive dependence on initial conditions.
When only time series measurements from such systems are available, neural network based models are
preferred due to their simplicity, availability, and robustness. However, the type of neural network used
should be capable of modeling the highly non-linear behavior and the multi-attractor nature of such
systems. The prediction method presented in this paper is based upon predicting one step ahead in the time
series, and using that predicted value to iteratively predict the following steps. This method was applied to
chaotic time series generated from the logistic, Henon, and the cubic equations, in addition to experimental
pressure drop time series measured from an FBC system, which is known to exhibit chaotic behavior.[1-4]

The time behavior and state space attractor of the actual and network synthetic chaotic time series were
analyzed and compared. The correlation dimension and the Kolmogorov entropy for both the original and
network synthetic data were computed. They were found to resemble each other, confirming the success of
the DSI based chaotic system modeling.

A simple configuration of  the DSI neural network was used for the iterative prediction of a chaotic
time series. This configuration has one node in the input layer, three nodes in the hidden layer, and one node
in the output layer. The network was trained to predict one point ahead of the time series, using a set of
previous values. These values are not explicitly used for prediction, but are implicitly used by adjusting the
state of the network from which the prediction is performed. The prediction method is based upon the idea
that once the network is trained to predict one point ahead with good accuracy, this same point can be used
as an input to the network to predict the next point. This process can be repeated iteratively to predict many
points in the time series. Naturally, the accuracy of prediction will deteriorate over time. During training, a
time window of 200 points was used to cascade the time series to the network. The algorithm was applied
to three types of simulated chaotic time series generated from the logistic, Henon, and cubic equations, in
addition to one experimental time series taken from an FBC pressure measurement. The network was able
to learn simple one step prediction in a reasonable number of training iterations. After training, the output
of the DSI was used iteratively to generate the time series. However, the training initial conditions together
with the first actual 25 points of the training time series should be used to start the DSI, in case the time
behavior of the training time series must be generated. If not, any network initial conditions and any
starting points can be used to generate the state space behavior of the system to which the training time
series belongs.

Comparing the predicted time series to the actual time series, we found that the DSI was able to track
the training time series time behavior for a short period of time (around 30 points), when started from the
training initial conditions , and activated by the first 25 points of the training time series. However, it was
able to track the state space attractor to which the training time series belongs, starting from any initial
conditions, activated by any arbitrary set of starting points. The only case that fails is zero initial conditions
together with zero starting points, which leads to zero solution. To quantitatively compare the results, the
correlation dimension and Kolmogorov entropy for the actual and predicted attractors were computed. The
results of the correlation dimension and Kolmogorov entropy of the different cases are summarized in
Table.2. The correlation dimension is computed, according to the box-counting method, from the slope of
the lines representing the correlation integral versus ε (the size of a computing box) on log-log curves for
different embedding dimensions.



TABLE 2: COMPARISON OF THE ACTUAL AND DSI SYNTHETIC
ATTRACTORS PARAMETERS

Time Series Correlation
Dimension

Kolmogorov
Entropy

Logistic Map (actual) 1.0457±0.0057 0.6872±0.0198
Logistic map
(synthetic)

1.2316±0.0374 0.6013±0.0435

Henon Map (actual) 1.2607±0.0331 0.3267±0.0135
Henon map
(synthetic)

1.3171±0.0725 0.2962±0.0239

Cubic Map (actual) 1.2248±0.0090 0.4245±0.0183
Cubic Map (synthetic) 1.8171±0.01365 0.5340±0.0134
FBC normal (actual) 2.934±.065 5.034±.095
FBC normal
(synthetic)

2.12±.07 6.3764±1.26

CONCLUSION

In this paper, analysis to data measured from an FBC facility has been presented. The purpose of this
analysis is to build basis for a neuro-controller design that can be used to control some undesirable
abnormal behavior in FBC systems. This analysis shows that both the normal and abnormal behavior
represented in the data available are chaotic. The system’s normal and abnormal attractors have fractal
dimensions, some positive Lyapunov exponents and positive Kolmogorov entropy. However, the correlation
dimension of the abnormal case is much higher than the normal case. This indicates that when the system
switches to its abnormal situation it suffers a very complex behavior, most likely belongs to a higher order
chaos. An appropriate controller is desired to control the system abnormal chaotic behavior to its normal
chaotic behavior. A general method to monitor and control the chaotic behavior in an FBC system has been
outlined. A recurrent neural network called the Dynamic System Imitator (DSI) was adopted. The only
missing chain to test the proposed method is an appropriate non-linear model that will describe the FBC in
different modes.

A dynamic neural network based model for chaotic time series has been developed. A one step
predictor model was used to iteratively generate chaotic time series, using the DSI neural network. After
training, the DSI was able to generate the chaotic time series in all test cases. For a short period of time, it
was able to generate the same time behavior of the training time series if started with the same initial
conditions and the first initial points of the time series. Furthermore, it was able to track the system
attractor to which the training time series belongs, for any period of time, for any initial conditions and any
initial points, in all test cases. The only case that fails is the zero initial conditions together with zero
starting points, which leads to a zero solution. This methodology was applied to three known chaotic
models, the logistic, Henon and cubic maps, in addition to one experimental time series taken from
differential pressure measurement of an FBC system. The correlation dimension and the Kolmogorov
entropy for the actual and DSI network synthetic data were computed and compared. There is a very good
match between the actual and synthetic time series parameters in all cases which indicates that the DSI was
able to learn the dynamics in those chaotic time series to a very good extent.

Based on the results of FBC data analysis described, the neural network chaotic system controller and
neural network chaotic time series predictor developed, a hybrid monitoring and control system for



fluidized bed combustors was outlined. However, an appropriate non-linear model for the FBC system is
necessary for training and testing the developed neural network algorithms.
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