
Submitted to:
International Conference o n Accelerator and.Large
Experimental Physics Control Systems - '97

I 11/3/97 - 11/9/97 - B e i j i n g , China
BNL-649 38

COdF- 77J/7 / --
What Objects Do Controls Applications Need?

J. T. Morris, AX. Abola
Alternating Gradient Synchrotron(AGS) / Relativistic Heavy Ion Collider(RHIC) Controls

Brookhaven National Laboratory
Box 5000, Upton, NY 11973-5000

Abstract
Discussions of object-oriented controls programming
often focus on the important interface to accelerator
devices. Experience shows that, for most applications,
only a small part of the application work involves the
accelerator device interface. Much of the work in
application programs is dedicated to other areas such
as user interface. data management and physics
calculations. This paper will consider the software
objects beyond the device interface that provide the
most assistance to application programmers.

1 Introduction
Object-oriented interfaces to accelerator devices are
being actively explored and discussed in the controls
community [1,2]. The interface to accelerator devices,
however, is only one part of the work of controls
applications. This paper will focus on software objects
that can help programmers in other areas of application
development.

In over eight years of C++ programming in the AGS
Controls Group, an extensive library of classes has
been developed to support the work of application
programmers. This experience is used as the basis for
a discussion of the objects needed for application
software. The paper begins by examining several
sample controls applications and categorizing the work
performed in the applications. In the sections that
follow, the use of software objects in each of these
categories is discussed. This discussion includes a
description of the objects used and a consideration of
the impact of the use of these objects on the
application development process. Attention is also
given to areas where the need for additional objects has
been recognized.

2 Controls Application Software Categories

In order to understand how best to aid application
programmers, it is important to understand where time
and effort is spent in application development and
maintenance. Five applications were chosen as

CEIVED
DEC 1 8 1997
@ST0

representative samples of applications that have been
developed for control of the AGS accelerator and the
Booster injector. These applications all make use of
objects from AGS/RHIC C++ class libraries. The
source code for the selected applications was reviewed
and classified into the following five broad categories.

1) General User Interface
2) MathematicsE'hysics Algorithms
3) Data Managemendstorage
4) Data AcquisitiodControl
5) Graphic Displays

The percentages listed in Table 1 represent the
proportion of the lines of application code that fell into
each of these categories. A count of lines of code
provides an approximate measure of the effort spent in
developing and maintaining an application. The total
number of lines of code in each application is also
listed in the table.

Some clear variations in the distribution of code can
be seen in these applications. This variation depends
to some extent on differences in requirements for the
applications. It also depends on the extent to which
these applications were able to take advantage of
objects from C++ class libraries. One glaring
difference can be seen in the overall size of the
BoosterObitDisplay program, which was written at a
time when many of the objects discussed in this paper
were not available. Note that this program is nearly
three times the size of any of the other applications.

3 User Interface Objects

A significant part of the code in any application is
devoted to the user interface. Application programmers
need tools that allow them to rapidly create prototype
interfaces but also allow the flexibility to customize
interfaces to the needs of an application. In the
AGS/RHIC development environment, a UI Toollcit[3]
has been developed to meet these needs.

The UI Toolkit is a a very well written and well
documented collection of C++ classes layered on top

* Work performed under the auspices of the U. S. Department of Energy \

Table 1. Software Distribution in Ca ntrois Applications

Boostei Orbit Booster A@ Ags Loss Ags Orbit
Display Main Magnet Gamma Jump Monitor Control Average

General User Interface 20% 37% 37% 32% 24% 30%
Matb/Physics Algorithms 20% 36% 23% 10% 22% 22%
Data ManagementStorage 29% 15% 10% 26% 27% 21%
Acquisition & Control 16% 4% 10% 19% 21% 14%
Graphic Displays 15% 8% 19% 13% 6% 12%
Total Lines of Code 12000 4500 3000 3700 4700 -

of OSF/Motif and the X windows sy:;tem. All the
the toolkit. UI Toolkit objects includa pushbuttons,
labels, fields for text or numeric data entry, toggle
switches, scrolling text areas, selection lists, pulldown
menus and many other objects. UITable objects,
which are layered on top of a commercial widget for
the display and editing of tabular infixmation, have
been an important addition to the basic toolkit. They
are now being used heavily in AGS/RHIC controls for
data display and data entry. All objects in the UI
Toolkit are derived from a common UIClbject class and
conform to interface standards. The application
programmer is therefore able to combine these objects
freely in the application interface. Progammers may
also derive UI objects from the objects in the toolkit to
create specialized components for an application. The
AGS/RHIC controls libraries include n m y examples
of UI objects with specialized controls sontent. One
example is the AgsPage. Built around a UITable, an
AgsPage object supports device control md continuous
display of device settings. It is used in almost all AGS
applications.

basic components of a user interface are included in
important in an environment where many individuals
are responsible for the development of application
code. In the AGS/RHIC environment, there is an
increased interest in the development of application
software by members of the accelerator physics and
operations groups. As the application development
community broadens, the use of common objects
becomes increasingly important.

Future plans for AGS/RHIC development are placing
an increased emphasis on high level objects with
specialized controls content. Generic functionality
that would have in the past been packaged in a
standalone application can now be packaged in a UI
object and made available to any application. Since
these high level objects are derived from UI Objects,
they may be used as application building blocks in the
same way as generic objects.

4 Mathematidhysics Algorithms

The major impact of the UI Toolkit on application
development has been the improved ability to build
customized user interfaces. Earlier tools at the AGS
provided an efficient method of building simple user
interfaces, but extension to more complex interfaces
was very difficult. The availability of LTI Objects as
user interface building blocks allows die application
programmer to build a user interface rhat is a better
match to the needs of the application.

The use of UI Objects as user interface components
has also assisted in efforts to present a common look
and feel in controls applications. User interface
guidelines for application developers are strongly
recommended, but some level of confclrmity can be
achieved just by the use of common tools. This is

This category includes the data reduction and analysis
algorithms applied to data retrieved from the control
system. It also includes the control algorithms
employed to determine hardware settings for
accelerator devices based on physical parameters
supplied by a user. Accelerator modeling tools, which
could be considered an important part of this category,
are not being discussed in this paper.

This category is probably the area where objects were
used least in AGS applications. Much of the code in
this area is application specific. It also may be well
suited to procedural, rather than object-oriented, code.
Many AGS applications make use of libraries of
procedural legacy code to perform fitting and other
analysis techniques. There are some areas, however,
where applications have benefited from the use of

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liabiiity or responsibility for the accuracy, completeness. or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, proctss, or service by trade name, trademark, manufac-
turer, or otherwise dots not necessarily constitute or imply its endorsement, m m -
mendidion. or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not nccessarily state or
reflect thosc of the United States Government or any agency thereof.

d

objects to assist in mathematical Operations.

The DataAverager class makes it easy for applications
to derive statistics from accumulated readings from
accelerator instrumentation. The FunctionData class
was written to support the many time dependent
functions important to AGS applications.
FunctionData objects represent linear, quadratic, or
cubic functions. FunctionData methods are available
for mathematical operations including differentiation
and vectorization. The use of the FunctionData class
for these operations has greatly simplified application
code. It is instructive to look at the statistics for the
BoosterMainMagnet application in Table 1. In order
to apply some special constraints to calculations, this
application performed almost ail mathematical
operations in direct procedural code and did not make
use of the FunctionData class. This is one of the
reasons that such a large portion of this application’s
code is devoted to mathematics.

Matrix mathematics is another area shared by multiple
applications. C language matrix tools were used in
AGS applications. The interface to these C tools was
awkward and led to programming difficulties.
Application programmers could be helped by a broader
set of CU classes to support mathematics, including
matrix operations.

5 Data Management and Storage

This category includes the storage and retrieval of
information using files and databases. This
information may include physics parameters, display
parameters, calibration data, and all other parts of an
application’s working context. Code to read and write
information to files can be time consuming to write
and prone to errors. It is important to have tools that
relieve the application programmer of concern about
where information is stored and how it is formatted.
A number of Ci-+ classes have been developed to
assist AGS/RHIC application programmers at this task.

The Fileselector Tools have been the most effective
aid to application programmers. The basic building
blocks for these tools are the FileIdentifier and
Fileselector classes. FiIeIdentifier objects are used
by applications to represent files in terms of the
process with which they are associated and their role in
that process. FileIdentifier methods handle opening
and closing of files and the storage and retrieval of
standard header information. The FileIdentifier class
records header information for stored files in a
Sybase[4] database. Fileselector objects use this

database to provide methods for the rapid retrieval of
FileIdentifier objects according to specific selection
criteria

Most applications do not use FileIdentifier and
Fileselector objects directly. These classes have been
used as base classes for classes that specify files with
specific types of content. FunctionFile objects are
used for storage of the many time dependent functions
used in AGS applications. The FunctionFile class is
derived from the FileIdentifier class and the
FunctionData class described in section 4. The
ParameterFile class is similarly constructed from the
FileIdentifier class and a general purpose
ParameterList class. ParameterFiles are used to deal
with lists of parameters associated with a process.
The parameters may be integer or floating point
numbers, text strings, or mays. An application
programmer using FunctionFile and ParameterFile
objects does not have to write any code related to data
formatting or manipulation of directory paths.

Another important class has been developed to read or
write groups of files in a single operation.
FunctionFamily objects represent the entire working
context for an application. This working context will
typically include some number of FunctionFiles and an
associated ParameterFile. FunctionFamil y objects
provide methods for saving named instances of the
application context as a single logical “file”. The
FunctionFamily, which is part of the Fileselector class
hierarchy, also provides methods for selection and
retrieval of these saved files. FunctionFamily objects
also act as containers for process data within running
applications.

Most AGS controls applications have benefited greatly
from the use of FunctionFamily objects. In the
AgsGammaJump application, the FunctionFamily class
was used as a base class for a specialized class
representing the data for the AgsGammaJump process.
This further reduced the amount of code necessary for
data storage in the application.

One major benefit of the use of FunctionFamily,
FunctionFile and ParameterFile objects has been the
guarantee of common data formats, Function and
parameter data can be shared between applications.
Generic AGS applications for data archiving or
function diagnostics can access files stored by any
application using these objects.

Two of the sample applications, BoosterOrbitDisplay
and AgsLossMonitor, do not deal with FunctionData
and were therefore unable to take advantage of the

FunctionFamily class. These applications generally
need to save setup files and save snapshots of acquired
data. Future plans call for the definition of data
format standards for these applications. The SDDS[5]
format is being considered. New objects will likely be
defined to handle these needs.

Improvements are also planned in oth:r areas of the
AGS/RHIC controls libraries. New attrmtion is being
focused on tools for data logging. A DataLog class
has been written to allow applicdions to log
parameters in files in standard formats Attention is
also being given to object-oriented tools for retrieval of
information from Sybase relational dackbases. Some
database access tools have already been written but
improvements are expected as database access
becomes more important for AGS/RHIC applications.

6 Data AcquisitiodControl
This category, the interface to accelerator devices, will
not be addressed in detail here. It is worth noting that
one reason that only a modest amount of application
code is devoted to data acquisition and control in the
sample applications is the availability of a simple
object-oriented interface to AGS devices. Applications
use AccelDevice objects to get or set information from
individual devices. A Datacollector object is used to
collect data, synchronously or asynchronously, from a
grouping of any devices in the control system. An
effort is now underway to provide a CDEV[2] service
layer that can communicate using both the AGS device
interface and the adoIfll] interface to RHIC devices.

7 Graphic Display Objects
The requirements for graphic display objects are much
the same as that for other user interface components.
Applications programmers need simp1 : methods to
build simple displays, but they also need the flexibility
to construct more complex displays when necessary.

The sample applications used graphics tools at two
different levels. The QuickGraphics (QG) package is
a C language library of basic graphing tclols developed
in the AGS control system. FunctionlXsplayer and
FunctionEditor objects were defined fclr the graphic
display of the FunctionData objects that were
described in Section 4. The interface to these objects
was much simpler than the QG interface. A UIPlot
object now is available to fulfill the task graphing
requirements for AGS/RHIC applications.

The UIPlot class, which is layered on top of the
widgets in the commercial XRT/graph[B:i package, has
several advantages over the earlier tools. It includes

improved tools for interactive management of a graph.
The fact that it is part of the UIObject hierarchy gives
the application progammer the freedom to build
UIPlots into the user interface as required.

Though some AGS applications do generate 3d
displays, generaiized 3d graphics tools have not been a
part of AGS class libraries. The XRT/3d[6] graphics
package is expected to be the basis for new 3d graphics
objects in AGSflRHIC applications. Objects that
support additional graphics options, such as bar charts,
could also prove useful to the application programmer.

8 Conclusion
The development of controls applications requires
effort in a number of different categories. The need
for software objects has been identified in all of these
categories. In AGS applications, the use of C++ class
libraries that address many of these needs has
simplified the task of the application and enhanced
application capabilities. The use of common objects
has provided additional benefits by encouraging
compliance with standards. The advantage of th is
compliance with standards has been particularly
recognized in the areas of user interface and data
storage. Areas have been noted where more benefits
could be realized with the availability of additional
object-oriented tools. Some of these areas will be
addressed by future work in AGS/RHIC controls. The
authors encourage continued discussion in the controls
community of ways to address all categories of
application needs.

9 Acknowledgments
The authors would like to acknowledge the work of the
AGS controls staff in the development of C++ class
libraries and the applications that use them. We
would particularly l i e to acknowledge Ted DOttavio
for the creation of the UI Toolkit library and Stewart
Mandell for his work on Function classes.

10 References
1. L.T. Hoff and J.F. Skelly, “Accelerator Devices as
Persistent Software Objects”, Nucl. Instr. and Meth. in Phys.

2. J. Chen et al, “CDEV: An Object-Oriented Class Library
for Developing Device Control Applications”, Proc.
ICALEPCS 95, Chicago 1995
3. T. D’Ottavio “UI Toolkit Overview”. AGS tech note #471
4. Sybase Copyright,l997 Sybase, Inc.
5. M. Borland, “A Self Describing File Protocol for
Simulation Integration and Shared Postprocessors”, Proc.
Particle Accelerator Cod, Dallas, Texas 1995
6. XRT/graph,XRT/3d Copyright, 1997 KL Grp., Inc.

Re. A 352(1994), 185-188

