
n

SANDIA REPORT
SAND98-8206 UC-405
Unlimited Release
Printed November 1997

t

Jess, The Java Expert System Shell

I

Ernest J. Friedman-Hill

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A0 1

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

3

P

Distribution
Category UC-405

SAND984206
Unlimited Release

Printed November 1997

Jess, The Java Expert System Shell
http:/ /herzberg.ca.sandia.gov/jess

Ernest J. Friedman-Hill
Scientific Computing Department

Sandia National Laboratories
Livermore, CA

Version 3.2 (October 8, 1997)

ABSTRACT

This report describes Jess, a clone of the popular CLIPS expert system shell written
entirely in Java. Jess supports the development of rule-based expert systems which
can be tightly coupled to code written in the powerful, portable Java language. The
syntax of the Jess language is discussed, and a comprehensive list of supported
functions.is presented. A guide to extending Jess by writing Java code is also
included.

3

1 Introduction
Jess is a clone of the popular expert system shell CLIPS, rewritten entirely in Java. With

Jess, you can conveniently give your Java applets and applications the ability to 'reason'. In
describing Jess, I am going to describe much of CLIPS itself, but the reader may want to
obtain a copy of the CLIPS manuals available. See the WWW site
http://www.ghg.net/clips/CLIPS.html for more information about CLIPS. Note that Jess does
not duplicate all of CLIPS, but only the essential core of it.

Jess is compatible with all versions of Java starting with version 1.0.2. It is (in particular)
Java 1.1 compatible, although while compiling you will see warnings about deprecated
methods. Such is the price of compatibility!

Jess is a work in progress - more features are always being added. The order will be
determined in part by what folks seem to want most, what I need Jess to do, and how much
time I have to spend on it.

This is the 3.2 final release. Nevertheless, there may well still be bugs. Please report any
that you find to me at ejfried@ca.sandia.gov so I can fix them for a later release.

Jess is copyrighted software - see the file LICENSE for details.
1.1 Getting Started With Jess
If you download Jess for UNIX, you can extract the files using tar and uncompress:

uncompress Jess-3.2.tar.Z
tar xf Jess-3.2.tas

README.htm1
TextAreaOutputStream.java

Jess.java
LostDisplay .java
NullDisplay .java

jess/

examples/
index-html

This file
Java source files. Jess.java implements

both the applet interface and the command-
line interface. NullDisplay is used by the
command-line version; the other two are
used in the applet's GUI.

There are many source files in here that
implement Jess's inference engine.

A directory containing the 'jess' package.

A directory of tiny example CLIPS files.
A web page containing the Jess example

Jess comes as a set of Java source files. You'll need to compile them first: the commands
javac *. java j e s s / * . java (U N I X)

or
javac *. java jess*. java (Win32)

would work just fine, given that you have a Java compiler like Sun's JDK. If you have
problems, be sure that the directory in which the file Jess.java exists is on your
CLASSPATH; this may mean including '.' (dot). You can use either a Java 1.0.2 or a Java 1.1

4

L

http://www.ghg.net/clips/CLIPS.html
mailto:ejfried@ca.sandia.gov

compiler to compile Jess; the resulting code runs on either 1.0 or 1.1 VMs. Note that if you
use a 1.1 compiler, you will see some warning about 'deprecated methods' - it is safe to ignore
these warnings. I could make them go away, but then Jess would not be 1.0.2 compatible!

There is one optional source file in the subdirectory Jess32ljesslviewl. This fde defines the
optional debugging command 'view'. I t can be compiled only with Java 1.1 or later.

There are several example programs for you to try. They are called fullmab. clp,
zebra. clp, and wordgame. clp. fullmab . clp is the Monkey and Bananas problem
featured at the Jess web site. To run it yourself from the command line, just type

java Jess examples/fullmab. clp (or examples\fullmab. c l p on Win32)

and the problem should run, producing a few screensfull of output. Any file of CLIPS code
(given that it contains only CLIPS constructs and functions implemented by Jess, as
described in this document) can be run this way. Note that giving Jess a file name on the
command line is like using the 'batch' command in CLIPS; therefore, you need to make sure
that the file ends with

(reset)
(run 1

or nothing will happen. zebra. clp and wordgame. clp are two other classic CLIPS
examples, slightly modified to run under Jess. Both of these examples were selected to show
how Jess deals with tough situations. These examples both generate huge numbers of partial
pattern matches, so they are slow and use up a lot of memory. They may each take tens of
seconds to run, depending on your computer, but they will run.

Jess now has an interactive command-line interface, which has been improved for Jess
3.1. Just type j ava Jess to get a 'Jess>' prompt. In support of this, there is now an (exit)
command. To execute a file of CLIPS code from the command prompt, use the 'batch'
command:

Jess> (batch myfile.clp)
(l o t s of output)

Jess also now sports a 'system' command, which means, for example, that you can invoke
an editor from the Jess command line to edit a file of Jess code before reading it in with
'batch'. 'system' will also help to allow non-Java programmers to integrate Jess with other
applications. Given that you have a n editor named 'notepad' on your system, try

Jess> (system notepad README)
TRUE

The class 'Jess', which contains the main routine that allows you to execute CLIPS code
from the command line, also implements an Applet interface, so that it will run in a Web
browser. The Applet interface is specialized to run only the 'mab.clp' Monkey and Banana
example. To create your own graphical applets using the Jess classes, read on, and check out
the Sections about calling Jess from Java and vice-versa. You can modify the Jess class, or
you can write your own from scratch (which is probably a better idea.)

2 Major Jess Features
Jess implements the following constructs from CLIPS: defrules, deffunctions, defglobals,

deffacts, and deftemplates. Jess has none of the object-oriented CLIPS extensions: defclass,
defgeneric, etc. are *not* included. Jess does not implement modules, either. However, since
Jess is object-oriented, you can instantiate multiple Jess systems and get them to
communicate via the external function interface (see Section 8, Extending Jess with Java).

Jess supports the following basic data types: SYMBOL, STRING, INTEGER, FLOAT,
FACT-ID, and EXTERNAL-ADDRESS. In addition, values of the following types are used
internally by Jess: VARIABLE, FUNCALL, ORDERED-FACT, UNORDERED-FACT, LIST,
DESCRIPTOR, INTARRAY, and NONE. Note that all Jess numbers obtained via scanning
textual input become FLOATS. INTEGERS may be returned by functions, however.

5

Because of the way Jess compiles rules, it works much better if you define your rules first
before loading in facts. Deffacts don't count as loading in facts, but the (reset) and (assert)
commands do. Put your rules first in your Jess input files for the most efficient operation of
Jess.

Jess implements only a small subset of CLIPS intrinsic functions. These are functions
which are essentially built into Jess and cannot be removed. All of these have been designed
to function as much like their CLIPS counterparts as possible. The currently supported
intrinsic functions are

*, +, -, /, <, <=, <>, =, > , >=, and, assert, assert-string, bind,
clear, eq, exit, facts, gensym", halt, if, jess-version-number,
jess-version-string, load-facts, mod, modify, neq, not, or, printout,
read, readline, reset, retract, return, rules, run, save-facts,
sym-cat, undefrule, unwatch, watch, while .
On the other hand, I'm supplying implementations for many more CLIPS functions as

'Userfunctions' - external functions written in Java that you can plug into Jess. See the files
j ess/StringFunctions . j ava (string handling functions: str-cat, str-compare, etc),
j ess/MultiFunctions . j ava (multifield functions: create$, nth$),
jess/PredFunctions . java (predicates: oddp, stringp, etc), j ess/MiscFunctions . j ava
(batch, system), and j ess/MathFunctions . j ava (abs, sqrt) for more information. All of the
included Userfunctions are installed into the command-line version of Jess by default; you
can pick and choose in your own applications. In applets, in particular, you may want to
include only the Userfunctions you need, to keep the size of the applet down. (see Section 8,
Extending Jess with Java, for information about doing this.)

Here is the complete list of Userfunctions shipped with Jess 3.2:

first$, float, floatp, implode$, insert$, integer, integerp,
intersection$, length$, lexemep, load-function, load-package, log,
loglo, lowcase, max, member$, min, multifieldp, nth$, numberp, oddp,
pi, random, replace$, rest$, round, setgen, sqrt, str-cat,
str-compare, str-index, str-length, stringp, sub-string, subseqS,
subsetp, sym-cat, symbolp, system, time, union$, upcase
All these functions are described in detail later in this document.
One more note - in the interest of size and speed, Jess assumes that your input code is

largely correct CLIPS code. As a result, if your CLIPS code is syntactically invalid, Jess's
error messages may be less than helpful. It certainly would help you develop Jess code if you
had a copy of CLIPS to test on.

**, abs, batch, complement$, create$, delete$, div, e, evenp, exp,

3 The Jess Language
Jess is effectively an interpreter for a rule language borrowed from CLIPS. I will briefly

describe this language here; more information can be gotten from the CLIPS manuals
themselves.

I'm using an extremely informal notation here to describe syntax. Basically strings in
<angle-brackets> are some kind of data that must be supplied; things in [square brackets]
are optional, and ellipses (...) are used to indicate one or more of the preceding. In general,
input to Jess is free-format; newlines are generally not significant and are treated as
whitespace.

responds with the text in bold.
In the example dialogs, You type what appears after the Jess> prompt. The system

3.1 Atoms
An 'atom', or symbol, is a common concept in the Jess language. Atoms are very much like

identifiers in other languages. A Jess atom can contain letters, numbers, and the following
punctuation: $*=+/<>-?#. . An atom may not begin with a number; it may begin with some
punctuation marks (some have special meanings as operators when they appear at the start

c

6

of an atom.) The best atoms consist of letters, numbers, underscores, and dashes; dashes are
traditional word separators. The following are all valid atoms:

foo first-value contestant#l - abc

3.2 Numbers
Jess parses numbers using the Java StreamTokenizer class. Therefore, it accepts only

simple floating point and integer numbers; it does not accept scientific or engineering
notation. The following are all valid numbers:

3 4 . 5.643

3.3 Strings
Character strings in Jess are denoted using "double quotes.'' Backslashes can be used to

r l f o O " "Hello, World" "\"Nonsense\, If he said firmly.
escape embedded quote symbols. The following are all valid strings:

3.4 Lists
The fundamental unit of syntax in Jess is the list. A list always consists of an enclosing set

of parentheses and zero or more atoms, numbers, strings, or other lists. The following are
valid lists:

(+ 3 2) (a b c) ("Hello, World") () (deftemplate foo (slot bar))

The first element of a list (the 'car' of the list in LISP parlance) is often called the list's
'head' in Jess.

3.5 Comments
Programmer's comments in Jess begin with a semicolon (;) and extend to the end of the

line of text. Comments cannot appear inside of constructs (see Section 3.8, Constructs). Here
is an example of a comment

; This is a list
(a b c)

3.6 Functions
Jess contains a large number of built-in functions that you may call; more functions are

provided as extensions. You can write your own functions in the Jess language (see Section
3.9, Deffunctions) or in Java (see Section 8, Extending Jess with Java.)

of an existing function can be evaluated as an expression. For example, a n expression that
uses the
the value of this expression is the number 5 (not a list containing the single element 5!) In
general, expressions are recognized as such and evaluated in context when appropriate. You
can type expressions at the Jess> prompt; Jess evaluates the expression and prints the
result.

Function calls in Jess use a prefix notation. A list whose head is an atom that is the name

function to add the numbers 2 and 3 would be written (+ 2 3). When evaluated,

Jess> (+ 2 3)

Jess> (+ (+ 2 3) (* 3 3))
5.0

14.0

Note that all arithmetic results are returned as floating-point numbers; all arithmetic is
done as floating-point by Jess. A comprehensive list of functions implemented in Jess, with
descriptions, is given in Section 4.

7

3.7 Variables
Programming variables in Jess are atoms that begin with the question mark (?) character.

The question mark is part of the variable's name. A normal variable can refer to a single
atom, number, or string; a variable whose first character is instead a "$" (for example, $?X) is
a 'multivariable', which can refer to a list of items. You assign to a variable using the 'bind'
function:

(bind ?x "The value")

Variables need not (and cannot) be declared before their first use.
3.8 Constructs
Besides expressions, the Jess language includes another kind of special list called a

'construct.' A construct is a list that defines something to the Jess system itself. For example,
the deffunction construct is used to define functions (see Section 3.9, Deffunctions.) A
construct evaluates to TRUE if it was accepted, or FALSE if it was not.

3.9 Deffunctions
The deffunction construct is used to define functions that you can then call from Jess. A

deffunction construct looks like this:
(deffunction <function-name> ([<parameterl> [<parameterZ> [...]]I)

[<doc - comment > 3
[<exprl> [<expr2> [. . 3 1 3
[<return-specifier>])

The <function-name> must be an atom. Each parameter must be a variable name (all
functions use pass-by-value semantics). The optional <doc-comment> is a double-quoted
string that can describe the purpose of the function. The <expr> are an arbitrary number of
arbitrary expressions. The optional <return-specifier> gives the return value of the function.
It can either be an explicit use of the 'return' function, or it can be any value or expression.
Control flow in deffunctions is achieved via the special control-flow expressions 'while' and
'if. The following is a deffunction that returns the numerically larger of its two arguments:
(deffunction max (?a ?b)
(if (> ?a ?b) then

(return ?a)

(return ?b)))
else

3.10 Facts
Jess maintains a list of "facts", or information about the current state of the system. Facts

come in two categories: ordered and unordered. Ordered facts are merely lists whose head
must be an atom:

(temperature 98.6)
(shopping-list bread milk paper-towels)
(start-processing)

Unordered facts are more structured; they contain a definite set of 'slots' which must be
accessed by name. While ordered facts can be used without prior definition, unordered facts
must be defined using the deftemplate construct (see Section 3.11, Deftemplates).

8

Facts are placed on the fact-list by the 'assert' function. You can see the current fact list
using the 'facts' function. You can remove a fact from the fact-list if you know its 'fact ID'. For
example,

Jess> (assert (foo bar))
<Fact - O>

Jess> (facts)
[Fact: foo (ordered) bar]
For a total of 1 facts.
TRUE

TRUE

For a total of 0 facts.
TRUE

Jess> (retract 0)

Jess> (facts)

3.11 Deftemplates
To define a type of unordered fact, use the deftemplate construct:

[<doc-comment>]
(slot <slot-name> [(default <value>)] [(type <typespec>)])
[(slot . . . I . . . I)

(deftemplate <deftemplate-name>

The <deftemplate-name> is the head of the facts that will be created using this
deftemplate. The <slot-name> must be an atom. The 'default' slot qualifier states that the
default value of a slot in a new fact is given by <value>; the default is the atom 'nil'. The
'type' slot qualifier is accepted (for CLIPS compatibility) but ignored by Jess.

As an example, defining the following deftemplate
(deftemplate automobile

"A specific car.''
(slot make)
(slot model)
(slot year)
(slot color (default white)))

would allow you to define facts like this:
Jess> (assert (automobile (make Chrysler) (model LeBaron) (year 1997)))
<Fact-l>

Jess> (facts)
[Fact: automobile (unordered) make=Chrysler; model=LeBaron;

For a total of 1 facts.
TRUE

year=1997; color=white;]

Note that the car is white, by default. Also note that any number of additional

A given slot in a deftemplate fact can normally hold only one value. If you want a slot that

(deftemplate box

automobiles could also be simultaneously asserted onto the fact list using this deftemplate.

can hold multiple values, use the 'multislot' keyword instead:

(slot location)
(multislot contents))

(assert (box (location kitchen) (contents spatula sponge frying-pan) 1)

9

3.12 Deffacts
The deffacts construct is a handy way to define a list of facts that should be made true

(deffacts <deffacts-name>
when the Jess system is started or reset.

[<doc-comment>]
<facti>
[...I)

The deffacts-name is not used; its primary purpose is documentation. A deffacts can
contain any number of facts. Any unordered facts in a deffacts must have previously been
defined via a deftemplate construct when the deffacts is parsed. The following is a valid
deffacts construct:

(deffacts automobiles
(automobile (make Chrysler) (model LeBaron) (year 1997))
(automobile (make Ford) (model Contour) (year 1996))
(automobile (make Nash) (model Rambler) (year 1948)))

3.13 Defrules
The main purpose of a shell like Jess is to support the execution of rules. Rules in Jess are

somewhat like the IF ... THEN statements of other programming languages; in operation, Jess
constantly tests to see if any of the IFs become true, and executes the corresponding THENs
(actually, it doesn't work quite this way, but this is a good way to imagine things. See Section
5, How Jess Works, for a more truthful explanation.) The 'intelligence' embedded in an
intelligent rule-based system is encoded in the rules. The defrule construct is used to define a
rule to Jess.

(defrule cdefrule-name>
[<doc-comment>]
[<salience-declaration>]
[[<pattern-binding> <- 3 <patternl>]
[(more patterns) 3

[<actionl> [<actionZ> ... I])
=>

Basically, a rule consists of a list of patterns (the IF part) and a list of actions (the THEN
part.) The patterns are matched against the fact list. When facts are found that match all the
patterns of a rule, the rule becomes activated, meaning it may be fired (have its actions
executed) as soon as any other activated rules have been fired. An activated rule may become
deactivated before firing if the facts that matched its patterns are retracted, or removed from
the fact list, while it is waiting to be fired. Here is an example of a simple rule:

(defrule example-1
"Announce 'a b c' facts"
(a b c)

(printout t "Saw 'a b c ' ! " crlf))
=>

To see this rule in action, enter it at the Jess> prompt, assert the fact (a b c), then the
(run) command to start the Jess engine. You'll get some interesting additional information by
first issuing the (watch all) command:

.
Jess>

Jess>

Jess>

TRUE

TRUE

c lear)

watch a l l)

(d e f r u l e example-1
"Announce ' a b c ' f a c t s "
(a b c)

(p r i n t o u t t "Saw ' a b c ' ! " c r l f))
=>

example-1: +l+l+l+l+t
TRUE

==> f-0 [Fact: a (ordered) b c]
==> Activation: example-1 : f-0
<Fact- O>

Jess> (run)
FIRE [Defrule: example-1 "Announce 'a b c' facts";

Saw 'a b c'!
TRUE

J e s s > (a s s e r t (a b c))

1 patterns; salience: 01 f-0

Jess>

When you enter the rule, you see the sequence of symbols +l+l+l+l+t. This tells you
something about the way that Jess compiled the rule you wrote into the internal rule
representation. Then when you assert the fact, Jess responds by telling you that the new fact
was assigned the numeric fact identifier 0 (f-0), and that it is an ordered fact with head 'a'
and additional fields 'b' and 'c'. Then it tells you that the rule example-1 is activated by the
fact f-0, that fact you just entered. When you type (run), you see an indication that your rule
has been fired, including a list of the relevant fact IDS. The line "Saw 'a b c'!'' is the result the
execution of your rule.

If all the patterns of a rule had to be given literally as above, Jess would not be very
powerful. Patterns can, however, also include wildcards and various kinds of predicates
(comparisons and boolean functions). Firstly, you can specify a variable name instead of a
value for a field in any of a rule's patterns (but not the pattern's head.) A variable matches
any value in that position within a rule. For example, the rule

(d e f r u l e example-2
(a ?x ? y)

(p r i n t o u t t "Saw ' a It ?x 'I 'I ? Y " ' I' c r l f))
=>

will be activated each time any fact with head 'a' having two fields is asserted: (a b c), (a 1
2), (a a a), etc. As in the example, the variables thus matched in the patterns (or left-hand-
side, LHS) of a rule are available in the actions (right-hand-side, RHS) of the same rule.

it will match. Tests follow the variable name and are separated from it and from each other
by ampersands. Tests can either be a literal value (in which case the variable matches only
that value,) another variable (which must have been matched earlier in the rule LHS), one of
the previous two options preceded by a tilde (-), in which case the test is for inequality, or a
colon (:) followed by a function call, in which case the test succeeds if the function returns the
special value TRUE (actually in Java it must return a Value object which compares equal to
that returned by the static function jess.Funcall.TRUE0). This means you can use any
internal or user-defined boolean function as a test. Popular ones are things like eq and neq
(comparison) and integerp and stringp (type testing). You can use nested function calls as '

well; i.e., do arithmetic, then compare the result to a fixed value using eq. Here's an example
of a rule that uses several kinds of tests.

Each such variable field in a pattern can also include any number of tests to qualify what

11

(defrule example-3
(not-b-and-c ?nl&-b ?n2&-c)
(different ?dl ?d2&-dl)
(same ? s ?SI
(more-than-one-hundred ?m&:(> ?m 100))
=>
(printout t "Found what I wanted! 'I crlf))

The first pattern will match a fact with head 'not-b-and-c' with exactly two fields such that
the first is not 'b' and the second is not 'c'. The second pattern will match any fact with head
'different' and two fields such that the two fields have different values. The third pattern will
match a fact with head 'same' and two fields with identical values. The last pattern matches
a fact with head 'more-than-one-hundred' and a single field with a numeric value greater
than 100.

A few more details about patterns: you can match a field without binding it to a variable
by omitting the variable name and using just a question mark (?) as a placeholder. You can
match any number of fields using a multivariable (one starting with $?):
Jess> (defrule example-4

(grocery-list $?list)
=>
(printout t "I need to buy It $?list crlf))
TRUE

TRUE

I need to buy (eggs m i l k bacon)
TRUE

Jess> (assert (grocery-list eggs milk bacon))

Jess> (run)

3.13.1 Pattern bindings,
Sometimes you need a handle to an actual fact that helped to activate a rule; for example,

when the rule fires, you may need to retract or modify the fact. To do this, you use a pattern-
binding variable:

(defrule example-5
?fact <- (command "retract me")

(retract ?fact))
=>

The variable (?fact, in this case) is assigned the fact ID of the particular fact that activated
the rule.

3.13.2 Salience.
Rules normally file in an unpredictable order, related to but not necessarily the same as

the order in which they were activated. To influence this order, rules can include a salience
declaration:

(defrule example-6
(declare (salience -100))
(command exit-when-idle)

(printout t "exiting.. . I' crlf))
=>

(This rule contains no patterns). Declaring a low salience value for a rule makes it fire
after all other rules of higher salience. A high value makes a rule fire before all rules of lower
salience. The default salience value is zero.

3.13.3 'Not' patterns.
A pattern can be enclosed in a list with 'not' as the head. I n this case, the pattern is

considered to match if a fact which matches the pattern is not found. For example:

12

(defrule example-7
(person ? X I
(not (married ?x))
=>
(printout t ?x is not married!'' crlf))

Note that a 'not' pattern cannot contain any variables that are not bound before that
pattern (since a 'not' pattern does not match any facts, it cannot be used to define the values
of any variables!) A 'not' pattern can similarly not have a pattern binding.

3.14 Defglobals
Jess can support 'global variables' that are visible from the command-prompt or inside any

(defglobal
rule or deffunction. You can define them using the defglobal construct:

<varnamel> = <valuel>
[<varnameZ> = <value2> [. . .] I)

Note that defglobals, like deffacts, have no effect until a 'reset' command is issued.

Jess does not implement all features of all CLIPS constructs. This list tries to explain
some of what's missing from Jess to those who know CLIPS. If you're not already a CLIPS
user, you should skip this section!

4 Things Not Implemented In Jess

4.1 Defrules

Jess implements the simplest form of rule salience. Salience values must be *fixed*
integers between -10000 and 10000.
The 'and' and 'or' conditional elements are not supported on rule LHSs. 'not' is
supported, however. You can generally use multiple rules to simulate the effect of an
'and' or 'or' CE.
The ' I ' connective constraint is not supported. '&', '-I, and predicate constaints
(functions like :(eq)) are all supported. Note that instead of writing a pattern like

(foo bar I baz)

you can write
(foo ?X&: (or (eq ?X bar) (eq ?X baz)))

to achieve the same effect in Jess.
The 'test' conditional element is not supported, but it can generally be replaced by a
predicate constraint attached to another pattern, i.e,

(foo ?X ? Y)
(test (eq ?X (+ ?Y 3)))

can be translated into
(foo ?X ?Y&: (eq ?X (+ ?Y 3))).

Jess 2.x forced you to name all variables used in patterns. Jess 3.0 now accepts
unnamed variables (bare '?' or '$?I) for 'don't care' values.

4.2 Deffunctions

Forward declarations of mutually recursive functions are not needed in Jess and will
not parse.

0 As of Jess 3.0, Jess, like CLIPS, allows a symbol to be placed at the end of a
deffunction, and the value of that symbol will become the return value of the
deffunction. The explicit (return) funcall is no longer required.

4.3 Deftemplates
0 The only supported slot attribute in Jess is the 'default' attribute. In particular, 'type'

will parse, but is ignored at runtime.
4.4 COOL, FuzzyCLIPS, wxCLIPS, etc:

0 Jess does not implement any features of these CLIPS extensions.

4 Jess Function Guide
In this Section, every Jess language function shipped with Jess version 3.2 is described.

Some of these functions are intrinsic functions, while some are Userfunctions, and may not
be available to all Jess code, as detailed above.

*
Arguments:

One or more numeric arguments
Returns:

Descriptioit:
Number

Multiplies any number of numeric arguments and returns their product.
**

Argu ineit ts:
Two numbers

Returns:

Description:
Number

Raises the first argument to the power of the second using Java's Math.pow0
function.

+
Arguments:

Returns:
One or more numeric arguments

Number
Descriptio it:

Adds any number of numeric arguments and returns their sum.

Arguineitts:
One or more numeric arguments

Returns:

Description:
Number

Subtracts the second and later arguments from the first, and returns the difference.

14

I
Argumeiits:

Ret urns:
One or more numeric arguments

Number

Description:
Multiplies all but the first argument together, then divides this product into the first
argument; returns the quotient.

<

Arguments:

Ret urns:
Two or more numeric arguments

Boolean

Returns TRUE if the first argument is less than the second and all later arguments.
Descript iori:

<=
Argumeiits:

Ret urns:

Description:

Two or more numeric arguments

Boolean

Returns TRUE if the first argument is 1
arguments.

<>

Arguments:

Ret uriis:

Two or more numeric arguments

Boolean
Description:

ss than or qual to the second and all later

Returns TRUE if the first argument is not equal to any of the second and all later
arguments.

Argumeiits:

Returns:

Description:

Two or more numeric arguments

Boolean

Returns TRUE if the first argument is equal to all of the second and later arguments.
>

Arguments:
Two or more numeric arguments

Retunis:
Boolean

15

Description:
Returns TRUE if the first argument is greater than the second and all later
arguments.

>=
Arguments:

Returns:
Two or more numeric arguments

Boolean
Description:

Returns TRUE if the first argurqent is greater L a n or equal to the second and all
later arguments.

abs
Arguments:

Returns:
One number

Number

Returns the absolute value of the argument.
Descriptioit:

and
Arguments:

Ret U ~ I L S :
One or more boolean expressions

Boolean

Returns TRUE only if all arguments evaluate to TRUE.
Description:

assert
Arguments:

Returiis:
One or more facts (not fact-IDS.)

Fact-ID or FALSE

Asserts all facts onto the fact-list: returns fact-ID of last fact asserted, or FALSE if no
facts were successfully asserted (for example, if all facts given are duplicates of
existing facts.)

Description:

assert-string
Arguments:

Returns:
One string, containing a representation of a fact.

Fact-ID or FALSE

Attempts to parse string as a fact, and if successful, returns the value returned by
assert with the same fact. Note that the string must contain the fact's enclosing
parentheses.

Description:

16

batch
Arguments:

Ret urns:

Description:

One string or atom, the name of a file

(Varies)

Attempts to parse and evaluate the given file as Jess code. If successful, returns the
return value of the last expression in the file.

bind
Arguments:

Two, a variable name and any value
Returns:

(Varies)
Description:

Assigns the given value to the given variable, creating the variable if necessary. Note
that (as in CLIPS) this works best in rules and deffunctions, and not from the
command prompt. Returns the given value.

clear

Arguments:
None

Returns:
TRUE

Clears Jess. Deletes all rules, deffacts, defglobals, deftemplates, facts, activations,
etc. Userfunctions are not deleted.

Description:

complement$
Arguments:

Returns:

Description:

Two multifields

Multifield

Returns a multifield consisting of all elements of argument 2 not appearing in
argument 1.

create$
Arguments:

Any number of arbitrary values
Returns:

Multifield
Description:

Returns a new multifield containing all the given arguments. Note that multifields
must be created explicitly using this function or others that return them; they cannot
be directly parsed from Jess input.

17

delete$
Arguments:

A multifield and two numbers

Returns:
Multifield

Descriptioir:
Creates a new multifield by removing elements from the given multifield. The first
numeric argument is the one-based index at which to start removing elements; the
second is how many elements to remove.

div
Argurnents:

Two numbers
Ret urns:

Numbers
Description:

Quotient of two numbers, properly rounded to the nearest integer.
e

Arguments:
None

Returns:
Number

Description:
Returns the transcendental number ‘e‘*

eq
Arguments:

Any number of arbitrary arguments
Retunis:

Boolean

Returns TRUE if the first argument is ‘equivalent’ to all the others. For strings, this
means identical contents. Uses the Java Object.equals0 function, so can be redefined
for external types.

Description:

evenp

Arguments:

Returns:
One integer

Boolean
Description:

TRUE if number is an even integer. Results with non-integers may be unpredictable.
exit

Arguments:
None

18

Ret urns:
Nothing

Exits Jess and halts Java.
Description:

exP
Arguments:

Returiis:
One number

Number

Returns 'e' raised to the power of the given argument.
Description:

facts
Arguments:

Returns:
None

TRUE

Prints a list of all facts on the fact-list.
Description:

first$
Arguments:

Returns:
One multifield

Mutifield

Returns the first element of the given multifield as a new one-element multifield.
Description:

float
Argwneiits:

Returns:
One number

Floating-point number

Returns the given argument as a float.
Descript ioii:

floatp
Arguments:

Returns:

Description:

One number

Boolean

Returns TRUE if the given number has a non-zero fractional component.

19

gensym*

None
Arguments:

Retunis:

Description:
Atom

Returns a unique atom. The atom will consist of the letters "gen" plus an integer. You
can set the value of this integer to be used by the next gensym call using setgen (see
below.)

halt
Arguments:

Ret urns:

Description:

None

TRUE

Halts rule execution. No effect unless called from the RHS of a rule.
if

Arguments:
A boolean expression, the atom 'then', and any number of additional expressions;
optionally followed by the atom 'else' another list of expression.

(Varies)

The boolean expression is evaluated. If it does not evaluate to FALSE, the first list of
expressions is evaluated, and the return value is that returned by the last expression.
If it does evaluate to FALSE, and the optional second list of expressions is supplied,
those expressions are evaluated and the value of the last is returned.

Returns:

Description:

Examp le:

(if (> ?x 100)
then

else
(printout t "X is big" crlf)

(printout t "X is small'' c r l f))

implode$
Argurneirts:

Returns:

Descriptioir:

One multifield

String

Converts each element of the multifield to a string, and returns these strings
catenated together with single intervening spaces.

20

insert$

Arguments:

Retunis:

Description:

A multifield, an integer, and another multifield

A multifield

Inserts the elements of the second multifield so that they appear starting at the given
index of the first multifield.

integer
Arguments:

One number
Ret urns:

Integer
Description:

Truncates any fractional component of the given number and returns the integral
part.

integerp
Arguments:

One number
Returns:

Description:
Boolean

Returns TRUE if the given number has no fractional component.
intersection$

Arguments:
Two multifields

Returns:
Mu1 tifield

Returns a multifield consisting of the elements the two argument multifields have in
common.

Description:

jess-version-number
Arguments:

None
Retunis:

Description:
Float

Returns a version number for Jess; currently 3.2 .
jess-version-string

Arguments:
None

Ret unrs:
String

21

Description:
Returns a human-readable string descriptive of this version of Jess.

length$

Arguments:
Multifield

Ret urns:
Integer

Description:
Returns the number of elements in the given multifield.

lexemep

Arguments:

Ret urns:
Any value

Boolean
Description:

Returns TRUE is the argument is an atom or string.

load-facts
Arguments:

A string or atom, the name of a file of facts
Returns:

Boolean
Description:

The argument should name a file containing a list of facts (not deffacts constructs,
and no other commands or constructs.) Jess will parse the file and assert each fact.
The return value is the return value of assert when asserting the last fact. In an
applet, load-facts will use getDocumentBase0 to find the named file.

load-function
Arguments:

Returns:

Description:

One string or atom, the name of a Java class

Boolean

The argument must be the fully-qualified name of a Java class tha- implemen-; the
Userfunction interface. The class is loaded in to Jess and added to the engine, thus
making the corresponding command available. See Section 8 on
Extending Jess with Java for more information.

load-package
Arguments:

Ret urns:
One string or atom, the name of a Java class

Boolean
Description:

The argument must be the fully-qualified name of a Java class that implements the
Userpackage interface. The class is loaded in to Jess and added to the engine, thus

22

making the corresponding package of commands available. See Section 8 on
Extending Jess with Java for more information.

1%
Arguineiits:

Returns:

Description:

log10

Arguineitts:

Ret urns:

Description:

lowcase
Arguineiits:

Returns:

Descriptioii:

One number

Number

Returns the natural logarithm of the argument.

One number

Number

Returns the base-10 logarithm of the argument.

One atom or string.

String

Returns the argument with all characters converted to lower case, as a string.
max

Arguments:

Returits:

Description:

Two numbers

Number

Returns the larger of the two arguments
member$

Arguments:

Returns:

Description:

A value and a multifield

Integer or FALSE

Returns the 1-based index at which the value appears in the multifield, or FALSE if
it does not appear.

min
Argumeitts:

Two numbers

Ret urns:
Number

Returns the lesser of the two arguments.
Description:

mod

Argumeitts:

Returns:

Two integers

Integer

Returns the integr
Description:

modify
Argumeitts:

1 remainder of dividing the first argument by the second.

A fact-ID and any number of two-element lists

Fact-ID

The fact-ID must belong to an unordered fact. Each list is taken as the name of a slot
in this fact and a new value to assign to the slot. A new fact is asserted which is
similar to the given fact but which has the specified slots replaced with new values.
The original fact is retracted. The fact-ID of the new fact is returned.

Returns:

Description:

multifieldp
Arguments:

Returns:
Any value

Boolean

Returns true if the argument is a multifield.
Description:

neq

Arguments:

Returns:

Description:

Two or more values

Boolean

Returns TRUE if the first argument is not equivalent (see eq) to any of the second or
remaining arguments.

not

Arguments:

Returits:

Description:

A Boolean expression

Boolean

Returns the Boolean opposite of the argument.

24

nth$

Arguments:

Returns:

Description:

A number and a multifield

(Varies)

Returns the value at the given 1-based index of the multifield.

numberp

Arguments:

Ret urns:

Descriptioii:

oddp
Arguments:

Returns:

Any value

Boolean

Returns true if the argument is a numeric type.

One integer

Boolean

Returns TRUE if the argument is an odd number; see evenp.
Description:

or
Arguments:

Ret urns:

Any number of function calls

Boolean

Returns TRUE if any of the arguments evaluates to TRUE.
Description:

Pi
Arguments:

Returns:
None

Number

Description:

printout
Returns the number 'pi'.

Arguments:

Ret urns:
The atom 't', followed by any number of additional values

nil

25

Description:
Prints its arguments to standard output. The 't' is not printed but must be present.
No spaces are added between arguments. The special atom 'crlf prints as a newline.

random
Arguments:

Returns:

Description:

read
Argumeitts:

Retunis:

Descr ip t ioa:

readline
Arguments:

Ret urns:

None

Number

Returns a pseudo-random integer between 0 and 65536.

Optionally, the atom 't' (may be omitted).

(Varies)

Reads a single atom, string, or number from standard input, returns this value.

Optionally, the atom 't' (may be omitted).

String

Reads a line from standard input, returns it as a string.
Description:

replace$
Arguments:

Ret urns:
A multifield, two numbers, and another multifield

Multifield
Description:

The second multifield is inserted into the first multifield, replacing elements between
the 1-based indices given by the two numeric arguments, inclusive.

Exainpl e:

Jess>
(a

reset

replace$ (create$ a b c) 2 2 (create$ x y 2))

X Y Z C)

Arguments:

Returns:
None

TRUE

Descriptioic
Removes all facts from the fact-list, removes all activations, then asserts the fact
(initial-fact), then asserts all facts found in deffacts and initializes all defglobals.

rest$

Arguments:

Retunis:

Description:

One multifield

Multifield

Returns a new multifield consisting of all elements from the given multifield except
the first.

retract
Arguments:

Returns:
Any number of fact-IDs

TRUE

Retracts the facts whose IDS are given.
Description:

return
Arguinei Lts:

Ret urns:
One arbitrary value

(Varies)

Returns the given value from a deffunction. Exits the deffunction immel
Description:

round
Argurnerits:

Retunis:

Description:

rules

Arguments:

Returns:

Descriptioic

One number

Integer

Properly rounds the given number and returns the nearest integer.

None

TRUE

Prints a list of all defrules.

iate

run

Argurneitts:

Retunis:
None

TRUE

Starts the inference engine. Jess will keep running until no more activations remain
or 'halt' is called.

Description:

save-facts
Arguments:

Returns:
A filename, and optionally an atom

Boolean
Description:

Attempts to open the named file for writing, and then writes a list of all facts on the
fact-list to the file. This file is suitable for reading with load-facts. If the optional
second argument is given, only facts whose head matches this atom will be saved.
Does not work in applets.

setgen

Argurneitts:
A number

Returns:

Description:
TRUE

Sets the integer which will be used by gensym* to generate the next unique symbol.
Note that if this number has already been used, gensym" uses the next larger
number that has not been used.

sqrt

Arguments:
A number

Ret urns:
Number

Description:
Returns the square root of the argument.

str-cat

Arguments:
Any number of values

Returns:
String

Description:
Converts all arguments to strings and concatenates them together, returning the
result as a string.

28

str-compare

Arguments:

Returns:
Two strings

Integer
Description:

Returns 0 if the strings are identical, -1 if the first is lexically less than the second, +1
if lexically greater.

str-index

Arguments:

Ret urns:
Two strings

Integer or FALSE

Returns the I-based index at which the first string first appears in the second; or
FALSE if it does not appear.

Description:

str-length
Arguments:

Returns:
A string

Integer

Returns the length of the string in characters.
Description:

stringp

Arguments:

Ret urns:
Any value

Boolean

Returns TRUE if the argument is a string.
Description:

sub-string
Arguments:

Returns:
Two numbers and a string

String

Returns the string consisting of the characters between the two 1-based indices of the
given string (inclusive).

Description:

subseq$
Arguments:

Returns:
A multifield and two numbers

Multifield

Description:
Returns a multifield consisting of the elements between the two 1-based indices of
the given multifield (inclusive).

subsetp

Arguments:
Two multifields

ReturiLs:
Boolean

Description:
Returns TRUE if all the elements of the first multifield appear in the second
multifield.

sym-cat

Argumeirts:
Any number of values

Retunis:
Atom

Description:
Converts all arguments to strings and concatenates them together, returning the
result as an atom.

symbolp
Arguments:

Any value
Returns:

Boolean
Description:

Returns TRUE if the argument is an atom.
system

Arguineiits:
Any number of values

Returns:
TRUE

Description:
Executes the operating-system command-line constructed by converting each
argument to a string.

time
Arguments:

None
Returns:

Number
Descriptioit:

Returns the number of seconds since 12:OO AM, Jan 1, 1970.

undefrule
Arguineitts:

Returits:
An atom (the name of a rule)

Boolean

Remove the named rule from the Rete network. This rule will never fire again.
Returns TRUE if the rule existed.

Descriptioit:

union$

Arguments:

Ret urits:

Two multifields

Multifield
Description:

Returns a new multifield consisting of all the elements that appear in the two
arguments; duplicates are removed.

unwatch

Arguments:

Ret urits:
One of the atoms all, rules, compilations, activations, facts

TRUE
Descriptioii:

Causes trace output to not be printed for the given indicator. See watch
upcase

Arguineiits:

Ret urits:
A string or atom

A string

Returns the argument as an all-uppercase string.
Descriptio i i :

view
Arguineitts:

Ret urns:

Descriptioii:

None

TRUE

This Userfunction is included in the Jess distribution but is not normally installed;
you must load it using load-function (the class name is jess.view.View). When
invoked, it displays a live snapshot of the Rete network in a graphical window. The
display is described in Section 5, How Jess Works.

watch
Arguments:

One of the atoms all, rules, compilations, activations, facts

Returns:
TRUE

Description:
Produces additional debug output when specific events happen in Jess, depending on
the argument. Any number of different watches can be active simultaneously.

0

0

0

rules: prints a message when any rule fires.
compilations: prints a message when any rule is compiled.
activations: prints a message when any rule is activated, or deactivated, showing
which facts have caused the event.
facts: print a message whenever a fact is asserted or retracted.
all: all of the above.

0

0

while
Arguineitts:

A function call returning Boolean, the atom 'do', and an arbitrary number of
additional function calls.

Returns:
(Varies)

Description:
Evaluates the boolean expression repeatedly. As long as it does not equal FALSE, the
list of other expressions are evaluated. The last expression evaluated is the return
value.

5 How Jess Works
Note: the information in this Section is provided for the curious reader. An understanding

of the Rete algorithm may be helpful in planning expert systems; an understanding of Jess'
implementation probably will not be. Feel free to skip this Section and come back to it some
other time. You should not take advantage of many of the Java classes mentioned in this
Section; they are internal implementation details, and any Java code you write which uses
them may well break each time a new version of Jess is released.

Jess is a rule-based expert system shell. In the simplest terms, this means that Jess's
purpose it to continuously apply a set of if-then statements, called rules, to a set of data,
called the fact list. You define the rules that make up your own particular expert system.
Rules in Jess look something like this:

(defrule library-rule-1
(book (name ?X) (status late) (borrower ?Y))
(borrower (name ?Y) (address ? Z))

(send-late-notice ?X ?Y ? Z))
=>

Note that this syntax is borrowed from (and is identical to) the syntax used by CLIPS.
This rule might be translated into psueudo-english like this:

Library rule #1:
If

and

then

a late book exists, with name X, borrowed by someone named Y

that borrower's address is known to be Z

send a late notice to Y at Z about the book X.

32

The book and borrower entities would be found on the fact list. The fact list is therefore a
kind of database of bits of factual knowledge about the world. The attributes (called "slots")
that things like books and borrowers are allowed to have are defined in statements called
"deftemplates"; actions like send-late-notice can be defined in user-written functions in the
Jess language ("deffunctions") or in Java ("Userfunctions.") For more information about the
CLIPS rule syntax (and to work with Jess, you will certainly need to learn more!) refer to the
previous Section, and possibly to the CLIPS documentation as mentioned above.

In a typical expert system a fixed set of rules is used, but the fact list changes
continuously. However, it is an empirical fact that in most expert systems, much of the fact
list is also fairly fixed; although new facts are arriving and old ones being removed at all
times, the percentage of facts that change per unit time is generally fairly small. For this
reason, the obvious implementation for the expert system shell is a very inefficient one. This
obvious implementation would be to keep a list of the rules, and continuously cycle through
the list, checking each one's left-hand-side (LHS) against the fact list, and executing the
right-hand-side (RHS) of any rules that apply. This is inefficient because most of the tests
made on each cycle will have the same results as on the previous iteration; since the fact list
is stable, most of the tests will be repeated. You might call this the 'rules finding facts'
approach, and the computational complexity is of the order of O(RPF), where R is the number
of rules, P is the average number of patterns per rule LHS, and F is the number of facts on
the fact list. This is effectively nA2 in the size of the system.

Jess instead uses a very efficient method known as the Rete (Greek for "net") algorithm.
The classic paper on the Rete algorithm ("Rete: A Fast Algorithm for the Many Pattern/
Many Object Pattern Match Problem w, Charles L. Forgy, Artificial Intelligence 19(1982), 17-
37) became the basis for a whole generation of fast expert system shells: OPS5, its ancestor
ART, and CLIPS. In the Rete algorithm, the inefficiency described above is alleviated
(conceptually) by remembering past test results across iterations of the rule loop. Only new
facts are tested against any rule LHSs. Additionally, as will be described below, new facts are
tested against only the rule LHSs to which they are most likely to be relevant. As a result,
the computational complexity per iteration drops to something more like O(sqrt(RP)). Our
discussion of the Rete algorithm is necessarily brief; the interested reader is referred to the
Forgy paper or to Giarraiitano aiid Riley, "Expert Systerns: Principles aiid Programming'',
Second Editioii, PWS Publishing (Boston, 1993) for a more detailed treatment.

represents one or more tests found on a rule LHS. Facts that are being added to or removed
from the fact list are processed by this network of nodes. At the bottom of the network are
nodes representing individual rules; when a set of facts filters all the way down to the bottom
of the network, it has passed all the tests on the LHS of a particular rule and this set
becomes an "activation"; the associated rule may have its RHS executed ("be fired") if the
activation is not invalidated first by the removal of one or more facts from its activation set.

Within the network itself there are broadly two kinds of nodes: one-input and two-input
nodes. One-input nodes perform tests on individual facts, while two-input nodes perform
tests across facts and perform the grouping function. Subtypes of these two classes of node
are also used, and there are also auxilliary types such as the terminal nodes mentioned
above.

The Rete algorithm is implemented by building a network of nodes, each of which

An example is often useful at this point. The following rules:
(defrule example-2 (defrule example-3

(XI (XI
(Y) (Y)
(Z) =>)

=>)

might be compiled into the following network:

33

(two-input nodes)

I fire example-3 I (terminals)

The nodes marked x?, etc., test if a fact contains the given data, while the nodes marked +
remember all facts and fire whenever they've received data from both their left and right
inputs. To run the network, Jess presents new facts to each node at the top of the network as
they added to the fact list. Each node takes input from the top and sends its output
downwards. A single input node generally receives a fact from above, applies a test to it, and,
if the test passes, sends the fact downward to the next node. If the test fails, the one-input
nodes simply do nothing. The two-input nodes have to integrate facts from their left and
right inputs, and in support of this, their behavior must be more complex. First, note that
any facts that reach the top of a two-input node could potentially contribute to a n activation:
they pass all tests that can be applied to single facts. The two input nodes therefore must
remember all facts that are presented to them, and attempt to group facts arriving on their
left inputs with facts arriving on their right inputs to make up complete activation sets. A
two-input node therefore has a 'left memory' and a 'right memory'. It is here in these
memories that the inefficiency described above is avoided. A convenient distinction is to
divide the network into two logical components: the single-input nodes comprise the "pattern
network', while the two-input nodes make up the "join network'.

There are two simple optimizations that can make Rete even better, The first is to share
nodes in the pattern network. In the network above, there are five nodes across the top,
although only three are distinct. We can modify the network to share these nodes across the
two rules (the arrows coming out of the top of the x? and y? nodes are outputs):

+-------------------------- +
A + I

I I
+ I I

I x ? I I y ? I I z ? I I I
+ I I

/ / / I I

+ I-+ / I + I + / +------------ +

+-------------
A

+ +---- + +---- +----
I

+----+ +---- + +----

+ / + ------------ +------------ + / +---
I
+------------

\ / I
+ I

I + I I
+ I

I

+------------

+------------

+---------------- + +---------------- + I

I f i r e example-2 I
+---------------- +

34

But that's not all the redundancy in the original network. Now we see that there is one
join node that is performing exactly the same function (integrating x,y pairs) in both rules,
and we can share that also:

+---------------- +
1 fire example-3 I
+---------------- +

The pattern and join networks are collectively only half the size they were originally; this
kind of sharing comes up very frequently in real systems, and is a significant performance
booster!

You can see the amount of sharing in a Jess network by using the 'watch compilations'
command. When a rule is compiled and this command has been previously executed, Jess
prints a string of characters something like this, which is the actual output from compiling
rule example-2, above:
example-2: +1+1+1+1+1+1+2+2+t

Each time '+l' appears in this string, a new one-input node is created; +2 indicates a new

example-3: =1=1=1=1=2+t
two-input node. Now watch what happens when we compile example-3:

Here we see that =1 is printed whenever a preexisting one-input node is shared; =2 is
printed when a two-input node is shared. +t represents the terminal nodes being created.
(Note that the number of single-input nodes is larger than expected; Jess creates separate
nodes that test for the head of each pattern and its length, rather than doing both of these
tests in one node, as we implicitly do in our graphical example.) No new nodes are created for
rule example-3; Jess shares existing nodes very efficiently in this case.

represented by various subclasses of the Java class jess.Node: Nodel, Node2, NodeNot2, and
NodeTerm. The Nodel class is further specialized because it contains a 'command' member
which causes it to act differently depending on the tests or functions it needs to perform. For
example, there are specializations of Nodel which test the first field (called the 'head') of a
fact, test the number of fields of a fact, test single slots within a fact, and compare two slots
within a fact. There are further variations which participate in the handling of multifields
and multislots. The Jess language code is parsed by the class jess.Jesp, while the actual
network is assembled by code in the class jess.ReteCompiler. The execution of the network is
handled by the class Rete. The Jess class itself is really just a small demonstration driver for
the jess package, in which all of the interesting work is done.

The 'view' command, distributed for the first time with Jess 3.2, is a graphical viewer for
the Rete network itself; I have used this as a debugging tool for Jess, but it may have
educational value for others, and it may help you to design more efficient systems of rules in

Jess's Rete implementation is very literal. Different types of network nodes are

35

Jess. Issuing the 'view' command after entering the rules example-2 and example-3 produces
a very good facsimile of the drawing (although it correctly shows the larger number of one-
input nodes.) The various nodes are color-coded according to their roles in the network;
Node1 nodes are red; Node2 nodes are green; NodeNot2 nodes are yellow; and NodeTerm
nodes are blue (unless they've been 'deactivated' via the undefrule command or being
redefined, in which case they are invisible.)Passing the mouse over a node displays
information about the node and the tests it contains; double-clicking on a node brings up a
dialog box containing the same information. See the description of the view function for
important information before using it.

6 Using Jess From Java Code
Using Jess from Java code is simple. The Rete class contains the expert system engine.

The Jesp class contains the Jess parser. To execute a file of CLIPS code in Jess (like the
CLIPS 'batch' command), simply create a Rete object and a Jesp object, tell the Jesp object
about the file, and call Jesp.parse(boo1ean prompt):

/ / See info about the Display classes in Section 7
NullDisplay nd = new NullDisplay () ;

/ / Create a Jess engine
Rete rete = new Rete(nd);

/ / Open the file test.clp
FileInputStream fis = new FileInputStream("test. clp") ;

/ / Create a parser for the file, telling it where to take input
/ / from and which engine to send the results to
Jesp j = new Jesp(fis, rete) ;
t rY

I
/ / parse and execute the code, without printing a prompt
j .parse (false) ;

catch (ReteException re)
1

t
/ / All Jess errors are reported as 'ReteException's.
re.printStackTrace(nd.stderr0);

1

Note that if the file 'test.clp' contains the CLIPS (reset) and (run) commands, the Jess
engine will run to completion during the parse0 call. Also note that all the classes in the Jess
package will throw ReteException exceptions to signal errors.

Rete.ExecuteCommand(String) method. For example, after the above code, you could include
the following:

try
t

For more control over Jess from your Java program, you can use the

rete.ExecuteCommand(" (reset) 'I) ;
rete.ExecuteCommand("(assert [foo bar foo)) ' f) ;
rete. ExecuteCommand (" (run) ") ;

1

I

1

catch (ReteException ex)

System, err .println ("Foo bar error. ") ;

I made a n effort to make Jess 'sort-of threadsafe. Sort-of is not nearly good enough,
however, so be careful how you use Jess in a multithreaded application. One major difference

between Jess and CLIPS is that you can call (run) from a rule RHS and have a new rule fired
up in the middle of RHS execution! This should be used very carefully, if at all.

Jess provides an interface 'ReteDisplay' that provides hooks into the engine's internal
workings. The Display provides two types of functions: functions that return an input,
output, and error stream to the engine, and functions that are called by the engine whenever
an event occurs (events here meaning a construct is parsed, fact is asserted, rule is activated,
etc.) You can implement ReteDisplay as a simple way of providing a GUI for your Jess
application. The fancy multicolored display for the Jess home page is implemented in the
class LostDisplay. Writing a ReteDisplay is the simplest way to customize Jess. See Section 7
for more info about ReteDisplay.

See the file Jess. j ava for ideas on how to implement Jess applets and applications.

One simple way to use CLIPS as part of a larger system is to capture and process what
CLIPS prints on its standard output. This is also possible in Jess. This Section explains how
to use the ReteDisplay class to do this.

This is actually very easy to do, but maybe hard to describe. Jess stdin and stdout are
Java streams. Jess gets these streams by calling the methods ReteDisplaystdinO and
stdouto. To capture Jess's output, then, all you need to do is to subclass ReteDisplay so that
it returns a custom output stream that captures and processes the information in some way.
There is an example of this in the Jess distribution, as described below.

Observe that the Jess 'monkey' applet's output appears in a scrolling window. How is this
done? The scrolling window is created using a n instance of the class TextAreaOutputStream
(part of Jess.) TextAreaOutputStream is a subclass of OutputStream that implements all the
Outputstream methods such that the data appears in a TextArea Component.

TextAreaOutputStream using that widget, then a Printstream from the
TextAreaOutputStream. It then uses this Printstream to construct a LostDisplay object (a
subclass of ReteDisplay) and then uses that LostDisplay to construct a Rete engine. As a
result, the output from the Rete engine ends up in the TextArea. (The name LostDisplay
comes from the fact that the graphics remind me of the credits from the old TV show 'Lost in
Space'.)

7 Capturing and Processing Jess Output

In the distributed 'monkey' applet, Jessinit0 creates a TextArea widget, then a

So, to capture and process the printed output from Jess, you need to:
1. Iinpleineiit an Outputstream class which does what you want to do to the stream of

Jess output text. Look at TextAreaOutputStream to see how. If you want to also print
the output as well as process it, you can do that in this class (see the class
java. io. Filteroutputstream for an elegant way of chaining streams together.)

2. Implement a ReteDisplay class. NullDisplay is a very, very simple one which just
hands out System.out as stdouto, System.in as stdino, etc. To create your custom
version, you can copy NullDisplay and just add a constructor which lets you pass in
your custom streams.

3. In your mainline code, construct an instance of your ReteDisplay using an instance of
your Outputstream (remember to coerce it to a Printstream first). Then use this
ReteDisplay to construct your Rete engine. When you run Jess, the printed output
will be captured by your stream class.

This all happens in the inito method in the file Jess. j ava .

8 Extending Jess With Commands Written in Java
Jess's rule language can be extended with additional commands written in Java. This, of

course, requires you to know the Java programming language, which is not something I can
teach you in the confines of this small document. For many real applications, however,
extending Jess in this way will be necessary. The good news is that it's very easy, and you
can add capabilities to Jess limited only by your imagination.

The class jess.Userfunction represents a single user-supplied function, while the class
jess.Userpackage represents a whole set of such functions. Given that you have written some
classes which inherit from these classes, you can load these extensions into Jess in two ways.
First, you can load them in from Java code. Given that 'rete' is the Rete object in your
application, and 'myfunction' is the name of a Userfunction class you (or someone else!)
wrote, you can add the new function to Jess by calling
rete.AddUserfunction(new myfunction());

or an entire package of such functions in a class 'mypackage' using
rete.AddUserpackage(new mypackageo);

Starting in Jess 3.1, you can load functions and packages form the Jess language itself.

(load- f unct ion "myf unct ion")
The equivalents to the above are

and
(load-package "mypackage")

Note that if the new classes or user packages come in a Java package, you'll need to

(load-package "xyzzy.bassomatic.mypackage")
specify the fully qualified name of the class:

In any case, the relevant classes need to be reachable on your Java CLASSPATH.
I've made it as easy as possible to add user-defined functions to Jess. There is no system

type-checking on arguments, so you don't need t o tell the system about your arguments, and
values are self-describing, so you don't need to tell the system what type you return. You do,
however, need to understand two basic Jess data structures: class Value and class
Valuevector. Look a t the source for these classes if the following discussion isn't clear.

8.1 The class j e s s .Value

A Value is a self-describing data object. Once it is constructed, its type and value cannot
be changed. Valuesupports a type (1 function, which returns one of these type constants
(defined in the class jess . RU, 'Rete Utilities'):

0;
1;
2;
4;
8;
16;
32;
64 ;

final public static int ORDERED FACT = 128;
final public static int UNORDERED - FACT = 256;
final public static int LIST = 512;
final public static int DESCRIPTOR = 1024;
final public static int EXTERNAL-ADDRESS = 2048;
final public static int INTARRAY = 4096;
final public static int MULTIVARIABLE = 8192;
final public static int SLOT = 16384;
final public static int MULTISLOT = 32768;

- final public static int NONE -
final public static int ATOM -
final public static int STRING -
final public static int INTEGER -
final public static int VARIABLE -
final public static int FACT-ID -
final public static int FLOAT -
final public static int FUNCALL -

-
-
-
-
-
-
-

38

s

Value objects are constructed by specifying the data and the type. Each overloaded
constructor assures that the given data and the given type are compatible. Note that for each
constructor, more than one value of the type parameter is acceptable. The available
constructors are:
public Value(0bject 0 , int type) throws ReteException

String s , int type) throws ReteException
Value V I
Valuevector f, int type) throws ReteException
double d, int type) throws ReteException
int value, int type) throws ReteException
int [] a, int type) throws ReteException

public Value
public Value
public Value
public Value
public Value
public Value

*

Value supports a number of functions to get the actual data out of a valueobject. These

public Object ExternalAddressValue() throws ReteException
public String Stringvalue() throws ReteException
public Valuevector Factvalue() throws ReteException
public Valuevector Funcallvalue() throws ReteException
public Valuevector Listvalue0 throws ReteException
public double Floatvalue() throws ReteException
public double Numericvalue() throws ReteException
public int AtomValue() throws ReteException
public int Descriptorvalue() throws ReteException
public int FactIDValue() throws ReteException
public int IntValueO throws ReteException
public int Variablevalue0 throws ReteException
public int[] IntArrayValueO throws ReteException

are

If you try to convert random values by creating a Value and retrieving it as some other
type, you'll generally get a ReteException. However, many types can be freely interconverted:
Strings and atoms, for example, or integers and floats.

Note that Jess stores all strings, atoms and variable names as integers, which are used as
indexes into a hashtable. Thus if Value. type () returns RU.ATOM or RU.STRING, you can
call either Atomvalue () (which returns that integer) or Stringvalue () (which returns a
Java String object.) To convert a String to an appropriate integer, call int
RU .putAtom (String) . To get the String that goes with an integer, call String
RU. getAtom (int) . Note that this is NOT a way to convert the String "1" to the integer 1;
it converts Strings into unique hash codes.

8.2 The class jess .Valuevector

Facts, function calls, lists, etc. are stored by Jess in objects of class jess . Valuevector.
Valuevector is an extensible array of Value objects. You set an element of a Valuevector
with void set (Value, int) and get an element with Value get (int) . set () and
get (will throw an exception if the index you're accessing is past the end of the current
array. You can add a value to the end of a Valuevector with void add (Value) (which can
extend the length of the internal data structures.) int size () returns the actual number of
Values in the Valuevector. void set length (int) lets you cheat by extending the
length of a Valuevector to include null Values. (This is necessary sometimes to allow
filling in many elements in random order.)

Valuevector with the slots filled in a special way, as follows (the constants representing slot
numbers MUST be used, as they may change)

Facts (type RU.ORDERED-FACT or RU.UNORDERED-FACT) are stored as a

-
SLOT NUMBER TYPE DESCRIPTION

- RU.CLASS RU.ATOM I The 'head' or first field of

39

the fact
RU.ID RU . FACT-ID The fact-id of this fact
RU.DESC RU.DESCRIPTOR One of

RU.ORDERED-FACT or
RU.UNORDERED-FACT

this fact
RU-FIRST-SLOT (ANY) Value of the first slot of

RU.FIRST-SLOT + 1 (ANY) second
...

Note that for ordered facts, the slots are stored in the order in which they appear, but in
unordered (deftemplate) facts, they appear in the order given in the corresponding
deftemplate.

and all remaining slots are arguments. When your user function is called, the first argument
to the Java Call function will be a Valuevector representation of the Jess code that evoked
your function.

Now, on to writing a user function. First, create a class that implements the interface
jess.Userfunction, which just contains the two methods name () and Call () . A listing is
worth a 1000 words:

/ / A user function that implements the CLIPS 'upcase' operation in
/ / terms of the java.lang.String.toUpperCase() method.

Function calls (RU.FUNCALLs) are simpler; the first slot is the functor as an RU-ATOM,

class MyUpcase implements jess.Userfunction
t

private int -name = RU .putAtom ("upcase") ;

/ / The name method returns the integer representation of the name.
/ / This function will be called by Jess.
public int name() { return -name; 1

public Value Call(Va1ueVector vv, Context context) throws ReteException

return new Value(vv.get(l).StringValue().toUpperCase(), RU.STRING);
{

1

Note that we use vv. get (1) . Stringvalue () to get the first argument to 'upcase' as a
java String. If the argument doesn't contain a string, a ReteException will be thrown that
describes the problem; hence you don't need to worry about incorrect argument types.
vv . get (0) will always return 'upcase', the name of the function being called. vv . get (1) is
the first argument, vv. get (2) would be the second, if this function accepted multiple
arguments. If you want, you can check how many arguments your function was called with
and throw a ReteException if it was the wrong number.

Then in your mainline code, simply call Rete.AddUserfunction0 with an instance of your
new class as an argument, and the function will be available from Jess code. Adding to our
mainline code from the last section:

/ / Add the 'upcase' command to Jess
rete.AddUserfunction(new upcase());
/ / Exceute some Jess code that calls this function
rete.ExecuteCommand(" (printout t (upcase foo) crlf) ") ;

will print "FOO.
Jess 3.0 added the jess . Userpackage interface. jess. Userpackage is a handy way to

group a collection of Userfunctions together. A Userpackage class should supply the one

t

40

method Add () , which adds a collection of Userfunctions to a Rete engine using
Adduserfunction () . Nothing mysterious going on, but it's very convenient.
Implementations for strcat, strcompare, etc, are found in the sample fde
jess/StringFunctions.java.
public class StringFunctions implements Userpackage {

public void Add(Rete engine) {
engine.AddUserfunction(new strcato);
engine.AddUserfunction(new upcase());
engine.AddUserfunction(new lowcase());
engine.AddUserfunction(new strcompare0);
engine.AddUserfunction(new strlengtho);
engine.AddUserfunction(new substring());

Now in your mainline, you can call
engine.AddUserpackage(new StringFunctionsO);

and from your Jess code, you can call str-cat, str-compare, etc.
There are a lot of new small classes in the Jess package which serve as examples of

Userfunctions. These days, with zips and JAR files, this isn't such a big deal. Still, you can
leave them out if you want just by removing the line that adds the relevant Userpackage
from your mainline program.

9 The Future of Jess
Jess will continue t o be maintained and improved for the foreseeable future. I have a list

of features I plan to implement, but it's hard to associate timescales with any of them. They
are listed in order. The first few are likely to appear in the next few months as a Jess 3.3
release. The later ones ... who knows? I don't expect a Jess 4.0 release before the end of this
year. For Jess 3.3:

0 The (test) conditional element
0 Parsing of integers (right now all parsed numbers are floats)

A much more extensive Java API for embedding Jess in other applications
Direct access to Java methods and variables from CLIPS code (using the Java
Reflection AFT)
Some subset of COOL functionality, possibly in the form of pattern matching on Java
member fields
Optional compilation of jess rules to pure Java code (potential for large speed
improvements)

For Jess 4.0?
0

0

10 Version History
Version 3.2

system and integer Userfunction classes renamed (Win95 filename capitalization
problem!) Broken delete$, insert$, replace$ fmed. 'view' command added. Big iffthen
in Funcall class finally removed in favor of separate implementation classes for
intrinsics, leading to a modest speed increase. Documentation vastly expanded!
Added catch for Array OutOfBoundsException in command-line interface; no more
crash on wrong number of args. Broken evenp, oddp fixed. str-cat, sym-cat made
more general. Broken sub-string fixed. Big switch in Node1 class replaced by
separate classes, leading to a very modest speed increase.

41

Version 3.1:
Added the 'assert-string' and 'batch' commands. Two bug fixes in multislot code
(thanks to Nancy Flaherty). Added 'undefrule' and the ability to redefine rules.
Added the 'system' function, although it doesn't work very well under Java. Public
function engine0 in jess-Context class allows you to do fancier things in
UserFunctions. Added the non-standard 'load-package' and 'load-function' functions.
Many new contributed functions packaged with Jess for doing math, handling
multifields, and other neat stuff; thanks to Win Carus for these. Added 'time' (1
second resolution).

A few code changes to accomodate Microsoft's Java compiler; Jess now compiles
unchanged with JVC (thanks to Mike Finnegan.) Added 'member$' multifield
function. Added 'clear' intrinsic (thanks to Karl Mueller.) Introduced a new way of
handling (not) patterns which I think finally guarantees there are no more not-
related bugs remaining! 'load-facts', which has been non-functional throughout the
beta period, is working again. Documentation now explains unzipping and compiling
a little better. Modified the way fact-id's are handled so that you can write '(retract 3)'
to retract fact #3.

LOTS of bug reports and improvement suggestions from the field - thanks folks! All
the reported bugs in the multifield implementation, and some residual odd behavior
in the "not" CE, have been fixed. The (exit) command has been added. A command
prompt has been added. The '# character can now be used in symbols. The access
levels on some methods in the Rete class have been opened up; Rete is no longer
final. nth$ is now 1-based, as it is in CLIPS. The "if' and "while" constructs now fire
on 'not FALSE' instead of 'TRUE'. The str-index function has been fixed and added.
Probably a few more things I'm forgetting here. Thanks for the input; particular
thanks to Nancy Flaherty, Joszef Toth, Karl Mueller, Duane Steward, and Michelle
Dunn for reporting bugs fixed in this version; sorry if I left anyone out.

First public release of Jess 3.0.

Userpackage interface; lots of new example UserFunctions for multifields, string, and
predicates.

Multislots! Also important bug fix: under certain circumstances, the Rete network
compilation could fail 1) if (not 0) CEs occurred on the LHS of a rule, 2) new variables
were introduced in that rule's patterns listed after the (not 0) CEs, and 3) these latter
variables were tested (i.e., in a predicate constraint) on the LHS of the rule.

Incremental reset. Watch activations. gc0 in LostDisplay, NullDisplay. Multifields!
All the Rete engine classes are now in a package named 'jess'. Many classes and
methods that should not be manipulated by clients are now package-private.

Ken Bertapelle found another bug, which has been squashed, in the pattern network.

Jess 2.2 adds a few new function calls (load-facts, save-facts) and fures a serious bug
(thanks to Ken Bertapelle for pointing it out!) which caused Jess to crash when
predicate constraints were used in a certain way. Another bugfii corrected the fact
that 'retract' only retracted the first of a list of facts. Jess used to give a truly

Version 3.0:

Version 3. Ub2:

Version 3.0bl:

Versioi~ 3.0a3:

Version 3.0a2:

Version 3. Oak

Version 2.2.1:

Version 2.2:

42

F

c

inscrutable error message if a variable was fxst used in a not CE (a syntax error); the
current error message is much easier to understand. I also clarified a few points in
the documentation.

Jess 2.1 is *much* faster than version 2.0. The Monkey example runs in about half
the time as under Jess 2.0, and for some inputs, the speed has increased by an order
of magnitude! This is probably the last big speed increase I'll get. For JavaRete
weenies, this speed increase came from banishing the use of java.lang.Vector in
Tokens and in two-input node memories. Jess is now within a believeable interpreted
Java/C++ speed ratio range of about 30:l. Jess 2.1 now includes rule salience. It also
implements a few additional intrinsic functions: gensym*, mod, readline. Jess 2.1
fixes a bug in the way predicate constraints were parsed under some conditions by
Jess 2.0. The parser now reports line numbers when it encounters an error.

Jess 2.0 is intrinsically about 30% faster than version 1.0. The internal data
structures changed quite a bit. The Rete network now shares nodes in the Join
network instead of just in the pattern network. The current data structures should
allow for continued improvement.

If anyone writes an emulation of a CLIPS function that Jess omits, please send it to me
and I'll include it in the next release (with credit to you, of course.)

At the time of this writing, Jess has more than 5000 registered users. I have been very
pleased by this response and have enjoyed working with many of Jess's more ambitious
users. If you use Jess, and if you have comments, questions, or concerns, please don't hesitate
to ask.

Finally, thanks to Gary Riley and the gang at NASA for writing the marvelous CLIPS in
the first place!

Version 2.1:

Version 2.0:

43

DISTRIBUTION
1

1
1
1
1
20
1
1
1
1
1
1
1
1
1
1
1
3
4
1

2

MS 9001

MS 9003
MS 9004
MS 9214
MS 9012
MS 9214
MS 9012
MS 0807
MS 9012
MS 9420
MS 9420
MS 9420
MS 9420
MS 9420
MS 9214
MS 0722
MS 0188
MS 9018
MS 0899
MS 9021

MS 9021

Thomas Hunter, 8000
Attn: J.B. Wright, 2200

J.F. Ney (A), 5200
W.J. McLean, 8300
R.C. Wayne, 8400
P.N. Smith, 8500
P.E. Brewer, 8600
T.M. Dyer, 8700
L.A. Hiles, 8800

D.L. Crawford, 8900
M.E. John, 8100
L.M. Napolitano, 8130
J.E. Costa, 8920
E.J. Friedman-Hill, 8920
R.A. Whiteside, 8920
Rich Detry, 4418
Carmen Pancerella, 8920
Robert Mariano, 8220
Paul Klevgard, 8220
Scot Marburger, 8220
Jim Smith, 8220
Barry Hess, 8220
Nina Berry, 8920
John Mitchiner, 6534
Donna Chavez, LDRD Office
Central Technical Files, 8940-2
Technical Library, 4916
Technical Communications Department, 8815/Technical Library,
MS 0899,4916
Technical Communications Department, 8815 for DOE/OSTI

t

44

