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Abstract 

This is the first part of a series of talks in which we present 
applications of methods from wavelet analysis to polyno- 
mial approximations for a number of accelerator physics 
problems. In the general case we have the solution as a 
multiresolution expansion in the base of compactly sup- 
ported wavelet basis. The solution is parametrized by solu- 
tions of two reduced algebraid problems, one is nonlinear 
and the second is some linear problem, which is obtained 
from one of the next wavelet constructions: Fast Wavelet 
Transform, Stationary Subdivision Schemes, the method of 
Connection Coefficients. 

In this paper we consider the problem of calculation of 
orbital motion in storage rings. The key point in the solu- 
tion of this problem is the use of the methods of wavelet 
analysis, relatively novel set of mathematical methods, 
which gives us a possibility to work with well-localized 
bases in functional spaces and with the general type of op- 
erators (including pseudodifferential) in such bases. Our 
problem as many related problems in the framework of our 
type of approximations of complicated physical nonlinear- 
ities is reduced to the problem of the solving of the sys- 
tems of differential equations with polynomial nonlinear- 
ities with or without some constraints. In this paper we 
consider as the main example the particle motion in stor- 
age rings in standard approach. Starting from Hamiltonian, 
which described classical dynamics in storage rings and us- 
ing Serret-Frenet parametrization, we have after standard 
manipulations with truncation of power series expansion 
of square root the corresponding equations of motion: 
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Then we use series expansion of function f(p,) and the 
corresponding expansion of RHS of equations (1). In the 
following we take into account only an arbitrary polyno- 
mial (in terms of dynamical variables) expressions and ne- 
glecting all nonpolynomial types of expressions, i.e. we 
consider such approximations of RHS, which are not more 
than polynomial functions in dynamical variables and ar- 
bitrary functions of independent variable s (“time” in our 
case, if we consider our system of equations as dynamical 
problem). The fist  main part of our construction is some 
variational approach to this problem, which reduces ini- 
tial problem to the problem of solution of functional equa- 
tions at the first stage and some algebraical problems at 
the second stage. We consider also two private cases of 
our general construction. In the first case (particular) we 
have for Riccati equations (particular quadratic approxima- 
tions) the solution as a series on shifted Legendre polyno- 
mials, which is parameterized by the solution of reduced 
algebraical (also Riccati) system of equations. This is 
only an example of general construction. In the second 
case (general polynomial system) we have the solution in 
a compactly supported wavelet basis. Multiresolution ex- 
pansion is the second main part of our construction. The 
solution is parameterized by solutions of two reduced al- 
gebraical problems, one as in the first case and the sec- 
ond is some linear problem, which is obtained from one 
of the next wavelet construction: Fast Wavelet Transform 
(FWT), Stationary SubdivisionSchemes (SSS), the method 
of Connection Coefficients (CC). Our problems may be for- 
mulated as the systems of ordinary differential equations 
dzi/dt = fi(Zj,t), ( i . j  = 1, ...) R) with fixed initial 
conditions ri(O), where fi are not more than polynomial 
functions of dynamical variables zj and have arbitrary de- 
pendence of time. Because of time dilation we can consider 
only next time interval: 0 5 t 5 1. Let us consider a set of 
functions @ i ( t )  = z idy i /d t  + fiyi and a set of functionals 
Fi(z) = Ji @i(t )dt  - riyi I& where yi(t)(yi(O) = 0) are 
dual variables. It is obvious that the initial system and the 
system Fi(r) = 0 are equivalent. In part 3 we consider 
symplectization of this approach. Now we consider formal 



expansions for x i ,  y i :  F1(r, s) = [I - ( - 1 ) r + 7 q 7 -  - s - l), 
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where because of initial conditions we need only p k ( 0 )  = 
0. Then we have the following reduced algebraid system 
of equations on the set of unknown coefficients AS of ex- 
pansions (2): 

(3) 
k 

Its coefficients are ,ukr = r , ’ p i ( t ) ’ p , ( t ) d t ,  7: = 
J,l f i ( t j , t ) v r ( t ) d t .  NOW, when we solve system (3) and 
determine unknown coefficients from formal expansion (2) 
we therefore obtain the solution of our initial problem. It 
should be noted if we consider only truncated expansion (2) 
with N terms then we have from (3) the system of N x n 
algebraical equations and the degree of this algebraid sys- 
tem coincides with degree of initial differential system. So, 
we have the solution of the initial nonlinear (polynomial) 
problem in the form 

N 

zi(t)  = z~(o) + C ~ f ~ k ( t ) ,  (4) 

where coefficients AS are roots of the corresponding re- 
duced algebraid problem (3). Consequently, we have an 
parametrization of solution of initial problem by solution 
of reduced algebraical problem (3). But in general case, 
when the problem of computations of coefficients of re- 
duced algebraid system (3) is not solved explicitly as in 
the quadratic case, which we shall consider below, we have 
also parametrization of solution (4) by solution of corre- 
sponding problems, which appear when we need to d c u -  
late coefficients of (3). As we shall see, these problems 
may be explicitly solved in wavelet approach. Next we 
consider the construction of explicit time solution for our 
problem. The obtained solutions are given in the form (4), 
where in our first case we have X k ( t )  = Q k ( t ) ,  where 
Q k ( t )  are shifted Legendre polynomials and A i  are roots 
of reduced quadratic system of equations. In wavelet case 
xk ( t )  correspond to multiresolution expansions in the base 
of compactly supported wavelets and A: are the roots of 
corresponding general polynomial system (3) with coef- 
ficients. which are given by FWT, SSS or CC consmc- 
tions. According to the variational method to give the re- 
duction from differential to algebraid system of equations 
we need compute the objects 7; and p j i ,  which are con- 
structed from objects: 

k= l  

ai G X i ( T ) d T  = ( - l ) i + l ,  (5) I’ 

a k s j l  g l a k j  a j d k l  
Qkl j  + - +-+- 2 j + l  2 k + 1  2 1 t - l ’  

if j + k + l =  2m, E 2,and Qkl j  = 0 if j+k+I = 2m+1; 
where R(i) = (2 i ) ! / (2 i i ! )2 ,  &i = ai + P:, where the 
second equality in the formulae for (T, v, p,  0, a hold for 
the fist case. Now we give construction for computations 
of objects(5) in the wavelet case. We use some construc- 
tions from multiresolution analysis: a sequence of succes- 
sive approximation closed subspaces Vj: ... Vz C VI C 
Vo C V-1 C V--2 c ... satisfying the following prop- - 
erties: n ~j = 0, U ~j = L ~ ( R ) ,  f(z) E c;. <=> 

j € Z  j € Z  
f (2r )  E &+I There is a function ’p E VO such that 
{ p o , k ( t )  = p(z - k ) k E z }  forms a Riesz basis for Vi. We 
use compactly supported wavelet basis: orthonormal basis 
for functions in L2(R). As usually p(z) is a scaling func- 
tion, $(t) is a wavelet function, where p i ( z )  = p(z - i). 
Scaling relation that defines p, $ are 

N - 1  N -  1 

k=O 

k=- 1 

Let be f : R -+ C and the wavelet expansion is 
00 

f (x)  = C C y f  (z) + c j k $ j k  (2) (6) 
C€Z j=O k c Z  

The indices k, e and j represent translation and scaling, re- 
spectively 

p j l ( t )  = 2 j / 2 p ( 2 j z  - e), $ j k ( Z )  = 2 j ’ 2 $ ( 2 j z  - k) 

The set { ’ p j , k } k € Z  forms a Riesz basis for Vj. Let Wj be 
the orthonormal complement of 5 with respect to Vj+l. 
Just as vj is spanned by dilation and translations of the scal- 
ing function, so are W j  spanned by translationsand dilation 
of the mother wavelet $ j k ( t ) .  If in formulae (6) Cjk = 0 
for j > J ,  then f(x) has an alternative expansion in terms 
of dilated scaling functions only f(x) =‘ C J C ~ J C ( X ) .  

This is a finite wavelet expansion, it can be written solely 
(€2 

J 



in terms of translated scaling functions. We use wavelet 
?,6(z), which has k vanishing moments Jzk?,6(z)d(z) = 0, 
or equivalently zk = Cc~cpc(z) for each k, 0 5 k 5 
K. Also we have the shortest possible support: scaling 
function DN (where N is even integer) will have sup  
port [O, N - 11 and N / 2  vanishing moments. There ex- 
ists X > 0 such that DN has AN continuous derivatives; 
for small N,X 2 0.55. To solve our second associated 
linear problem we need to evaluate derivatives of f(z) in 
terms of p(z). Let be cp; = d"Cpc(z)/dz". We derive the 
wavelet - Galerkin approximation of a differentiated -f(z) 
asfd(z)  = ~Lqcpf (z )andva luesv f (z )  canbeexpanded 
in terms of p(z) 

03 

d:(z) = C X m v m ( z ) l  Am = J (Ped(z)pm(z)dz 
-03 m 

The coefficients Am are 2-term connection coefficients. In 
general we need to find 

m 

(7) 
- W  

For Riccati case we need to evaluate two and three connec- 
tion coefficients 

According to CC method [7] we use the next construction. 
When N in scaling equation is a finite even positive integer 
the function p(z) has compact support contained in [0, N -  
11. For a fixed triple ( d l ,  d2, d3) only some AiAdrrd3 are 
nonzero: 2 -  N 5 t 5 N - 2 ,  2 -  N 5 m 5 N -  
2, It - ml 5 N - 2. There are M = 3 N 2  - 9N + 
7 such pairs (e, m). Let Adldld3 be an M-vector, whose 
components are numbers A ~ A ~ ~ ~ ~ .  Then we have the first 
key result: A satisfy the system of equations . 

dl  + d2 + d3i 
f i d i d a d s  = 2 1 - d ~ d i d a d ~ ,  d =  

At,m;q,r = apaq-z+p~r-2m+p 
P 

By moment equations we have created a system of M + 
d + 1 equations in M unknowns. It has rank M and we can 
obtain unique solution by combination of LU decomposi- 
tion and QR algorithm. The second key result gives us the 
2-term connection coefficients: 

for computing coefficients of reduced algebraic systems. 
We use for modelling D6.D8,D10 functions and programs 
RADAU and DOPRI for testing. 
As a result we obtained the explicit time solution (4) of 

our problem. In comparison with wavelet expansion on the 
real line which we use now and in calculation of Galerkin 
approximation, Melnikov function approach, etc also we 
need to use periodized wavelet expansion, i.e. wavelet ex- 
pansion on finite interval. Also in the solution of perturbed 
system we have some problem with variable coefficients. 
For solving last problem we need to consider one more 
refinement equation for scaling function &(z): &(z) = 

ai92(2z - k )  and corresponding wavelet expansion 

for variablecoefficients 6 ( t ) :  B;(b)q52(2jz - k ) ,  where 

B{(b) are functionals supported in a small neighborhood 
of 2-jk.  

The solution of the first problem consists in periodizing. 
In this case we use expansion into periodized wavelets de- 
fined by E ; k ( z )  = 2jI2 q5(2jz + - k ) .  these 

modifications lead only to transformations of coefficients 
of reduced algebraic system, but general scheme remains 
the same. Extendeed version and related results may be 
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For nonquadratic case we have analogously additional lin- 
ear problems for objects (7). Also, we use FWT and SSS 


