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Abstmct 

This is the third part of a series of talks in which we present 
applications of methods of wavelet analysis to polynomial 
approximations for a number of accelerator physics prob- 
lems. We consider the generalization of our variational 
wavelet approach to nonlinear polynomial problems to the 
case of Hamiltonian systems for which we need to pre- 
serve underlying symplectic or Poissonian or quasicom- 
plex structures in any type of calculations. We use our ap- 
proach for the problem of explicit calculations of Arnold- 
Weinstein curves via Floer variational approach from sym- 
plectic topology. The loop solutions are parametrized 
by the solutions of reduced algebraical problem - ma- 
trix Quadratic Mirror Filters equations. Also we consider 
wavelet approach to the calculations of Melnikov functions 
in the theory of homoclinic chaos in perturbed Hamiltonian 
systems. 

1 INTRODUCTION 

In t h i s  paper we continue the application of powerful meth- 
ods of wavelet analysis to polynomial approximations of 
nolinear accelerator physics problems. In part I we con- 
sidered our main example and general approach for con- 
structing wavelet representation for orbital motion in stor- 
age rings. Now we consider two problems of nontrivial 
dynamics related with complicated differential geometrical 
and symplectic topological structures of system (1) from 
part I. In section 2 we give some points of applications of 
wavelet methods from parts I, II to Melnikov approach in 
the theory of homoclinic chaos in perturbed Hamiltonian 
systems. In section 3 we consider another type of wavelet 
approach. which gives a possibility to parametrize Amold- 
Weinstein curves or closed loops in Hamiltonian systems 
by generalized refinement equations or Quadratic Mirror 
Filters equations. 

2 ROUTES TO CHAOS 

Now we give some points of our program of understanding 
routes to chaos in some Hamiltonian systems in the wavelet 
approach [ 1]-[9]. All points are: 

1. 

2. 

A model. 

A computer zoo. The understanding of the computer 
zoo. 

3. A naive Melnikov function approach. 

4. A naive wavelet description of (hetero) homoclinic or- 
bits (separatrix) and quasiperiodic oscillations. 

5. Symplectic Melnikov function approach. 

6. Splitting of separatrix... -+stochastic web with 
magic symmetry, Amold diffusion and all that. 

1. As a model we have two frequencies perturbations of 
particular case of system (1) from part I 

or in Hamiltonian form 

5 = J . V H ( t )  + Eg(2, Q), 
0 = w ,  (.,e) E R4 x T2 ,  

T2 = S' xS1, 

for E = 0 we have: 

2. For pictures and details one can see [3], [8]. The key 
point is the splitting of separatrix (homoclinic orbit) and 
transition to fractal sets on the Poincare sections. 
3. For E = 0 we have homoclinic orbit 5-,(t) to the hy- 
perbolic fixed point 10. For E # 0 we have normally hy- 
perbolic invariant torus T, and condition on transversally 
intersection of stable and unstable manifolds W s  (T' ) and 
W"(T,) in terms of Melnikov functions M(Q)  for f o ( t ) .  

M ( 8 )  = /m VH( fo ( t ) )  A g ( f o ( t ) , w t  + O)dt  
-a? 



This condition has the next form: 

hf(O0) = 0 
2 n 

According to the approach of Birkhoff-Smale-Wig,' Oms we 
determined the region in parameter space in which we ob- 
serve the chaotic behaviour [3], [8]. 
4. If we Cannot solve equations (1) explicitly in time, then 
we use the wavelet approach from part I for the computa- 
tions of homoclinic (heteroclinic) loops as the wavelet so7 
lutions of system (1). For computations of quasiperiodic 
Melnikov functions 

Mm'"(to) = 1 DH(z,(t)) A g(za(t),  t + to)dt 

we used periodization of wavelet solution from part I. 
5. We also used symplectic Melnikov function approach 

mT 

Ti 

-Ti' 

dj(z, E )  = hj(~:) - hj(z,S) = EMi(z) + O(e2) 

where {, } is the Poisson bracket, d i ( z ,  e) is the Melnikov 
distance. So, we need symplectic invariant wavelet expres- 
sions for Poisson brackets. The computations are produced 
according to part n. 
6. Some hypothesis about strange symmetry of stochastic 
web in multidegree-of freedom Hamiltonian systems [9]. 

3 WAVELET PARAMETRIZATION IN FLOER 
APPROACH. 

Now we consider the generalization of our wavelet vari- 
ational approach to the symplectic invariant calculation 
of Arnold-Weinstein curves (closed loops) in Hamiltonian 
systems [IO]. We also have the parametrization of our solu- 
tion by some reduced algebraical problem but in contrast to 
the general case where the solution is parametrized by con- 
struction based on scalar refinement equation, in symplec- 
tic case we have parametrization of the solution by matrix 
problems - Quadratic Mirror Filters equations [ 1 I]. 

The action functional for loops in the phase space is [IO] 
1 

F(rj = J ,  pdq - 1 ~ ( t ,  7 w t  

The critical points of F are those loops 7, which solve 
the Hamiltonian equations associated with the Hamiltonian 
H and hence are periodic orbits. By the way, all critical 
points of F are the saddle points of infinite Morse index, 
but surprisingly this approach is very effective. This will be 
demonstrated using several variational techniques starting 
from minimax due to Rabinowitzand ending with Floer ho- 
mology. So, ( M , w )  is symplectic manifolds. H : M + R, 

H is Hamiltonian. X H  is unique Hamiltonian vector field 
defined by 

~ ( X H ( Z ) ,  U) = - ~ H ( z ) ( u ) ,  u E TzM, t E M ,  
/ 

where w is the symplectic structure. A T-periodic solution 
z ( t )  of the Hamiltonian equations 

x = X ~ ( z )  o n M  

is a solution, satisfying the boundary conditions z (T )  
= z(O),T > 0. Let us consider the loop space R = 
C" (SI, R2n), where S' = R/Z, of smooth loops in RS". 
Let us define a function 0 : R -+ R by setting 

@(z) = 1' < - J ~ , I  > dt - H ( z ( t ) ) d t ,  x E R 

The critical points of @ are the periodic solutions of x = 
XH(I). Computing the derivative at z E Q in the direction 
of y E Q, we find 

I' 

d 

1' < -Ji - vH(z),y > dt 

@'(Z)(Y) = - p ( z  + W ) I t = O  = 

Consequently, cP'(z)(y) = 0 for all y E Q iff the loop I 
satisfies the equation 

- J2 ( t )  - v H ( z ( t ) )  = 0, 

Le. z( t )  is a solution of the Hamiltonian equations, which 
also satisfies z(0) = z(l), i.e. periodic of period 1. Peri- 
odic loops may be represented by their Fourier series: 

z( t )  = e k 2 r r J t z k ,  z k  E R2k, 
k € Z  

where J is quasicomplex structure. We give relations be- 
tween quasicomplex structure and wavelets in part IV. But 
now we use the construction [ I l l  for loop parametriza- 
tion. It is based on the theorem about explicit bijection 
between the Quadratic Mirror Filters (QMF) and the whole 
loop group: LG : S' + G. In particular case we have 
relation between QMF-systems and measurable functions 
x : S' + U ( 2 )  satisfying 

in the next explicit form 

where 



Also, we have symplectic structure on LG 
1 r2a 

So, we have the parametrization of periodic orbits (Amold- 
Weinstein curves) by reduced QMF equations. 

Extended version and related results may be found in [ 11- 
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