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EXECUTIVE SUMMARY 

The development of a suite of sophisticated benchmarks for nuclear 
engineering applications was begun under DOE Initiation Grant DE-FGO3- 
92ER75782. Because of the requirenient of accountability and quality control in the 
scientific world, a demand for hgh-quahty analytical benchmark calculations has 
arisen in the neutron transport community. The intent of these benchmarks is to 
provide a numerical standard to which production neutron transport codes may be 
compared in order to verrfy proper operation. The overall investigation as modified 
in the second year renewal application includes the following three primaty tasks: 

Task I. Two Dimensional Neutron Transport 
A. Single Medium Searchlight Problem (SLP) 
B. Two-Adjacent Half-space SLP 

Task It. Three-Dimensional Neutron Transport 
A. Point Source in Arbitrary Geometry 
B. Single Medium SLP 
C. Two-Adjacent Half-space SLP 

Task m. Code Verification 
A. Deterministic Codes 
B. Probabilistic Codes 

A complete analysis of the single medium SLP (Task l.A) has been 
completed and has been published in the literature. The material in this report 
describes the theory and numerical implementation of the solutions in detail for the 
primary tasks listed above. The analysis begins by considering the suite of 
analytical benchmarks in infinite isotropicdy scattering media. The historically 
sigmficant infinite medium problems are presented to provide a foundation upon 
which a more sophisticated analysis may be built. In the analysis of the infinite 
medium, for the first time, the monodirectional point source solution, or the so- 
called Green’s function, has been obtained (Task EA). The relationship between 
this fundamental solution and all other solutions in infinite isotropically scattering 
media is specified and thoroughly investigated. The final case treated is for the 
anisotropic infinite line source in an infinite medium. This source is examined 
because the numerical methods associated with its evaluation are sirmlar to those 
that must be used to obtain numerical results for the three-dimensional SLP in the 
next task. 
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The three-dunensional SLP for an isotropically scattering half-space 
(Task II.B) is investigated and employs similar numerical and mathematical 
techniques as used to obtain solutions for the infinite medium problems. The 
fundamental numerical techniques include quadrature, series summation, 
convergence acceleration, and root location leading to higher level packages for 
numerical Fourier and Laplace transform inversion. Numerical solutions for the 
three-dimensional searchlight problem (canted beam) are presented for both the 
surface and interior of a half-space. Although benchmark-quality results are 
presented, they are obtained at great computational expense, calling for the use of 
massively parallel computation for future implementation. The theory for Tasks 1.B 
and II.C has been set forth in a paper which is now in preparation. The numerical 
implementation is expected to follow along the lines of the single medium SLP. 
Several code verifications (Tasks m.A and m.B) have been performed and are 
continuing. The analytical results generated under this grant have been compared to 
the deterministic DANTSYS code series and the probabllistic code MCNP, both of 
which have been developed and are maintained at Los Alamos National Laboratory. 
Also, a comparison with the SMARTEPANTS code developed at the University of 
Arizona has been published. Additional comparisons will be presented in an article 
to be submitted to a nuclear engineering journal. 

The primary aim of the proposed investigation was to provide a suite of 
comprehensive two- and three-dimensional analytical benchharks for neutron 
transport theory applications. This objective has been achieved. The suite of 
benchmarks in infinite media and the three-dimensional SLP are a relatively 
comprehensive set of one-group benchmarks for isotropically scattering media. 
Because of time and resource limitations, the extensions of the benchmarks to 
include multi-group and anisotropic scattering are not included here. Presently, 
however, enormous advances in the solution for the planar Green's function in an 
anisotropically scattering medium have been made and will eventually be 
implemented in the two- and three-dimensional solutions considered under this 
grant. Of particular note in this work are the numerical results for the three- 
dimensional SLP, which have never before been presented. The results presented 
were made possible only because of the tremendous advances in computing power 
that have occurred during the past decade. These advances show no signs of 
slowing, and as computing power increases, we should be able to treat more 
comprehensive benchmarks. Based on the work completed under this grant, we 
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will, therefore, be able to continue to serve the neutron transport community by 
providing more complicated benchmarks in the future. 

CONFERENCE PROCEEDINGS: 

"Analytical Two-Dimensional Neutron Transport Benchmark: The Searchlight 
Problem," B. D. Ganapol and D. W. Nigg, Trans. Am. NUC. SOC., 64,276 (1991). 

"The Searchlight Problem for Neutrons in a Semi-Tnfinite Medium," B. D. Ganapol, 
D. W. Nigg, S. N. Jahshan, and C. A. Wernple, M & C Topical, Karlsruhe Germany 
(1993). 

"A Thr-ee-Dimensional Neutron Transport Benchmark Solution," B. D. Ganapol and 
D. E. Kornreich, Trans. Am. Nucl. SOC., 68,215 (1993). 

"A Three-Dimensional Neutron Transport Benchmark Solution," B. D. Ganapol, D. 
E. Komeich, and J. A. Dahl, International Conference on Reactor Physics and 
Reactor Computation, Tel Aviv, Israel, 70 (1994). 

"Numerical Treatment of the One-Group Half.-Space Problem with Anisotropic 
Scattering," M. A. Alani and B. D. Ganapol, Trans. Am. Nucl. Soc., 70,146 (1994). 

"A Two-Dimensional One-Group Transport Benchmark in Infinite Cylindrical 
Geometry," D. E. Komeich and B. D. Ganapol, Trans. Am. Nucl. Soc., 71,214 
(1994). 

"Two-Dimensional One-Group Neutron Transport in Transverse Cylindrical 
Coordinates," D. E. Kornreich and B. D. Ganapol, International Conference on 
Mathematics and Computations, Reactor Physics, and Environmental Analysis, 
Portland, Oregon, 2,1223 (1995). 

"Isotropic Finite Surface Sources in an Idinite Medium," D. E. Kornreich and B. D. 
Ganapol, Trans. Am. Nucl. SOC., 73,186 (1995). 

"Angular Green's Function Flux in an Tnfinite Medium with Anisotropic Scattering," 
M. A. Alani and B. D. Ganapol, Trans. Am. Nucl. SOC., 73,188 (1995). 



4 

JOURNAL ARTICLES: 

"Equivalence of the Single- and Double-Integral Formulation for a Multidimensional 
Semi-hfhte Medium," B. D. Ganapol, J.  Quant. Spectrosc. Radiat. Transfer, 50, 
551 (1993). 

"The Searchlight Problem for Neutrons in a Semi-Wte  Medium," B. D. Ganapol, 
et al., Nuclear Science and Engineering, 118,38 (1994). 

"A 3-D Neutron Transport Benchmark Solution,," B. D. Ganapol and D. E. 
Kornreich, Transport Theory and Statistical Physics, 2489 (1995). 

"The Suite of Analytical Benchmarks for Neutral Particle Transport in Infinite 
Isotropically Scattering Meha," D. E. Kornreich and B. D. Ganapol, to be published 
in Nuclear Science and Engineering (1996). 

"Numerical Evaluation of the Three-Dimensional Searchlight Problem," D. E. 
Kornreich and B. D. Ganapol, to be submitted to NucZear Science and Engineewing. 

The balance of this report consists of the dissertation of Drew E. Kornreich. 



... 

MULTI-DIMENSIONAL ANALYTICAL BENCHMARKS 

FOR NEUTRAL PARTICLE TRANSPORT 

by 

Drew Edward Kornreich 

A Dissertation Submitted to the Faculty of the 

DEPARTMENT OF NUCLEAR AND ENERGY ENGINEERING 

In Partial Fulfillment of the Requirements 

For the Degree of 

DOCTOR OF PHILOSOPHY 

WITH A MAJOR IN NUCLEAR ENGINEERING 

In the Graduate College 

THE UNIVERSITY OF ARIZONA 

1 9 9 5  



L 

-. . 

5 

ACKNOWLEDGMENTS 

I would like to express great thanks and appreciation to Dr. Ganapol for his extreme 
patience and unending support. It has been a joy to work with one who is so gifted as a 
teacher and as a researcher. His abilities in these areas are a model for those like myself 
who wish to follow in such pursuits. 

I would also like to thank Drs. Robert Seale, John Williams, David Hetrick, and 
The Barry Ganapol for allowing me to teach various classes for and with them. 

experiences gained in the classroom were as great at the front as in the desk. 

This research was partially performed under appointment to the Nuclear 
Engineering and Health Physics Fellowship program administered by Oak Ridge 
Associated Universities for the United States Department of Energy. Their support 
provided a strong financial base on which this work was built. Other support was 
provided by the DOE Initiation Grant DE-FG03-92ER75782. 



6 

TABLE OF CONTENTS 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . .  . . .  10 

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . .  

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

11 

16 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 1 . INTRODUCTION 
18 

21 

22 
23 

1 .E. Previous Work and Literature Review for Infinite Media Problems . 25 
1 . F. Extensions of the Available Benchmarks in Infinite Media . . . . .  27 

30 1 . H . 

1 .A. The Growth of Computational Power and Benchmarking . . . . . .  
1 . B Definition of an Analytical Benchmark . . . . . . . . . . . . . .  20 
1 . C. Analytical Benchmarks and Nuclear Engineering . . . . . . . . .  
1 . D. The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . .  22 

l.D.l. The Intuitive “Big Picture” . . . . . . . . . . . . . .  
1.D.2. The Constructive “Big Picture” 

. 

. . . . . . . . . . . .  

1 . G. An Extension to Semi-Infinite Geometry . . . . . . . . . . . .  29 
Benchmarks as a Pedagogical Tool . . . . . . . . . . . . . .  

2 . FUNDAMENTAL PROBLEMS IN AN INFINITE MEDIUM . . . . . . . .  
2.A. 
2.B. 
2 . C. 

The Isotropic Point Source in an Infinite Medium . . . . . . . . .  
The Isotropic Plane Source in an Infinite Medium . . . . . . . . .  
The Isotropic Line Source in an Infinite Medium . . . . . . . . . .  

32 
32 
37 
41 

3 . c .  

3.D. 

3.E. 

3 44 . EXTENSIONS OF THE ISOTROPIC POINT SOURCE SOLUTION . . .  
3 .A. Finite Isotropic Line Sources . . . . . . . . . . . . . . . . . . .  45 

3.A.2. Scalar Flux for Izi I zo 
3 B Finite Isotropic Disk Sources . . . . . . . . . . . . . . . . . . .  49 

3.B.l. Scalar Flux for p > R,  . . . . . . . . . . . . . . . .  50 
3.B.2. Scalar Flux for p <R0 

Finite Isotropic Rectangular Sources . . . . . . . . . . . . . . .  
3.C.l. Scalar Flux for hl > a and iyl bo . . . . . . . . . .  54 
3.C.2. Scalar Flux for 1x1 I a, and lyl 5 bo 

Results for the Finite Isotropic Line and Surface Sources . . . . . .  
3.D.1. Numerical Methods . . . . . . . . . . . . . . . . . .  57 

3 . D. 1 .a. Iterative Gauss-Legendre Quadrature . . . . . . .  
3.D. 1.b. Panel Integration . . . . . . . . . . . . . . . .  

3.D.3. Finite Sources in Large and Small Limits . . . . . . . .  
3.D.4. Small z ,  r Approximations 

3.A.1. Scalar Flux for lzl > zo . . . . . . . . . . . . . . . .  47 
48 . . . . . . . . . . . . . . . .  

. . 
. . . . . . . . . . . . . . . .  51 

53 

55 
56 

57 
57 

. . . . . . . . . .  

3.D.2. Tabular and Graphical Results for the Finite Line and 
Surface Sources . . . . . . . . . . . . . . . . . . .  58 

63 
67 . . . . . . . . . . . . . .  

The Isotropic Slab Source in an Infinite Medium . . . . . . . . .  69 



... t 

.._ 

. n 

.. 

. .~ 

4 . THE INFINITE MEDIUM GREEN’S FUNCTION . . . . . . . . . . . . .  
4.A. 
4.B. 

4 . c .  

4.D. 

4.E. 

4.F. 

4.G. 

Simplification of the Transport Equation . . . . . . . . . . . . .  
The Transformed Equation . . . . . . . . . . . . . . . . . . . .  

4.B. 1 . Fourier Transform in the Transverse Plane . . . . . .  

4.B . 3. The Transformed Scalar Flux . . . . . . . . . . . . .  
4.B.4. Alternative Expression €or K(z;z )  . . . . . . . . . . .  

The Pseudo Problem . . . . . . . . . . . . . . . . . . . . . .  
4.C. 1 . Integral Equation for the Pseudo Scalar Flux . . . . . .  
4.C.2 Solution to the Pseudo Problem . . . . . . . . . . . .  

Two-Dimensional Fourier Transform Inversion . . . . . . . . . .  
4.D. 1 . Inversion ol’ the Uncollided Flux . . . . . . . . . . .  
4.D.2. Inversion of the Collided Flux . . . . . . . . . . . . .  

4.D.2.a. Generation of the Isotropic Point Source Solution . 
4.D.2.b. Inversion in Terms of the Scalar Flux from an 

Isotropic Point Source . . . . . . . . . . . . .  

4.E.1. The Scalar Flux for z < 0 . . . . . . . . . . . . . . .  
4.E.2. The Scalar Flux for z 2 0 . . . . . . . . . . . . . . .  

4.F. 1 . Rotations of Axes . . . . . . . . . . . . . . . . . .  
4.F.2. Spatial Edit Point Grids . . . . . . . . . . . . . . . .  

4.F.2.a. Planar Grid . . . . . . . . . . . . . . . . . .  

4.F.3. Results for Individual Sources . . . . . . . . . . . .  
The Anisotropic Plane Source . . . . . . . . . . . . . . . . . .  

4.G. 1 . Derivation of the Scalar Flux from an Anisotropic Plane 
Source . . . . . . . . . . . . . . . . . . . . . . . .  

4.G.2. Derivation of the Scalar Flux Directly from the 
Transport Equation . . . . . . . . . . . . . . . . . .  

4.G.3. Derivation of the Flux from an Isotropic Plane Source . 

4.B.2. Formation of Integral Equation . . . . . . . . . . . .  

Reformulations of the Scalar F l u  to Address Singularities . . . . .  

Results for the Scalar Flux from the Green’s Function Source . . .  

4.F.2.b. Spherical Surface Grid (Global View) . . . . . .  

5 . GENERAL RESULTS FOR THE GREEN’S FUNCTION AND FINITE 
SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 .A. Results which Utilize the Global View . . . . . . . . . . . . . .  
5 . B . Multiple Source Results . . . . . . . . . . . . . . . . . . . . .  
5 . C. Computational Environment . . . . . . . . . . . . . . . . . . .  

6 . THE ANISOTROPICALLY EMITTING INFINITE LINE SOURCE . . . . .  
Anisotropic Infinite Line Problem Definition . . . . . . . . . . . .  
One-Dimensional Cases Derived from the Anisotropic Infinite Line 
Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6.B. 1 . One-Dimensional Cases: = 1 . . . . . . . . . . .  
6.B . 2. One-Dimensional Cases: Emission Into All Transverse 

Angles . . . . . . . . . . . . . . . . . . . . . . .  
6 . C . Alternative Formulation for Scalar Flux Solution: Infinite Series . . 
6.D. One-Dimensional Cases for Alternative Series Formulation . . . . .  

6.A. 
6 . B . 

7 

74 
74 
78 
78 
79 
80 
81 
83 
83 
86 
89 
90 
91 
92 

97 
100 
100 
101 
104 
105 
107 
107 
109 
110 
115 

115 

117 
12 1 

124 
124 
130 
136 

138 
139 

143 
144 

145 
148 
150 



8 

6.D. 1 . One-Dimensional Cases: = 1 . . . . . . . . . . .  
6.D.2. One-Dimensionzl Cases: Emission Into All Transverse 

Angles . . . . . . . . . . . . . . . . . . . . . . .  
6.E. Reformulation of Inversion in Cartesian Coordinates . . . . . . .  

6.E. 1 . Direct and Transform Coordinate Transformations . . .  
6.E.2. The Scalar Flux in Cartesian Coordinates . . . . . . .  
6.E.3. The Uncollided Scalar Flux in Cartesian Coordinates . 

6.F. 1 . Integration of Integral Formulation Equation . . . . .  
6.F.2. Integration of Series Formulation . . . . . . . . . . .  

6.G. Numerical Methods . . . . . . . . . . . . . . . . . . . . . . .  
6.G. 1 . Direct Double Fourier Inversion . . . . . . . . . . .  
6.G.2. Fourier Inversion and Series Formulation . . . . . . .  
6.G.3. Restrictions on n to Obtain Purely Oscillating Series . . 
6.G.4. Numerical Considerations for the Inversion in Cartesian 

Coordinates . . . . . . . . . . . . . . . . . . . . .  

6.F. Generation of Isotropic Line Source Solution . . . . . . . . . . .  

6.G.4.a. Simplification of Integral Expressions . . . . . .  
6.G.4.b. Transformation of Integral Expressions into 

6.G.4.c. Treatment for Small x and Small y 
Series . . . . . . . . . . . . . . . . . . . . .  

. . . . . .  

6.H. 1 . Numerical Studies: Error Analysis . . . . . . . . . .  
6.H.2. Numerical Studies: Individual and Total Collided Flux 

6.H.3. Numerical Studies: Numerical Inversion Comparisons . 
6.H.4. One-Dimensional Results . . . . . . . . . . . . . .  

6.H.4.a. Emission Along the z-axis . . . . . . . . . . . .  
6.H.4.b. Emission Along the Surface of a Cone . . . . . .  

6.H.5. General Results at Constant p . . . . . . . . . . . . .  
6.H.6. General Results in the Transverse Plane . . . . . . .  

6.H. Results for the Anisotropically Emitting Infinite Line Source . . . .  

Analysis . . . . . . . . . . . . . . . . . . . . . .  

7 . THE SEARCHLIGHT PROBLEM . . . . . . . . . . . . . . . . . . . . .  
7.A. 
7.B. 

7 . c .  

7.D. 

Searchlight Problem Background . . . . . . . . . . . . . . . . .  
Searchlight Problem Solution Formulation . . . . . . . . . . . . .  

7.B. 1 . Fourier Transform in the Transverse Plane . . . . . .  
7.B.2. Formation of an Integral Equation . . . . . . . . . .  
7.B.3. The Pseudo Problem . . . . . . . . . . . . . . . . .  
7.B.4. Solution to the Pseudo Problem in a Half-space . . . .  
7.B.5. The Transformed Scalar Flux and Surface Current . . 

The Scalar Fluxes and Current via Fourier Transform Inversion . . 
7.C. 1 . The General Incident Beam . . . .  
7.C.2. The Normal Incident Beam . . . . . . . .  

Numerical Considerations . . . . . . . . . . . . . . . . . . . .  
7.D. 1 . Numerical Evaluation of the H-Function . . . . . . .  
7.D.2. The Laplace Transform Inversion . . . . . . . . . .  
7.D.3. The Double Fourier Transform Inversion . . . . . . .  

7.D.3.a. The Scalar Flux at the Surface . . . . . . . . . .  
7.D.3 . b. The Interior Scalar Flux . . . . . . . . . . . . .  

151 

151 
152 
153 
154 
155 
156 
157 
161 
163 
163 
165 
166 

168 
168 

170 
172 
174 
174 

176 
176 
178 
179 
179 
181 
188 

190 
190 
190 
191 
191 
193 
194 
199 
200 
200 
202 
203 
203 
207 
209 
211 
214 

7.D.3.c. The Current at the Surface . . . . . . . . . . . .  217 



7.E. Results for the Searchlight Problem . . . . . . . . . . . . . . . 
7.E. 1. The Scalar Flux at the Surface . . . . . . . . . . . . 

7.E.l.a. Numerical Considerations for the Scalar Flux at the 
Surface . . . . . . . . . . . . . . . . . . . . 

7.E. 1.b. General Results for the Scalar Flux at the Surface . 
7.E.2. The Interior Scalar Flux . . . . . . . . . . . . . . . 

7.E.2.a. Numerical Considerations for the Interior Scalar 
Flux . . . . . . . . . . . . . . . . . . . . . . 

7.E.2.b. General Results for the Interior Scalar Flux . . . . 
7.E.3. The Current at the Surface . . . . . . . . . . . . . . 

7.E.3.a. Numerical Considerations for the Current at the 
Surface . . . . . . . . . . . . . . . . . . . . 

7.E.3.b. General Results for the Current at the Surface. . . 

8. CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . 

APPENDIX A. SCALAR FLUX EXPANSIONS NEAR VARIOUS SOURCES . 
The Scalar Flux at Small r for an Isotropic Point Source in an 
Infinite Medium . . . . . . . . . . . . . . . . . . . . . . . . . 
The Scalar Flux at Small r for an Isotropic Planar Source in an 
Infinite Medium . . . . . . . . . . . . . . . . . . . . . . . . . 
The Scalar Flux at Small Y for an Isotropic Line Source in an Infinite 
Me d i u m . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The Scalar Flux at Small r for Sources Derived from the Isotropic 
Point Source Solution in an Infinite Medium . . . . . . . . . . . 

A.4.1. The Scalar Flux at Small r for an Isotropic Finite Line 
Source . . . . . . . . . . . . . . . . . . . . . . . 

A.4.2. The Scalar Flux at Small Y for an Isotropic Disk Source . 
A.4.3. The Scalar Flux at Small r for an Isotropic Rectangular 

Source . . . . . . . . . . . . . . . . . . . . . . . 

A. 1. 

A.2. 

A.3. 

A.4. 

APPENDIX B. MULTIPLE COLLISION ANALYSIS . . . . . . . . . . . . . 

APPENDIX C. THE TRANSFORMED CURRENT AT THE SURFACE. . . . . 

APPENDIX D. H-FUNCTION FACTORIZATION FOR A COMPLEX 
A R G U M E N T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D. 1. H-function Calculus: Derivation of the Dispersion Relation . . . . . 
D.2. H-function Calculus: Factorization . . . . . . . . . . . . . . . . 

APPENDIX E. THE INVERSION FOR THE SURFACE SCALAR FLUX IN 
(k,,k,) SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

APPENDIX F. THE LAPLACE TRANSFORM INVERSION FOR A COMPLEX 
FUNCTIONf(t) . . , . . . . . . . . . . . . . . . . . . . . , . . . . , 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9 

219 
2 19 

219 
222 
227 

227 
230 
235 

235 
238 

24 1 

246 

246 

252 

253 

255 

255 
256 

258 

260 

262 

2 65 
265 
269 

27 1 

273 

276 



LIST OF TABLES 

10 

3.1. Error Analysis for Finite Line Source . . . . . . . . . .  

3.2. Error Analysis for Disk Source . . . . . . . . . . . . . . . . .  

. . .  60 

61 

3.3. Error Analysis for Finite Rectangular Source . . . . . . . . .  62 

3.4. Scalar Flux Analysis for Small Finite Sources . . . . . . . . . . . . .  66 

4.1. Integration Scheme Analysis . . . . . . . . . . . . . . . . . . . . . . .  112 

4.2. Error Analysis for Green’s Function Source . . . . . . . . . . . . . . .  112 

4.3. Scalar Flux Analysis for Different Inversion Methods . . . . . . . . . . .  114 

5.1. Source Specifications for Green’s FunctionsFinite Lines Example . . . . .  130 

5 . 2 .  

5.3. 

6.1. 

6.2. 

6.3. 

6.4. 

7.1. 

7.2. 

7.3. 

7.4. 

7.5. 

Source Specifications for DisksRectangles Example . . . . . . . . . . .  135 

Characteristic CPU Time for Evaluation of Scalar Flux from Various 
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 

Example of Small x Integration Intervals . . . . . . . . . . . . . . . . .  

Scalar flux as a Function of Radius and Solution Relative Error . . . . . .  

174 

175 

Comparison of Inversion Methods for Anisotropic Infinite Line Source . . .  178 

Comparison of the Scalar Fluxes from Isotropic Line and Anisotropic Line 
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 

The Complex Laplace Transform Inversion for Some Complex Functions . 
Error Analysis for the Surface Scalar Flux . . . . . . . . . . . . . . . .  

2 10 

221 

InversionMethodComparisonfortheSurfaceScalarFlux . . . . . . . .  222 

Error Analysis for the Interior Scalar Flux . . . . . . . . . . . . . . . .  229 

Comparison of Two Inversion Methods . . . . . . . . . . . . . . . . .  230 

7.6. 

7.7. 

7.8. 

7.9. 

Interior Scalar Flux as a Function of Position and c . . . . .  

Quadrature Order Study for the Surface Current . . . . . . . . . . . . .  

Quadrature Order Study for the Surface Current Near the Source . . . . .  

Error Analysis for the Surface Current . . . . . . . . . . . . . . . . . .  

231 

236 

237 

237 



1.1. 

1.2. 

1.3. 

1.2a. 

2.1. 

2.2. 

1.2b. 

2.3. 

1.2c. 

2.4. 

1.2d. 

3.1. 

3.2. 

3.3. 

3.4. 

3.5. 

3.6. 

3.7. 

3.8 .  

LIST OF ILLUSTRATIONS 

The intuitive “big picture” of sources in an infinite homogeneous medium . 

The constructive “big picture” of sources in an infinite homogeneous 
medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Two- and three-dimensional orientations of the Green’s function source . . .  

The first step in constructing the suite of infinite medium benchmarks . the 
isotropic point source . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The scalar flux from an isotropic point source as a function of position for 
several values of c . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Schematic for integrating the point source solution over the plane . . . . . .  

The second step in constructing the suite of infinite medium benchmarks . 
the isotropic plane source . . . . . . . . . . . . . . . . . . . . . . . . .  
The scalar flux from an isotropic plane source as a function of position for 
several values of c . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The third step in constructing the suite of infinite medium benchmarks . the 
isotropic line source . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The scalar flux from an isotropic infinite line source as a function of 
position for several values of c . . . . . . . . . . . . . . . . . . . . . .  

The fourth and fifth steps in constructing the suite of infinite medium 
benchmarks . finite line and surface sources . . . . . . . . . . . . . . . .  

Finite isotropic line source construction . . . . . . . . . . . . . . . . . .  
Construction of a finite disk source . . . . . . . . . . . . . . . . . . .  

Construction of a finite rectangular source . . . . . . . . . . . . . . . .  

Scalar flux at z = 0.1 resulting from a single isotropic line source . . . . . .  

Scalar flux at z = 0.1 resulting from a single isotropic disk source . . . . . .  
Scalar flux at z = 0.1 resulting from a single isotropic rectangle source . . . .  

Scalar flux at 0.1 mfp from the finite line source at several values of c . . . .  

Scalar fluxes from successively longer finite line sources . . . . . . . . . .  

11 

24 

25 

27 

33 

37 

38 

39 

40 

42 

43 

45 

46 

50 

54 

60 

61 

62 

63 

64 



~~ - 

." .. 

. .  

.. 

... 

. .  

- .  

.... 

... 

. i  

3. 

3.10. 

3.1 1. 

3.12. 

3.13. 

3.14. 

1.2e. 

3.15. 

3.16. 

1.2f. 

4.1. 

4.2. 

4.3. 

4.4. 

4.5. 

4.6. 

1.2g. 

4.7. 

4.8. 

1.2h. 

Scalar fluxes from successively longer radii for finite disk sources.. . . . .  

Scalar fluxes from successively longer half-widths for finite rectangular 
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Scalar fluxes from thin rectangular sources and a finite line source.. . . . .  

Actual and approximate scalar fluxes from a finite line source. . . . . . . .  

Actual and approximate scalar fluxes from a disk source. 

Actual and approximate scalar flur-es from a rectangular source. . . . . . .  

. . . . . . . . .  

The sixth step in constructing the suite of infinite medium benchmarks - a 
volumetric source. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The scalar flux from an isotropic infinite block source as a function of 
position for several values of c. . . . . . . . . . . . . . . . . . . . . .  

The scalar flux from thin isotropic slab sources as a function of position for 
several thicknesses. . . . . . . . . . . . . . . . . . . . . . . . . . .  

The seventh step in constructing the suite of infinite medium benchmarks - 
the Green's function source. . . . . . . . . . . . . . . . . . . . . . .  

Coordinate and vector systems definitions for transformed and real spaces. . 
Rotation of arbitrary transport frame into source frame convenient for 
numerical evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . .  

Explicit rotations of axes for determination of coordinate transformations. . 

Rotation of edit grid in x-y plane. . . . . . . . . . . . . . . . . . . . .  
Global view edit grid.. . . . . . . . . . . . . . . . . . . . . . . . . .  

Scalar flux at z = 0.1 resulting from a single Green's function source. . . .  

The eighth step in constructing the suite of infinite medium benchmarks - 
deriving the anisotropic plane source from the Green's function source. . .  

Scalar flux as a function of position for a plane source emitting in the 
direction = 1 for several values of c. . . . . . . . . . . . . . . . . .  

Angular flux as a function of p for a plane source emitting at po = 1 for 
several values of z. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The ninth step in constructing the suite of infinite medium benchmarks - 
deriving the isotropic plane source from the anisotropic plane source.. . . .  

12 

64 

65 

67 

68 

68 

69 

70 

72 

72 

75 

79 

106 

106 

109 

110 

113 

116 

120 

121 

123 



13 

5.1. 

5.2. 

Global views of Green’s function source . . . . . . . . . . . . . . . . .  

Global views of finite line source . . . . . . . . . . . . . . . . . . . . .  

5.3. Global views of disk source . . . . . . . . . . . . . . . . . . . . . . .  

5.4. Global views of two line sources in a “plus sign.”. . . . . . . . . . . . .  

5.5.  Four Green’s function and two finite line source configuration . . . . . . .  

5.6. Contour mapping at z = 0 for six source configuration plus enlargement . . .  
5.7. Contour mapping at z = 0.25 for six source configuration plus enlargement . 

5.8. Contour mapping at z = 0.5 for six source configuration . . . . . . . . . .  

5.9. Contour mapping of four square and 2 disk sources at z = 0 . . . . . . . .  

5.10. Contour mapping of four square and 2 disk sources at z = 0.9 . . . . . . . .  

6.1. Source geometry for an infinite line source emitting neutrons in the direction 
do($o.eo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1.2i. The tenth step in constructing the suite of infinite medium benchmarks . the 
anisotropic infinite line source . . . . . . . . . . . . . . . . . . . . . . .  

6.2. Source emission into all transverse angles (onto surface of a cone) . . . . . .  

6.3. Trigonometric changes of variables for direct and transformed space relating 
cylindrical and Cartesian coordinates . . . . . . . . . . . . . . . . . . .  

1.2j. 

6.4. 

The eleventh step in constructing the suite of infinite medium benchmarks . 
deriving the isotropic line source from the anisotropic infinite line source . . 

CPU time study for anisotropic infinite line source . . . . . . . . . . . .  

6.5.  Individual collided fluxes at Y = 1 for anisotropic line source . . . . . . . .  
6.6. The scalar flux as a function of distance and emission angle when the 

particles are emitted along the surface of a cone . . . . . . . . . . . . . .  
6.7a. The scalar flux as a function of distance and emission angle when the 

particles are emitted along the surface of a cone (magnified) . . . . . . . .  

6.7b. The scalar flux as a function of emission angle for p = 0.01 when the 
particles are emitted along the surface of a cone (magnified) . . . . . . . .  

6.8a. The scalar flux as a function of angle and emission angle for the anisotropic 
infinite line source with c = 0.9 and p = 1 (Note standard and magnified 
scales) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

126 

127 

128 

129 

130 

132 

133 

134 

135 

136 

139 

140 

145 

153 

157 

175 

177 

180 

181 

182 

183 



. ** 

.. .;- 

.- 

15 

D. 1. Regions of analyticity for H(z;k)  and A(z;k)  in the complex plane. . . . . . 266 

F. 1. Changes of variable to place Bromwich contour onto the real axis. . 275 



16 

ABSTRACT 

The linear Boltzmann equation for the transport of neutral particles is investigated 

with the objective of generating benchmark-quality calculations for homogeneous infinite 

and semi-infinite media. In all cases, the problems are stationary, of one energy group, 

and the scattering is isotropic. In the t-ansport problems considered, the scalar flux is 

generally the quantity of interest. The scalar flux will have one-, two-, or three- 

dimensional variation, based on the nature of the medium and source. The solutions are 

obtained through the use of Fourier and Laplace transform methods. For the multi- 

dimensional problems, the transformed transport equation is formulated in a form that can 

be related to a one-dimensional pseudo problem, thus providing some analytical leverage 

for the inversions. The numerical inversions use standard numerical techniques such as 

Gauss-Legendre quadrature, summation of infinite series, and Euler-Knopp acceleration. 

Consideration of the suite of benchmarks in infinite homogeneous media begins 

with the standard one-dimensional problems: an isotropic point source, an isotropic planar 

source, and an isotropic infinite line source. The physical and mathematical relationships 

between these source configurations is investigated. The progression of complexity then 

leads to multi-dimensional problems with sources which also emit particles isotropically: 

the finite line source, the disk source, and the rectangular source. It is noted that a finite 

isotropic disk will have a two-dimensional variation in the scalar flux and a finite 

rectangular source will have a three-dimensional variation in the scalar flux. Next, sources 

which emit particles anisotropically are considered. The most basic such source is the 

point-beam, or Green’s function source. The Green’s function source holds an interesting 

place in the suite of infinite medium benchmarks as it is the most fundamental of sources 

yet may be constructed from the isotropic point source solution. Finally, the anisotropic 
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plane and anisotropically emitting infinite line sources are considered. Many of the 

mathematical techniques used to generate results for the anisotropic line are of use in the 

three-dimensional searchlight problem. Thus, a fm theoretical and numerical basis is 

established for benchmarks which are most appropriate in infinite homogenous media. 

Attention is then turned to a homogeneous semi-infinite medium. The final problem 

which is investigated is the three-dimensional searchlight problem for a half-space. The 

primary feature is a canted incident beam at the center of the free surface. For the three- 

dimensional problem, the surface scalar f h x  and current are obtained, and the interior 

scalar flux is obtained with significant additional computational effort. 
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CHAPTER 1: INTRODUCTION 

The physical world contains many phenomena and processes for which it is 

desirable and possible to create simplified computational models. These models are based 

on physical laws and require mathematical agility to make the necessary simplifications so 

that both theoretical and numerical results may be obtained in a reasonable time while 

maintaining the relevant physical features. One area of interest in such computations is 

called “analytical benchmarking.” The investigation presented here will consider several 

benchmarks for nuclear engineering and radiative transfer applications. The benchmarks 

are limited to those which consider neutral particle transport. 

1 .A. The Growth of Comuutational Power and Benchmarking 

The world of analytical benchmarking has undergone many changes since the 

middle of this century. When the effort to construct nuclear weapons during the second 

World War was initiated, the available computational facilities were limited to rooms full of 

people operating the “supercomputers” of the time - simple adding machines. The 

emphasis was therefore on deriving relatively simple mathematical expressions to describe 

physical phenomena. These expressions often contained integral and/or differential 

operators. Because it was a significant task to obtain the value of something as simple as a 

sine function (i.e. the Taylor series form of the sine function would be calculated on the 

adding machines), theorists would often be satisfied with symbolic mathematical 

expressions rather than numerical evaluations. Their analyses would involve the 

asymptotic behavior of the functions and operators both near to and far from sources and 
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boundaries. Whatever simplifications, assumptions, or manipulations a theorist could 

perform to formulate the mathematical expressions in simple forms were greatly 

appreciated. This provided the groundwork for the field of analytical benchmarking, a field 

which was rich in the mathematics of operational calculus. 

During the past ten years, the computer world has seen astronomical advancements 

in the speed, storage, and memory capabilities of desktop personal computers and 

workstations so that the companies who make supercomputers are currently challenged by 

a product accessible to individuals. Researchers can now run computationally-intensive 

Monte Carlo codes overnight on a personal computer and obtain the same result requiring 

three or four hours on a supercomputer. With the recent interest in parallel processing, 

several central processing units (CPUs) can be linked together with calculations performed 

in tandem as opposed to sequentially so that calculational times may be further reduced. As 

a consequence of advances in the computing environment, advances in numerical analysis 

have also been made. Highly accurate numerical integration techniques, differentiation 

schemes, matrix inverters, series evaluators, root locators, etc. have all been developed to 

assist the numerical analyst to evaluate mathematical expressions. Thus, some emphasis 

has shifted from pure mathematical analysis to a combination of applied mathematics and 

numerics . 
The recent increases in computing power have allowed researchers to create 

complicated codes to model physical systems. With the creation of any code comes 

debugging, validation, and ultimately (if possible) verification. Before a code can be used 

to model complicated systems, the developers must be confident that the code is operating 

properly. They can gain this confidence by comparing the results of the calculation to 

experimental data; however, this validation is not always readily available, and even then 

experimental error is a significant concern. Validating a code ensures that it is not violating 

any physical laws. Validation does not ensure that the code produces the correct result or 
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that the numerical methods are being used properly - this falls under “code verification.” 

Unfortunately, the only means of verifying a code is to compare it with the “correct” 

answer. Verification of a code pertains to the numerical methods used, and does not ensure 

the accuracy of the physical model upon which the code is based. Ideally, confirmation 

that the code provides physically realistic results and operates properly is obtained through 

both verification and validation. The code developer who desires to verify a code’s proper 

operation must have a standard, or benchmark, with which to compare the code. When 

this benchmark concerns a relatively simple physical problem and obtains results through 

mathematical expression, it is called an “analytical benchmark.” 

1.B. Definition of an Analvtical Benchmark 

The term “analytical benchmark” often creates some confusion. If taken in the 

strictest sense, the only true analytical benchmarks are those where a mathematically 

closed-form solution involving known functions is available (e.g. the solution for the 

uncollided fltix from an isotropic point source in an infinite medium). If there are 

derivatives or integrals which must be numerically evaluated, then there will always be 

some numerical uncertainty in the solution. However, an analytic expression can be 

thought of as an expression that contains integrals which must be evaluated. An analytic 

benchmark consists of a numerical evaluation of an analytic expression as opposed to a 

numerical benchmark, which may consist of testing a code by considering numerically 

limiting cases. Generally, analytical benchmarks are used to test codes which use Monte 

Carlo or discrete numerical methods. In the former, an analytical benchmark may test the 

applicability of a limited statistical sampling of particles, and in the latter a benchmark may 

test the effects of spatial discretization and angular binning on the calculated results. In 

these methods, approximations are made to the statistical nature of the problem (Monte 
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Carlo methods) or the mathematics is reformulated using a discretized numerical method 

(discrete ordinates methods), and these approximate formulations describing particle 

transport are then coded in an algorithm. For analytica! benchmarks, the error in the 

physical parameters is not considered. Numerical approximations occur in the evaluation 

of mathematical expressions such as integrals or infinite series. In principle, an analytical 

benchmark can provide any desired accuracy at the expense of computational time, and in 

practice an analytical benchmark provides a numerical test with firm control over the 

desired error. 

l.C. Analvtical Benchmarks and Nuclear Engineering; 

One of the areas that has been and continues to be important in the fields of nuclear 

engineering and radiative transfer is development of computer codes to model the flow and 

distribution of particles in a medium. Codes which have found the greatest use are discrete 

ordinates or Monte Carlo methods. In the former, “the numerical description of the 

transport of neutral particles involves discretization of the independent variables of the 

transport equation” {O’Dell and Alcouffe]. Spatial and angular discretizations imply that 

the respective differential operators are discretized, and these discretizations result in an 

algebraic set of equations. The set of equations can then be solved iteratively. Because of 

the implicit levels of discretization involved, multiple levels of iteration are required (Le. 

inner iteration for the spatial variables and outer iteration for energy). Monte Carlo codes 

are very simple with respect to the underlying mathematics as their primary constituent is a 

random number generator. In such codes, particles are given a source location from which 

they travel in a random direction, have a collision at a random distance from the source 

(with consideration of material properties and boundaries), are absorbed or scattered based 

on a random sampling, etc. Many particle histories are required to obtain statistically 
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reliable answers. In short, Monte Carlo methods, while exceedingly simple, require 

substantial computational effort to obtain a reliable numerical result. 

With the development of a code comes the need for testing the code against reliable 

benchmarks. This implies that a production code must also be able to solve the simple 

problems. As the large codes evolve and are able to model more complex systems so must 

the available benchmarks become more comprehensive. Analytical benchmarks will always 

involve simpler problems relative to those considered by the comprehensive production 

codes; however, the standards for what constitutes a benchmark should remain constant. 

The suite of benchmarks to be considered in tfus work involve three primary simplifications 

or assumptions: one energy group; time-independence; and infinite/semi-infinite 

homogeneous media. 

1 .D. The “Big Picture” 

When referring to a suite of benchmarks one assumes a specific commonality 

among the individual benchmarks in that suite. In this case, the common characteristic of 

the benchmarks is the medium of interest, that is, an infinite homogeneous medium which 

scatters particles isotropically . The specific benchmarks are therefore defined primarily by 

the type of source in an infinite medium. As will be seen, all fundamental benchmarks are 

related to each another. 

’\ 

1 .D. 1. The Intuitive “Big Picture.” 

The most basic physical source type is a point source which emits in a specific 

direction. Physically, all other types of sources may be constructed from this source, 

which is distributionally singular in both space and direction. Because all other sources 

may be constructed from this point-beam source, it is referred to as the “Green’s function” 
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source. By integrating the scalar flux from this source over the unit sphere, the flux from 

an isotropic point source is obtained. Integration over an infinite line or an infinite plane 

yields the scalar flux from an anisotropically emitting line source or anisotropic planar 

source, respectively. Integration of the anisotropically emitting line and planar sources’ 

scalar fluxes over the unit sphere produces fluxes from infinite isotropic line and plane 

sources. These infinite isotropic line and plane sources could also have been modeled by 

integrating the scalar flux from the isotropic point source over an infinite line or over a 

plane. Such a relational scheme is pictorially presented in Fig. 1.1. 

1 .D.2. The Constructive “Big Picture.” 

When sources are usually described, we consider how a source is physically 

constructed; conversely, when the descriptions are mathematical, considerations turn 

toward mathematical tractability. The scheme established for the intuitive “big picture” is 

not the same as the one for the construction. The fluxes from the anisotropic sources are 

mathematically constructed from the Green’s function source, and these in turn may be 

integrated over source angle to create isotropic sources. However, it will be shown that the 

scalar flux from the Green’s function source may be mathematically constructed from the 

isotropic point source solution. Thus, the most basic source in the mathematical 

construction is the isotropic point source. From the isotropic point source all the 

anisotropic sources may be constructed as shown. Also, by integrating the isotropic point 

source solution over a finite length one can create a general finite curvilinear source. If the 

path is a finite line then a finite line source results. If the path is an infinite line the infinite 

isotropic line source will result. Integrating the isotropic point source solution over a finite 

area yields the scalar flux from a finite isotropic area source. If this area is a circle or 

rectangle then the isotropic disk and rectangular sources result. If this area is infinite the 

isotropic plane source is the result. Likewise, integration over a volume produces a 
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volumetric source. Therefore, any source in an infinite medium may be mathematically 

constructed from the solution to the isotropic point source. This constructive scheme is 

presented in Fig. 1.2. 

(Green’s Function} 

(3-D) 

Integration Over 
z- Axis 

I 
Integration Over 

Directional Sphere 

1 
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\ / \  
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Fig. 1.1. The intuitive “big picture’’ of sources in an infinite homogeneous medium. 
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Fig. 1.2. The constructive “big picture” of sources in an infinite homogeneous 
medium. 

1 .E. Previous Work and Literature Review for Infinite Media Problems 

For one-group neutron transport theory in one dimension, several powerful 

analytical techniques have been developed to solve the neutron transport equation including 

singular eigenfunction expansion, Wiener-Hopf factorization, and Fourier and Laplace 

transform methods. The literature regarding one-dimensional problems is extensive. Some 



1.F. Extensions of the Available Benchmarks in Infinite Media 

With the basis of infinite medium benchmarks provided by much previous work, 

we now turn attention to extending the available benchmarks in infinite media. As 

discussed previously, the scalar flux from the Green’s function source may be 

mathenatically constructed from the solution to the isotropic point source solution. If the 

Green’s function source is at the center of the infinite medium and emits along the z-axis, 

the resulting scalar flux will have two-dimensional variation in cylindrical coordinates. 

However, by rotating and translating the source, the resulting scalar flux appears to be 

three-dimensional in Cartesian coordinates (see Fig. 1.3). 

27 

Fig. 1.3. Two- and three-dimensional orientations of the Green’s function source. 

Therefore, given a Green’s function source of arbitrary position and orientation two- 

dimensional mathematical techniques may be used to determine the scalar flux which 

nevertheless has a three-dimensional variation. The solution method involves a double 

Fourier transform in the transverse plane and a single Fourier transform in the longitudinal 

dimension. Equivalence to a pseudo problem is obtained and then inversions are 

considered. No publication has been found which has considered the symmetry of the 

two-dimensional case to generate a pseudo three-dlmensional solution as will be done in 

this work. 
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With the isotropic point source solution, it is now possible to construct solutions 

for a host of other sources. Using methods and formulations similar to thxe obtained for 

the Green’s function, the scalar fluxes from finite isotropic line, disk, and rectangular 

sources will also be provided. These are some of the less complicated finite sources. The 

resultant scalar fluxes from the finite isotropic line and disk sources will have two- 

dimensional spatial variation; however, the rectangular source generates a three- 

dimensional scalar flux. 

There are particular motivations for considering these finite isotropic sources. By a 

suitable choice of source locations, a three-dimensional geometrical source configuration 

can be designed to yield a valuable assessmsnt of the accuracy of a three-dimensional 

transport algorithm in specific situations. However, beyond code comparisons, one 

possible application is in the field of radiation oncology where radioactive seeds are 

implanted in a specific configuration to deposit the maximum dose to a particular location 

so that cancerous tissue may be most efficiently destroyed. Although the analyses of these 

sources are supposedly for neutrons, it is equally applicable to gamma particles (assuming 

isotropic scattering) and therefore is appropriate for the determination of how well a Monte 

Carlo code predicts the dose at a point resulting from a complicated seed implant 

configuration. 

Once the one-dimensional sources (isotropic point, isotropic line, isotropic plane, 

and anisotropic plane) and the two-dimensional (mathematically speakmg) Green’s function 

source have been considered, the last type of source in Figs. 1.1 and 1.2 to be considered 

is the infinite anisotropic line source. As this line source is infinite in the longitudinal 

dimension, the resultant scalar flux has a two-dimensional variation; however, the variation 

is in the transverse plane or in polar coordinates (r ,@.  Again, the solution is obtained by 

taking a two-dimensional Fourier transform of the transport equation and then inverting. 

The mathematics used in the analysis of this problem lead directly to those used for the 
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searchlight problem considered in the penultimate chapter. The next step in complexity of 

bencharks comes from considering more complicated geometries such as a semi-infinite 

medium. 

1 .G. An Extension to Semi-Infinite Geometry 

In attempting to establish more comprehensive benchmarks, the next level of 

difficulty for monoenergetic, homogeneous medium, isotropic scattering problems is the 

consideration of a semi-infinite medium. Full consideration will be given to the searchlight 

problem since three-dimensional results have never before been published. 

One of the basic transport problems for semi-infinite media is the searchlight 

problem originally proposed by Chandrasekhar [ 19581 in the radiative transfer context. In 

the searchlight problem, incident radiation impinges on a free surface at a point, and the 

resultant interior and surface fluxes and surface current are to be determined. To date only 

one-group problems have been considered for a homogeneous isotropically scatteriug 

medium. As with other problems considered here, the searchlight problem has been shown 

to be a variant of a one-dimensional pseudo problem which facilitates its solution 

[Williams, 1982 and Rybicki, 19711. Numerical analyses of this problem have been 

considered by Siewert and Dunn [1983, 1985, 19891 where the FN method was applied to 

determine the flux from a normal beam incident on a finite slab. As mentioned above, 

Elliott considered an isotropic point source at the surface of a half-space but, as would be 

expected from a paper of that era (1955), no numerical results were presented due to the 

lack of computational power. Recently, numerical results for the searchlight problem for a 

half-space have been provided by Ganapol and Nigg ( 1991) and Ganapol, et al. ( 1994) for 

the case of the normal beam. When the beam is directed normal to the surface, the resultant 

flux is two-dimensional resulting in a significant numerical advantage. However, if the 
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beam is canted, the resultant flux is three-dimensional. Such a case will be considered 

here. It will be shown that the analytical expressions, while complex. lend themselves to 

numerical evaluation. 

Like the analysis in Figs. 1.1 and 1.2, one can consider a similar hierarchy of 

problems for a half-space. The searchlight problem would be analogous to the Green’s 

function source, an isotropic point source on the surface or in the medium would 

correspond to the isotropic point source in an infinite medium, and similar planar and linear 

sources could also be derived. Results for an isotropic point source and isotropic disk 

source on the surface are presented in Ganapol, et al. (1994). Ganapol’s Benchmark Book 

also considered the planar sources on the surface of the half-space. To date, no one has 

considered an isotropic or anisotropic line source on the surface of the half-space. 

However, Williams (1982) did consider a line source perpendicular to the free surface 

extending into the medium. 

1 .H. Benchmarks as a Pedagogical Tool 

The use of benchmarks for testing production codes is obvious; however, because 

benchmarks consider simplified problems that students may encounter in their study of 

particle motion, they are also useful as a pedagogical tool. Students generally are given 

problems which can be solved analytically with paper and pen, and a natural extension of 

their education is to consider slightly more intricate problems which require non-trivial 

computation. Analytical benchmarks have and will continue to provide students with a 

bridge between a physical problem statement, the associated engineering mathematics and 

operational calculus, and the numerical techniques which must be employed for solving 

such problems. 
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Also, because computers are becoming faster, in the future the Monte Carlo codes 

most likely will become an industry standard. Assuming that a Monte Carlo code could 

follow an infinite number of histories, then it is presumed that it could describe the physics 

of any given problem to any desired error. The faster computers become, the more the 

Monte Carlo codes will be able to provide ths  impossible service in a reasonable time. 

Thus, the market for benchmarks as a teaching aid will increase. 
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CHAPTER 2:  FUNDAMENTAL PROBLEMS IN AN INFINITE MEDIUM 

The relative difficulty of solving transport problems often hinges on the geometry in 

which the problem is set. Generally, the simplest problems (in the suite of one-group time- 

independent problems) are those where the medium scatters particles isotropically and the 

scalar flux varies in only one spatial dimension. Case, DeHoffmann, and Placzek, in their 

monumental work “Introduction to the Theory of Neutron Diffusion,” led the way 

regarding the mathematical and numerical solutions to one-dimensional problems. The 

primary source configurations considered in this monograph were the isotropic point 

source and isotropic and anisotropic plane sources in infinite homogeneous media. For 

completeness and because of their fundamental nature, these problems will again be 

considered in this work. The numerical evaluation of the expressions found in this chapter 

follow the methods used in Ganapol’s Benchmark Book. The construction of Fig. 1.2 

begins by considering the isotropic point source in an infinits medium (see Fig. 1.2a). 

2.A. The Isotropic Point Source in an Infinite Medium 

Generating the integral form of the transport equation is a standard procedure in 

transport theory. It may be obtained by following the particle along its trajectory. When a 

homogeneous medium is assumed, the integral form of the transport equation for an 

isotropic point source of strength 4Rs0 at the center of an infinite medium is [Davison] 
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Fig. 1.2a. The first step in constructing the suite of infinite medium benchmarks - the 
isotropic point source. 

where A;) is the scalar flux at a general position J, c is the mean number of secondary 

particles per collision, and the integration is over all space V. Note that the part of the 

integrand which contains the term e-?? serves as a Green’s function for an arbitrary spatial 

distribution of sources given by ~(7’). Given that the point source at the center is the only 

source of particles in the medium, the isotropic nature of the source dictates that the 

variation in the scalar flux will only be a function of radial distance from the origin - i.e. the 
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problem is spherically symmetric. A three-dimensional Fourier transform is now applied to 

Eq. (2.1). The transform pair is defined as 

Applying the transform to the source term in Eq. (2.1) produces 

(2.2a) 

(2.2b) 

(2.3) 

Note that the dot product of the transform vector and the spatial vector is = prp, where 

p is the cosine of the angle between the two vectors. Given that the spatial triple integral in 

spherical coordinates has the form 

(2.4a) 

where the integral over d is over the standard solid angle, the transformed source term 

becomes 

which upon evaluation becomes 

(2.4b) 

( 2 . 4 ~ )  

The first integral term in Eq. (2.1) is now considered. Given the three dimensional 

convolution 
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c 

it then the follows that 

Yg{ U(f)*V(; ')} = Fg{ UG)} F${ V(t>}  . 

Noting that the integral term is of the form of a convolution, i.e. 

PA;) =f, dV'  p ( 7 )  f (; - 7 )  , 

(2.5a) 

(2.5b) 

it may be seen that 

F3(Pxa) = F a  5gf (3  - 7)) * 
However, the functionfir) is the same as the function from the source term (with different 

preceding constants). Thus 

(2.8) 
c - -+ tan-'p 

F - {  PI( ; ) }  = & P @ )  47r 

Upon combining Eqs. (2 .4~)  and (2.8), we have for the transformed scalar flux from an 

.. 

isotropic point source 

(2.9a) 

or 

P@') =47rso Lo 
- c L ( p )  ? 

where L(p) has been defined as (tan-'p)/p. The scalar flux is now obtained by inversion as 

( 2 .  loa) 
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or 

,(2. lob) 

Evaluating the angular integrals and noting the solution is only a function of Y yields 

or if the source strength is normalized with respect to the unit sphere (So = U4z) 

where 

Lo* 
f@) = 1 - cL(p)  

(2.11) 

(2.12a) 

(2.12b) 

The numerical evaluation of Eq. (2.12a) is relatively simple except that the range of 

integration is over a semi-infinite interval and the integrand oscillates, which is not 

amenable to numerical methods. Therefore the integration must be truncated at some point. 

The simplest method for evaluating the integral is to reformulate the semi-infinite integrals 

as an infinite series of integrals over a finite interval. The finite intervals are defined as the 

zeroes of the sine function so that the value of the integrands will be zero at the endpoints. 

The individual integrals are evaluated and the convergence of the series is accelerated by an 

Euler-Knopp transformation [Press, et al.], which is intended to accelerate an oscillating 

series. When the series is converged to a desired relative error, the evaluation is 

considered complete. 

Fig. 2.1 displays the results of such an evaluation. The flux converges to a 1/47~2 

(see Appendix A) variation near the source and the scalar flux increases as the absorption 

decreases at any given position. Also for c close to zero the scalar flux varies as e-’/4&, 
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as expected per Eq. (2,l). The scalar flux for highly scattering media quickly approaches 

the asymptotic scalar flux in the diffusive limit (bas - e-""0/4nr) at large Y. The scalar flux 

is within 1% of the diffusive value at 6 mfp and 4 mfp for c = 0.9 and 0.9999, 

respectively. 

1 .OE+6 
1 .OE+5 
1 .OE+4 c=o.9999 c = 0.1 

Fig. 2.1. 

c = 0.9 

c = 0.5 

- - -  

__...  

---. c = 0.01 

r 
The scalar flux from an isotropic point source as a function of position for 
several values of c. 

2.B. The IsotroDic Plane Source in an Infinite Medium 

Like the isotropic point source solution, the isotropic planar source solution is one 

dimensional with respect to position. The point source solution may be used as a Green's 

function for the construction of any shape of source that emits particles isotropically. The 

solution which contains a plane source at the center of an isotropic homogeneous medium 

may be created by integrating the solution from the isotropic point source in the same 

medium over an infinite plane [Davison]. That is, 



38 

$$x) = 2 s j r  d r  r p ( r ’ )  , 

where rf2 = r2 + x2 (see Fig. 2.2). This constructive step is shown in Fig. 1.2b. 

Fig. 2.2. Schematic for integrating the point source solution over the plane. 

Inserting the expression for the point source solution yields 

dk k f ( k )  sin[k(r2 + , 
r 

which upon the change of variable u2 = 3 + 2 becomes 

The u integral may be evaluated as 

1 du sin(ku) = cos(kx) , 

(2.13) 

(2.14a) 

(2.14b) 

in the Cesaro sense. That is, considering k constant in the limit above, it is seen that the 

frequency of the cosine becomes infinite (when u + =), and as the cosine is a purely 

oscillating function whose value is bounded by & 1, in the limit of a large frequency the 
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function takes on its average value, which is zero. Thus, the scalar flux from an infinite 

planar source is seen to be 

(2.15) 
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Fig. 1.2b. The second step in constructing the suite of infinite medium benchmarks - 
the isotropic plane source. 
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Note that the isotropic point source solution may be recovered by [Davison] 

By numerically evaluating Eq. (2.15) using the techniques discussed previously, the scalar 

flux as a function of position may be obtained as shown in Fig. 2.3. Note that as a 

conservative medium (c = 1) is approached. the scalar flux becomes spatially uniform but 

its value becomes increasingly larger (approaching infinity). When no neutrons are lost in 

the system, a constant flux distribution is eslablished in the medium, and as there is an 

infinite supply of particles in the planar source, the scalar flux becomes increasingly larger 

and the medium becomes more conservative. As with the point source, the scalar flux in 

highly scattering media approaches the diffusive limit 

= 0.9 the relative difference is withln 1 % at 3 mfp, and for c = 0.9999 this occurs at less 

- Ao(vo)e-"Vo) at large z. For c 

than 1 mfp. 

1 .OE+3 
1 .OE+2 c = 0.9999 - - - - c = 0.1 
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1 .OE-5 

0 
v) 

Fig. 2.3. 

c = 0.9 c = 0.01 

0 1 2 3 4 5 6 7  
X 
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The scalar flux from an isotropic plane source as a function of position for 
several values of c. 
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2.C. The Isotrooic Line Source in an Infinite Medium 

Again, the point source solution may be used as a Green's function to construct the 

problem which contains a line source at the center of an isotropically scattering 

homogeneous medium. Thls is done by integrating the solution from an isotropic point 

source over an infinite line: 

(2.16) 

where f2  = 2 + 3 (the pictorial representation would be similar to that seen for Fig. 2.2). 

This part of the construction of Fig. 1.2 is shown in Fig. 1 . 2 ~ .  

As with the plane source, we insert the expression for the point source solution and 

make the change of variable u2 = 2 + x2 so that 

(2.17) 

The u integral can be evaluated as gJo(kr), leaving for the scalar flux from an infinite 

isotropic line source 

This integrd is converted into an infinite series of integrals over a finite interval; however, 

in this case, the individual integrals will have limits of integration equal to the zeroes of 

Jo(u). The scalar flux from the isotropic infinite line source is displayed in Fig. 2.4. The 

scalar flux asymptotically approaches 1/4r near the source as given in App. A. 
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Fig. 1 . 2 ~ .  The third step in constructing the suite of infinite medium benchmarks - the 
isotropic line source. 
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The scalar flux from an isotropic infinite line source as a function of 
position for several values of c. 

Clearly, a wide variety of problems in infinite media can be treated. Different 

isotropic sources may be constructed so that the variation in the scalar flux is one 

dimensional; however, except for the point source all the sources seen thus far are infinite 

in one or more dimension. As the isotropic point source solution was integrated to obtain 

the sources discussed thus far, so too can it be integrated to produce finite sources. This 

may include shell, surface, or volumetric sources. The latter two kinds of sources will be 

examined next. Again, the theme which connects the sources to this point is that they all 

emit particles isotropically . 
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CHAPTER 3: EXTENSIONS OF THE ISOTROPIC POINT SOURCE SOLUTION 

With the solution for the isotropic point source, it is theoretically possible to 

generate the solution for a source of any shape or size in an infinite homogeneous medium 

via integration. Ths  will produce integral equations which require two or three embedded 

integral evaluations, depending on the complexity of the source desired. Three of the more 

simple sources are finite line, disk, and rectangular sources. The consideration of these 

finite sources adds two more pieces toward the completion of Fig. 1.2; the additional 

arrows are indicated on Fig. 1.2d shown below. The isotropic point source solution is 

then used further to generate a volumetric source. 

An alternative expression for the scalar flux from an isotropic point source will be 

used in the derivation of the scalar fluxes from these finite sources. Eqs. (2.12), with a 

change of variable and contour, and extracting the pole contribution, can be shown to be 

[Case, DeHoffmann, and Placzek] 

where 

dki  2k0(k0 2 2  - 1) 

- c ( l  - c - k , )  
-- 

2 '  

and ko satisfies the familiar dispersion relation 

C 1 - - tanh-'(ko) = 0 . 
k0 

(3. la) 

(3. lb) 

(3. I C )  

(3.1d) 
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Fig. 1.2d. The fourth and fifth steps in constructing the suite of infinite medium 
benchmarks - finite line and surface sources. 

3.A. Finite Isotropic Line Sources 

Beginning with the scalar flux from an isotropic point source at the center of an 

infinite medium, the flux from an isotropic line source is obtained by integrating the 

isotropic point source solution over a finite length as (see Fig. 3.1) 
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Fig. 3.1 

2ZO -1' 
r,2 = p2 + ( z  - z?' 

z 4  

I 
I ' P  

Finite isotropic line source construction. 

Upon substitution of the scalar flux from an isotropic point source, it is seen that 

which can be written as 

where 

Making the change of variable w = zo - 2zw' yields (upon dropping the primes) 

(3.2) 

(3.3a) 

(3.3b) 

(3.3c) 
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Noting the form of the denominator, it is evident that a singularity will occur in the 

integrand when p = 0 and w = (zo - z)/2z0. Clearly, when lzl > zo, the value of w which 

causes a singularity is negative and thus beyond the range of integration; therefore, when 1z1 

> zo there is no singularity in xl(z,O;a). When p = 0 and lzl 5 zo, that is when the spatial 

point lies on the source, the value of w which creates the singularity in the integrand is in 

the range [0,0.5] and will therefore create a singularity in the range of integration. Thus, 

special treatment of xl(z,p;a) must be made for a certain range of z ,  in this case for lzl I zo 

and p = 0 (on the source). 

3.A. 1. Scalar Flux for lzl > zo. 

As there will be no singularity in the integrand of xl(z,p;a) for lzl > zo, the only 

modification of Eq. (3.2~) will be to make the integral more numerically tractable by 

subtracting 1 from g(c,p) to counter the p2 in the denominator of the double integral term. 

Thus, 

where 

which by evaluating the p integral may be shown to be 

(3.4a) 

(3.4b) 
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3.A.2. Scalar Flux for lzl 2 zo. 

As with the case for lzl > zo, the expression for the scalar flux is modified as in Eqs. 

(3.4). However, now there will be a singularity in the integrand of Qg for p = 0. This 

singularity is extracted by subtracting e-p from the numerator (which makes the numerator 

zero when p = 0 and the value of o at the singularity is reached). Thus, 

where 

(3.5a) 

(3.5b) 

An appropriate change of variable and evaluation of the above integral shows that it is an 

inverse tangent function, 

(3%) 

The other integral which must be specially treated with respect to singularities is 

xl(z,p;a). Again, there will be a singularity in the integrand when p is zero (or the scalar 

flux is evaluated on the source). Thus, following the above procedure Eq. (3 .3~)  is 

rewritten as 

where 

1 do 
2 112 ’ 

= Jo 
[p2 + (z - zo + 2zoo) I 

(3.6a) 

(3.6b) 
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whch may be evaluated as 

+-qy)2 1 
+ 1]112 + 3} 

220 P 
( 3 . 6 ~ )  

Now the singularities have been extracted. As evident in Eq. (3.6c), if p = 0 there 

will be a logarithrmc singularity, so the flux still can not be evaluated on the source (nor 

will this ever be possible). However, the integrals will be much easier to evaluate near the 

source now that the singularity is expressed apart from the integral terms. 

3.B. Finite IsotroDic Disk Sources 

The isotropic disk source is constructed by integrating the integral form for the 

scalar flux from an isotropic point source over the surface of a disk as shown in Fig. 3.2. 

It is assumed that the disk lies in the transverse (x-y) plane and is centered at the origin. 

Thus, the form for the scalar flux from an isotropic finite disk is given by 

(3.7a) 

where the integrals over the surface of the source disk have been included in the function 

(3.7b) 

r2 = p2 + z2 + Rim2 - 2pmRocos6, and R, is the radius of the source disk. 
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Fig. 3.2. Construction of a finite disk source. 

As with the other sources, the treatment for points that lie within the source area will be 

different than the treatment for those points outside the source area. When z is near zero 

and p is less than Ro, the spatial point lies very near the source, and the singularity at p = 0 

will manifest itself as a zero in the denominator of the w integral at some point as it spans 

the range [O,l]. 

3.B. 1. Scalar Flux for p > R,. 

For this case, no singularity will be found in the w integral. As usual, the p integral 

is made more numerically tractable by defining 

with 

(3.8a) 

(3.8b) 
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3.B.2. Scalar Flux for p I Ro. 

When p 5 R,, care must be taken with respect to the singularity in xd. As before, 

the ,u integra1 is reformulated by defining 

and 

e+ Tg2 = R i ( ' d 6  1 1 d w  w --p . 

Tg2 is now written as . 

(3.9b) 

JO 
JO 

where 

(3. loa) 

( 3 .  lob) 

Using the following two formulas (Gradshteyn and Ryzhlk) 

2n , a > b ,  - 2' de  
JO a + bcos6 - (a' - b2) ' /2  

1 ---ln(2[c(a + bx + C X ~ ) ] ~ ' ~  + 2cx + 6 )  , c>O , d x  
(a  + bx + cx 2 ) 112 - ,112 

Tg2z may be shown to be 

( 3 .  10c) i 2z2 p 2 ]  . 
[(p' + z2 + R i ) 2  - 4 p 2 R i ] l i 2  + z 2  + R i  - 

Tg2z = nee-' In 
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Thus, any numerical difficulties which may be caused by the p2  in the denominator have 

been mitigated. 

The singularity in xd will now be analyzed. As mentioned, there will be a zero in 

the denominator at z = 0 if p 5 Ro as the point will lie on the source. When z is small and p 

- e R, the integral is nearly singular. As with the finite line source, the singularity is 

extracted by subtracting the appropriate quantity from the numerator as 

+ edaz I, , e-ar - e-az 
r Xd(z,p;a) = R i  J2rbs J;:d.u w 

0 

where 

d w  w 
r 

The w integral may be evaluated by noting that 

112 - (a  + b + c ) ” ~  - c - x d x  
1 / 2  - a a s,’ ( a x 2  + bx + c )  

2a + b + 2 ~ ” ~  (a + b + c )  
2a b + 2 ( ~ c ) ” ~  

so that after some simplification 

(3.1 la) 

(3.1 lb) 

where s = ( p 2  + z2 + R i  - 2pR,c0s8)”~. Applying the above analysis to the first p 

integral in Eq. (3.9a) and extracting the singularity in xd yields 
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.-* 

with 

(3.12b) 

Thus, the singularity in xd has been extracted, and the p integrals have been placed in 

numerically convenient forms. 

3.C. Finite Isotropic Rectangular Sources 

As usual, using the isotropic point source solution as a Green’s function and 

integrating over a rectangular area, one can construct the scalar flux from such an isotropic 

rectangular source. The parameters in this case are shown in Fig. 3.3. It is assumed that 

the rectangle lies in the transverse (x-y) plane and is centered at the origin. Note that the 

scalar flux from this source will be symmetric about all three axes; however, the solution 

will vary in all three spatial dimensions. Where the finite line and disk sources are in 

convenient reference frames such that the spatial variation is two-dimensional when 

examined in cylindrical coordinates, the rectangular source can not be placed in such a 

convenient reference frame. The form for the scalar flux from an isotropic rectangular 

source is given by 

where the integrals over the surface of the source have been included in the function 
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(3.13b) 

and r2 = (x - x ’ ) ~  + (y  - Y ’ ) ~  + z2. With the changes of variable u = (x’ + ao)/2ao and v = 

(y‘ + b0)/2b0 Eq. (3.13b) becomes 

X,-(X,Y,Z;S)  = 4aobo (3 .13~)  

where r2 = (x + a. - 2aou)’ -t (y + bo - 2bovI2 + 2’. 

I I 

2a0 

Fig. 3.3. Construction of a finite rectangular source. 

As usual, when z is near zero and the point (x,y) lies within the rectangular range of the 

source there will be a near singularity in the integrand of xr as a zero in the denominator; 

therefore, the problem will be treated differently for these cases. 

3.C. 1. Scalar Flux for 1x1 > a. and lyl > bo. 

As usual, there are no true singularities if the point lies outside the source region; 

however, it is still desirable to place the p integral in a numerically convenient form by 

subtracting I from g(c,p)  as t h s  is its value at p = 0. Thus, 
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where 

(3.14b) 

3.C.2. Scalar Flux for 1x1 5 a. and lyl bo. 

With the possibility of a singularity present for the functions x,(x,y,z;s), there is 

also one for Tg2 when the edit point is in the region of the source. Therefore, the 

singularity is extracted by subtracting and adding e-' to the numerator in Eq. (3.14b) as 

where 

. 
(3. Ha) 

(3.15b) 

Either the u or v integral can be evaluated analytically. T h ~ s  yields (when the v integral is 

evaluated) 

(3.16) 

where p 2  = ( x  + a. - 2 ~ ~ ~ 4 ) ~  + z2. In a similar fashion, the singularity in xr is extracted by 

subtracting and adding e-" to the numerator of the kernel, which produces 
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As with the 
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(3.17) 

(3.18a) 

ermTgb, the inner integral may be evaluat- 1 so that I, becomes 

9 (3.18b) y - bn\271’2 v - bn 
[ 1 +  (- 

p2J1 + ‘P I  
and p is specified above. The term involving the p integral and xr (Tgi) has the singularity 

extracted from the kernel (Tglz) in the same fashion and with the same relative equations as 

with the isotropic disk source [see Eqs. (3.12)]. 

3.D. Results for the Finite IsotroDic Line and Surface Sources 

The numerical evaluation of the integral expressions for the scalar flux from a 

source requires the ability to accurately integrate functions and to properly describe the 

source geometry and the edit points at which the scalar flux is to be evaluated. Only basic 

results from the numerical evaluations of the expressions for the scalar flux from these 

sources will now be provided. The presentation begins with a discussion of the numerical 

methods used in an algorithm to generate results. 
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3.D. 1. Numerical Methods. 

The numerical methods involved in the evaluation of the scalar flux from these 

sources are primarily associated with the evaluation of integrals. One of the most common 

yet advanced means of evaluating an integral is Gauss-Legendre quadrature [Press, et al. 1. 
Two variants of this integration method are used by the computer algorithm which 

generates the results. 

3 .D. 1 .a. Iterative Gauss-Legendre Quadrature. The iterative Gauss-Legendre 

quadrature routine is a relatively simple method used to calculate the value of an integral. 

Given a functionflu), a desired relative error error, an initial Gauss-Legendre quadrature 

order No, an interval by which the Gauss-Legendre quadrature order is incremented Nint, 

and the limits of integration, the routine will return the value of an integral am. The value 

of the integral is calculated at the initial quadrature order No then it is recalculated at 

successively higher quadrature orders given by No +jNinr The relative error relerr for 

consecutive values of the integral is calculated, and only if three successive values of relerr 

are less than error the value is considered converged. If this does not occur before a 

maximum quadrature order N- is reached, the last value of the integral is returned along 

with its relative error and an error message. 

3.D. 1 .b. Panel Intecration. Using panels, an integration scheme developed by 

Ganapol [priv. comm.] is similar to the iterative Gauss-Legendre scheme in that an initial 

quadrature order No, a maximum quadrature order Nm and a quadrature interval N,, are 

provided. Also, the value of the integral is calculated at successive quadrature orders and 

the value is returned when three successive quadrature orders provide a value of the integral 

within the desired relative error. However, an additional input is the number of panels Np. 

At each quadrature order, the integral is divided into Np regions of equal length. Each of 

these regional integrals is then evaluated at the quadrature order and the sum of the 
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individual integrals provides the value of the original integral. The collection of quadrature 

weights and abscissas are considered to be a quadrature set for the original integral. 

3.D.2. Tabular and Graphical Results for the Finite Line and Surface Sources. 

Tables 3.1,3.2, and 3.3 provide an error convergence analysis of the output from 

the finite line, finite disk, and finite rectangular sources, respectively. The scattering of the 

infinite medium is described by c = 0.9. Each source is centered at the origin and lies in the 

transverse plane. The line has a length of 2, the disk has a radius of 1, and the side-lengths 

of the rectangular source are 2 x 2 for the table and 3 x 2 for the graph in the x and y 

dimensions, respectively. Note in each case that the results from the lower desired relative 

errors is better than the desired error itself; that is, if the desired relative error is lo-*, the 

answer may be good to IO4 (assuming that the lo4 answer is “correct”). This is due to 

requiring three successive values of the integrals to be within this error thus causing the 

algorithm to perform two additional sets of greater quadrature orders beyond the required 

one to obtain the desired error. Figures 3.4 through 3.6 display the scalar flux as a 

function of position 0.1 mean free paths above the sources. The source considered is 

clearly discernible from the shape of the scalar flux. 

Each of the figures show the symmetry which is inherent in the respective sources. 

The scalar flux is radially symmetric and axially symmetric for the finite line source. As the 

scalar fluxes are displayed using Cartesian coordinates, and all sources lie in the x-y plane, 

it is readily apparent that the scalar flux will be symmetric with respect to the z-axis. In 

each case, if the source lies in the transverse plane then &(x,y,z) = &(x,y,-z). For the line 

source, symmetry in x is described as &(x,y,z) = q+(-x,y,z), and likewise for the 

symmetry in y. The same symmetries are true of the disk and rectangular sources; 

however, if the transverse plane is described in polar coordinates, the disk source’s scalar 

flux has an additional symmetry of being a function of radius only. 
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The final analysis concerns the scattering parameter c. Fig. 3.7 contains the scalar 

flux from the same finite isotropic line source used in previous studies for several values of 

c. Again the scalar flux is evaluated at z = 0.1 above the source. It is noted that the 

magnitude of the scalar flux does not change appreciably near the source; however, once 

the edit point moves away from the source the scattering properties become more evident. 

At large c the decrease in the scalar flux is rather slow, while for strongly absorbing media 

the decrease is quite rapid. Similar figures may be generated for the finite disk and 

rectangular sources but are not presented here. 

These finite sources can be related to the sources in the last chapter by considering 

the behavior of the scalar fluxes when the sources become very large or small. 



Fig. 3.J 

- 
X - 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
1.2 
1.4 
1.6 
1.8 
2 - 

$ 
2 

60 

Table 3.1. Error Analysis for Finite Line Source. 

err= IO-* 1 err= 1 err= loJ I err= j err= I 
2.6 13298 
2.597215 
2.542069 
2.4 18634 
2.128753 
1.4349 17 
0.738528 
0.440736 
0.303207 
0.226 140 
0.177 168 
0.1 18824 
0.085582 
0.0643 80 
0.049870 
0.039454 

2.613244 2.613236 2.613232 
2.597151 2.597142 2.597138 
2.542018 2.542010 2.542006 
2.418585 2.418578 2.4 18574 
2.128709 2.128703 2.128700 
1.434883 1.434878 1.434876 
0.738504 0.738500 0.738499 
0.440718 0.4407 15 0.4407 14 
0.303 193 0.303 191 0.303 190 
0.226127 0.226126 0.226125 
0.177 158 0.177 157 0.177 156 
0.118816 0.118816 0.118815 
0.085576 0.085575 0.085575 
0.064375 0.064375 0.064374 
0.049866 0.049866 0.049866 
0.039450 0.039450 0.039450 

2.613230 
2.597 137 
2.542005 
2.418573 
2.128698 
1.434875 
0.738498 
0.4407 14 
0.303 190 
0.226 125 
0.177 156 
0.1 188 15 
0.085575 
0.064374 
0.049866 
0.039450 

Scalar flux at z = 0.1 resulting from a single isotropic line source. 
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Table 3.2. Error Analysis for Disk Source. 
- 

X - 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
1.2 
1.4 
1.6 
1.8 
2 __ 

err= 

1.609769 
1.605778 
1.593619 
1 S727 19 
1.541998 
1.499620 
1.442484 
1.365067 
1.256626 
1.094239 
0.848203 
0.465956 
0.308653 
0.223375 
0.169374 
0.132243 

err = 

1.609829 
1.605837 
1 S93678 
1.572775 
1.542054 
1.499666 
1.442529 
1.365090 
1.256601 
1.094 148 
0.848 130 
0.465982 
0.308673 
0.22339 1 
0.169387 
0.132254 

err= 

1.609762 
1.605769 
1 S936 10 
1 S727 10 
1.541989 
1.4996 12 
1.442477 
1.365065 
1.256636 
1.094276 
0.848238 
0.465953 
0.30865 1 
0.223373 
0.169373 
0.132242 

err= 

1.609764 
1.605770 
1.59361 1 
1.572712 
1.54199 1 
1.4996 14 
1.442478 
1.365066 
1.256636 
1.094273 
0.848234 
0.465953 
0.30865 1 
0.223373 
0.169373 
0.132242 

err= 10-~  

1.609762 
1.605769 
1 S93610 
1 S727 10 
1 S41990 
1.499613 
1.442477 
1.365065 
1.256636 
1.094276 
0.848237 
0.465953 
0.30865 1 
0.223373 
0.169373 
0.132242 

Fig. 3.5. Scalar flux at z = 0.1 resulting from a single isotropic disk source. 
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Table 3.3. Error Analysis for Finite Rectangular Source. 

err = 

1.7 10737 
1.70606 1 
1.6959 15 
1 A755 19 
1.651532 
1.6141 12 
1.562586 
1.4908 13 
1.387889 
1.230001 
0.982521 
0.573942 
0.39 1059 
0.286739 
0.2 18785 
0.171329 

err = 

1.709970 
1.706309 
1.696045 
1.678027 
1.651230 
1.6 13969 
1.562402 
1.490865 
1.388 126 
1.229974 
0.982428 
0.573905 
0.39 1030 
0.2867 16 
0.2 18767 
0.171313 

err= lo4 

1.709856 
1.706480 
1.6961 10 
1.678 142 
1.65 1415 
1.6139 19 
1.562350 
1.490843 
1.388 133 
1.229973 
0.98242 1 
0.573 900 
0.39 1027 
0.2867 13 
0.2 18765 
0.17 13 12 

err= 10-~  err= lo4 

1.709856 1.709855 ---I--- 1.696112 1.706470 , 1.706468 1.696110 

1.678 150 1.678 15 1 
1.65 1423 1.651416 
1.613922 1.613921 
1.562350 1.562349 
1.490854 1.490853 
1.388132 1.388 13 1 
1.229970 1.229970 
0.982419 0.982419 
0.573899 0.573899 
0.391026 0.391026 
0.2867 13 0.2867 13 
0.2 18764 0.2 18764 
0.171312 1 0.171311 

Fig. 3.6. Scalar flux at z = 0.1 resulting from a single isotropic rectangle source. 
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Scalar flux at 0.1 mfp from the finite line source at several values of c. 

3.D.3. Finite Sources in Large and Small Limits. 

One of the numerical tests which help c o n f i i  the derived expressions for the scalar 

fluxes from the finite line, disk, and rectangular sources is the determination of the scalar 

flux in the limits of source extent. When the disk and rectangular sources (properly 

normalized) are large, the resultant flux should approach the flux from an infinite plane 

source, and when the finite line is long it should approximate an infinite line source. 

Conversely, when all these sources are small, the scalar flux should approach that from an 

isotropic point source (when the source strength is renormalized according to the physical 

size of the source). 

Figs. 3.8,3.9, and 3.10 contain the scalar fluxes for sources of increasingly larger 

extent for the finite line, disk, and rectangular sources, respectively. In each case c = 0.9 

and the distances are measured from the center of the source in a direction normal to the 

source. As is evident, the fluxes quickly converge to the flux from the appropriate infinite 

sources. 
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Fig. 3.10. Scalar fluxes from successively longer half-widths for finite rectangular 
sources. 

When the finite sources are very small, the scalar flux resulting from these sources 

should approach the scalar flux from an isotropic point source. In the derivation of the 

scalar flux from the finite sources, the isotropic point source solution was integrated over a 

finite distance or area without the expressic: k ing  normalized according to the size of the 

source. For example, the finite line source was obtained by integrating the point source 

solution over the finite range [-zo,zo]. To normalize the flux so that each source, 

regardless of size, has the same strength, the expression for the scalar flux from the finite 

line source would have to be divided by 2%. Therefore, when the sources become 

exceedingly small, so do the unnormalized scalar fluxes - normalization provides a 

meaningful ratio with which to compare the scalar flux from the small source with that from 

the isotropic point source. Table 3.4 contains the scalar flux from an isotropic point source 

at 1 mean free path from the source. The sizes of the finite sources are characterized by a 

distance Lo which corresponds to the half-length zo, the radius Ro, and the half-width a. = 
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u 

.... 

bo for the finite line, disk, and rectangular sources, respectively. The tabulated fluxes from 

the finite sources have been normalized (Le. the actual scalar flux has been divided by the 

length or area of the source) so that the fluxes may be compared to the ff ux from the 

isotropic point source. Note that as the size of the source decreases, the normalized scalar 

flux does, in fact, approach the point source flux in each case. 

Table 3.4. Scalar Flux Analysis for Small Finite Sources. 

Lo 1 Point Source I Finite Line 1 Disk I Rectangle 
I 

1 0.143284 0.133802 0.102186 0.094609 
0.1 0.143284 0.143 177 0.142643 0.14243 1 
0.01 0.143284 0.143283 0.143277 0.143275 
0.001 . 0.143284 0.143284 0.143284 0.143284 

0.0001 0.143284 1 0.143284 0.143284 0.143284 

In the final limiting case we consider the rectangular and line sources. If one of the 

dimensions of the rectangular source becomes very small, the resulting scalar flux should 

approach that from the finite line source. In Fig. 3.1 1, zo = a. = 1 and bo becomes very 

small. Note how quickly the thn rectangular source flux approaches that from the finite 

line source, as expected. The mathematical limiting process in this case is easily seen by 

taking the limit as bo approaches zero in Eq. (3.13b). 
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Fig. 3.1 1. Scalar fluxes from thin rectangular sources and a finite line source. 

3.D.4. Small z ,  r Approximations. 

In Appendix A the asymptotic scalar fluxes near isotropic point, infinite line, and 

infinite planar sources are derived. As the scalar fluxes from the isotropically emitting 

finite sources were constructed by integrating the point source solution, it is logical to 

assume that approximate scalar fluxes near the Snite sources can be obtained by integrating 

the asymptotic scalar flux near an isotropic point source. Ths  is also done in Appendix A. 

Figures 3.12 through 3.14 contain the scalar fluxes for the finite line, disk, and rectangular 

sources. In each case the characteristic length is 1 and c = 0.9. Note that the 

approximations are very accurate for each source near the center of the source. Also, for 

each source at the two distances nearest the source ( z  = 0.01 and z = 0. l), the approximate 

fluxes approach each other once the edit points no longer lie above the source as do the 

actual scalar fluxes. The approximate flux matches the trend that the scalar flux for these 

points near the source to be nearly the same; that is, the scalar fluxes at large r are nearly the 
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same for z = 0.1 and z = 0.01. However well the approximate fluxes match this trend, the 

values of the approximate fluxes with respect to the actual fluxes are errant. 

100 t 
r = 0.01 _ _  r = 0.1 asymp 

- - -  r = 0.01 asymp r = l  

. ___ .  r = 0.1 \ L - -  r=tasymp 
10-i 

- .-- - .- I x -_ - - - - - - -  
-. z \, 3 = 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
Z 

Fig. 3.12. Actual and approximate scalar fluxes from a finite line source. 

1 

0.1 

_ . .__  z = 0.01 asymp 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
r 

Fig. 3.13. Actual and approximate scalar fluxes from a disk source. 
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z =  1.0 _ _  z=O.1 asymp 

_ _ _  z = 1 .O asymp z = 0.01 

z = 0.01 asymp 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
r 

Fig. 3.14. Actual and approximate scalar fluxes from a rectangular source. 

3.E. The Isotropic Slab Source in an Infinite Medium 

In every case discussed thus far, the source is in some form or another spatially 

singular. This creates a singularity in the evaluation of the scalar flux at the point where the 

source resides. In order to avoid the numerical inconvenience of not being able to evaluate 

the scalar flux on the source, a more physically realistic source may be constructed by 

integrating the spatially singular source to create a spatially distributed source. One such 

source may be constructed by integrating the isotropic plane source solution over an 

interval to create a slab isotropic source. This is effectively the same as integrating the 

isotropic point source over a slab volume to create a simple volumetric source. Such a 

construction adds one more piece to the completion of Fig. 1.2 (see Fig. 1.2e below). Fig. 

1.2e notes that the integration is over a finite volume, but the concept remains unaltered. 
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Fig. 1.2e. The sixth step in constructing the suite of infinite medium benchmarks - a 
volumetric source. 

Physically, a source of neutral particles is now uniformly distributed in some region and is 

intimately mixed with the scattering material (Le. the scattering properties within the source 

are identical to those of the medium). Mathematically, this source is constructed via the 

following equation: 
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(3.19) 

where qPl(x) is given by Eq. (2.15). Inserting this expression and interchanging integrals 

yields 

(3.20) 

Evaluating the cosine integral and using the addition formula for the sine results in the 

scalar flux from an isotropic slab source at the center of an infinite medium: 

(3.21) 

The numerical evaluation of Eq. (3.21) is similar to that used for the other sources. 

The scalar flux resulting from an isotropically emitting slab source where xo = 1 is 

displayed in Fig. 3.15. The scalar flux is nearly constant inside the source region and then 

falls away outside the source region, as expected. As with the planar source, the scalar 

flux in a nearly conservative medium would be almost uniform and large. Also, 

examination of Eq. (3.21) shows that as xo approaches zero the equation for the scalar flux 

from an isotropic plane source is recovered. This limiting process is shown physically in 

Fig. 3.16 where the slab thicknesses are successively reduced and shown with the isotropic 

plane source solution. The scalar flux from the thin sources approaches that from the plane 

source, and the scalar flux from a 0.02 mfp thick source is indistinguishable from the plane 

source scalar flux. 
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Fig. 3.15. The scalar flux from an isotropic slab source as a function of position for 
several values of c. 

- x o = l  . . - - . xo = 0.01 
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The scalar flux from thin isotropic slab sources as a function of position for 
several thicknesses. 
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With the suite of benchmarks fairly complete with respect to sources which emit 

particles isotropically, the next level of complexity is to consider those sources which emit 

particles anisotropically. The most basic such source is the Green’s function (or point- 

beam) source. Although this source may be thought of as the most basic source in infinite 

homogeneous transport theory (see Fig. 1. l), it will be found that the flux from this “most 

basic” source may be expressed in terms of the flux from the isotropic point source (see 

Fig. 1.2). 
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CHAPTER 4: THE INFINITE MEDIUM GREEN’S FUNCTION 

One of the most fundamental problems in neutral particle transport theory is an 

anisotropically emitting point source located at the center of an infinite homogeneous 

medium which scatters particles isotropically. The source is thus described by spatial and 

angular delta functions. It will be shown in this chapter that the scalar flux from this 

Green’s function source may be derived from that of the isotropic point source. This 

additional piece of Fig 1.2 is displayed below in Fig. 1.2f. Then the Green’s function 

source will be used to construct the solution from the anisotropic plane source. 

4.A. SimDlification of the Transport Equation 

Because the methods used to determine the scalar flux from the Green’s function 

source are used for other sources, a more extensive explanation of the mathematics 

involved will be presented, including the standard simplifications of the transport equation 

that are usually done. 

Beginning with a general form of the linear transport equation (time-dependent, 

continuous energy, arbitrary scattering, homogeneous medium, general source) 

[t $ + d ‘ v + & ( E )  q(3,E,d,t) = 1 
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Fig. 1.2f. The seventh step in constructing the suite of infinite medium benchmarks - 
the Green’s function source. 
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cp(?,E,d,t) = neutron flux [neutrons/m2-ster-MeV-sec], 

z t Q  = total macroscopic cross section [Urn], 

Z,(s ‘+ &??+E) = differential scattering macroscopic cross section [ l/m-ster-MeV], 

S( ?,E,&) = external neutron source strength [neutrons/m3-ster-MeV-sec], 

d = solid angle direction [steradians], 

v = neutron speed [dsec], 

and with boundary conditions that the flux remains finite everywhere, the first 

simplifications are to assume a stationary system and monoenergetic scattering. This 

produces 

[d v + Et]  $(3,d) = J- d d ’  Z,(b‘+d) @(?,ar) + S ( 7 , l f )  , 
4n 

where 

(4.2a) 

(4.2b) 

(4 .2~)  

(4.2d) 

The second simplification is to assume a medium which scatters neutral particles 

isotropically in the laboratory reference frame, i.e. Zs(d’+d) = &/47r, which yields 

[a V + Z t ]  d(3,d) = %j4n d l f ‘  $(?,a? + S ( 7 , l f )  . (4.3) 

With some foresight regarding the most convenient coordinate system in which to place the 

point-beam source, the spatial gradient is specified in cylindrical coordinates via a 

longitudinal dimension ( z )  and a transverse plane vector [$ = 73(p,a)]. Therefore, 
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where (being careful to distinguish between the flux and the angle 4) 

i3 = sine cos$ i + sine sin$ j = (1 - p ) [cos$ 2 + sin4 93 2 112 

and the transport equation becomes 

where p = cose. Specifying the source as one which exists at the center of this infinite 

medium (p  = 0, z = 0) and emits neutral particles in the direction do(po,$o) produces the 

following simplified transport equation: 

The spatial variables are non-dimensionalized according to the total cross section so that all 

distances are in mean free paths (z* = ZJ, p * = ztp). Dropping the asterisks md dividing 
/ 

by the total cross section produces the final form of the simplified transport equation for a 

point-beam source at the center of an infinite medium: 

where c = 

collision) and the boundary conditions are specified as 

(interpreted as the mean number of secondary neutrons produced per 

(4.6b) 
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4.B. The Transformed Equation 

The solution method begins by talung a two-dimensional Fourier transform in the 

transverse plane. It then proceeds to integral transport theory to provide an integral 

equation for the transformed angular flux, which is then integrated to give the transformed 

scalar flux. 

4.B. 1. Fourier Transform in the Transverse Plane. 

Multiplying Eq. (4.6a) by eit*b, where the transformed variable is k' = z ( k ,  w) (see 

Fig. 4. l), and integrating over the entire transverse plane yields 

+&P - @O)s(#) - #)O)s(Z> 7 

where the Fourier transform pair is defined as 

(4.7a) 

(4.7b) 

(4.7c) 

and 

(4.7d) 2 112 U(d,Z) = 1 - ik(1 - p ) COS(@- w) . 
The application of the transform and the result are obvious except for the definition of 

u(d,x). As usual when using the Fourier transform, the transform of a derivative 

produces the transformed function times a factor -ik' (the sign of the factor depends on the 
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sign chosen on the exponential's argument in the transform). Thus, u ( d , l )  = 1 - iz e a, 
where 

k' = kcosy i + ksinyj 

Fig. 4.1. Coordinate and vector systems definitions for transformed and real spaces. 

4.B.2. Formation of Integral Equation. 

The Fourier transformed equation (4.7a) is still in an integro-differential form. This 

equation may be transformed into an integral equation by integrating Eq. (4.7a) along the 

particle trajectory. For the case where p > 0, the trajectory extends from - to z. Using 

the integrating factor eUdp, we find 
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where the transformed scalar flux is given by 

(4.9a) 

F(z;Z) = J d a  ' F(z,&;$) . 
4n 

Since it is assumed that ,q, > 0, there is no source (other than the scattering term) for the 

case where p e 0. Thus, upon using a similar analysis as above, 

(4.9b) 

4.B.3. The Transformed Scalar Flux. 

To obtain the transformed scalar flux, the transformed angular flux is integrated 

over the unit sphere as shown previously: 

By separating the p integration into two integrals over positive and negative ranges and 

making a simple change of variable in the integral over negative p, there results 

F ( z ; ~  = ~old.pj~"dtJ q(z ,p ,$;x)  + jidpj:"dtJ F ( z , - p , d )  . (4. lob) 

Letting p + -p in Eq. (4.9b) and inserting Eqs. (4.9) into Eq. (4. lob) yields 
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(4.11) 

Note that in the first integral z > z '  and in the second integral z < z' so that Eq. (4.11) may 

be rewritten as (with some rearrangement of integrals and factors) 

The above two integrals may now be combined to produce 

(4.12) 

(4.13a) 

where the absolute value signs and step-function e(u) have been added to allow for p0 

positive or negative and the kernel K(z;z)  is stated as 

with 

(4.13b) 

(4 .13~)  

4.B.4. Alternative Expression for K(z;z ) .  

The kernel K(z;$) may be reformulated using a Bessel function transformation so 

that a more convenient alternative form may be obtained. Substituting the expression for 

u(d7z) into Eq. (4.13b) produces 

(4.14a) 
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or by extracting the portion of the exponential which does not depend OR 4, 

(4.14b) 

Because the 4 integral covers the full period of the cosine, the definition of the zeroth-order 

Bessel function 

may be used so that K(& is seen to be 

(4.15) 

Given the following formula for the Laplace transform of the Bessel function [Abramowitz 

and Stegun] 

it then follows that 

(4.16a) 

2 2 112 +rl 1 
j r d t  e-sf J,[ q(t2 - 1)1'2] = 2 112 ' ( s 2  + ) 

(4.16b) 

where k = 1 and a is replaced by q. Integrating this expression with respect to s over the 

range [ z , ~ )  yields 

(4.16~) 

and by letting t = Up, the integral on the left becomes 
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which is immediately seen to be K(z;T) when 17 = zk. Therefore, an alternative expression 

for K ( z ; Z )  is 

-z(k’+s 2 Iz 2 ) 112 m e 

which, when s = dp, yields the final expression for K(z;x): 

(4.17a) 

(4.17b) 

This alternative expression for K(&) will allow the establishment of a pseudo problem to 

facilitate the scalar flux solution. 

4.C. The Pseudo Problem 

The solution of Eq. (4.5a) is relatively complicated as the mathematics involve an 

integral equation which contain a kernel which i s  itself an integral. However, transport 

problems similar to this one have been found to be variants of a one-dimensional “pseudo 

problem” as proposed by Williams [1982]. He introduces a fictitious (pseudo) function 

$(z,p) which satisfies the one-dimensional transport equation with a generalized form of the 

direction and total cross section. When this fictitious function is integrated over p (thus 

obtaining a pseudo scalar flux) and the generalized direction and cross section have a 

- 

specific form an equivalence of the pseudo and direct problems is obtained. 

4.C. 1. Integral Equation for the Pseudo Scalar Flux. 

The pseudo transport equation is written as 
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(4.18) 

where the pseudo flux satisfies infinite medium boundary conditions and a(p) and b(p )  are 

yet to be specified. Proceeding as before, the integral form of Eq. (4.18) is derived, and 

then the scalar flux is obtained by integrating over p .  The integrating factor is easily seen 

from Eq. (4.18) to be ez6(p)'pcu), and upon integrating along the particle trajectory for both 

p > 0 and p < 0 there results 

a. 

where the pseudo scalar flux is defined as 

(4.19a) 

(4.19b) 

(4.20) 

As with the previous procedures, upon substituting Eqs. (4.19) into Eq. (4.20), with the 

change of variable that p + -p in Eq. (4.19b), there results 

or 
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where 
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(4.21a) 

(4.21b) 

Multiplying Eq. (4.2 la) by a(p*), defining $(z;p*) I a(p*)&z;p*), rearranging the integral, 

and allowing for all values of p*(via the absolute value signs and the step hnction) 

produces the final form for the pseudo scalar flux: 

where 

(4.2 IC) 

(4.2 Id) 

Comparing the equations for the kernels [Eq. (4.17b) and (4.21d)l leads to the conclusion 

that if 

(4.21e) 2 2 112 a(p) = (1 + k p ) , b(p) = 1 + k2p2 

then k(z) = K(z;z) .  

With a(p) and b(p)  thus defined, by comparison of Eq. (4.21~) with Eq. (4.13a), it 

is evident that these two equations are identical in form. Therefore, a formal expression for 

the relationship between the actual and pseudo scalar fluxes is given as 

(4.22) 



to give 

+ 4 P , m o  - P * )  > 

where the Fourier transform pair is given by 
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Thus, the determination of the desired scalar flux is easily obtained given the solution for 

the pseudo scalar flux - a standard transport problem in an infinite medium with a 

generalized direction ~ ( p )  and a generalized relative total cross section b(p). 

4.C.2. Solution to the Pseudo Problem. 

The solution to the pseudo problem is readily obtained via Fourier transform 

methods. A Fourier transform is applied to Eq. (4.18) (formally restated here) 

(4.23 a) 

(4.23b) 

(4.23~) 

and the modified definition that dz,p;p*)  = a(p*)&z,p;p*) has been used. Defining the 

transformed pseudo scalar flux as 

and solving for the transformed angular pseudo flux yields 



f 

Eq. (4.24a) can now be integrated over p to give 

87 

(4.24a) 

-- 
or upon solving for &p;p*,k) ,  

where 

(4.25 a) 

(4.25b) 

The next task is to evaluate L(p,k). By letting s = ip and recalling the definition of 

t(p,k),  L(p,k) can be rewritten as 

or 

Given the definitions of a(plk), b(p,k), and {(p,k) ,  it is readily seen that 

and 

1 
1 - k2e2 

1 + p2k2 = 

(4.26a) 

(4.26b) 

(4.27a) 

(4.27b) 
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Taking the derivative of the equation tor ,ii with respect to 5 yields 

(4 .27~)  

which upon substituting Eqs. (4.27b) and (4.27~) into Eq. (4.6b) gives 

(4.28) 

2 2 1/2 Eq. (4.28) is evaluated via the trigonometric substitution case= ( I  - k ( ) 
(upon extracting the even form of the integrand) 

, giving 

(4.29a) 1 de 
L@,k) = 

[ I -  $sin20 9 

. Finally, making the substitution x = (p + p2)tanB yields k ’[ (1 + k’)”‘] 
where a = sin- 

dx L(p,k) = k 
x 2  + ( k 2  + p 2 ) k 2  ’ 

(4.29b) 

which is readily evaluated to be the familiar expression 

(4.30) tan-lu L(p,k) = 7 , u = ( k 2  + p2)‘I2 . 

Given this closed form for L(p,k), the next task is to solve for the pseudo scalar 

flux. Again recalling the definition of {(p;k), the pseudo scalar flux is obtained by simply 

taking the inverse Fourier transform of Eq. (4.25a): 

(4.3 1) 

Then using the equivalence relation between the pseudo scalar flux and the transverse 

transformed scalar flux [Eq. (4.22)] provides the desired result 
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(4.32) 

It is usually convenient to extract the uncollided portion of the flux, done by setting c = 0 in 

the above equation. Thus, the transformed uncollided scalar flux is given by 

which upon inversion yields 

(4.3 3 a) 

(4.3 3 b) 

Note that this also agrees with the equation for the transformed scalar flux [Eq. (4.13a)l 

with c = 0. Having extracted the uncollided transformed flux, this leaves 

(4.34) 

as the form for the transformed scalar flux. 

4.D. Two-Dimensional Fourier Transform Inversion 

Once the transform of an equation has been taken and all subsequent algebraic 

manipulations made, the desired solution is obtained via inversion. Thus, the desired 

scalar flux is given by 

where the subscripts 0 and c denote uncollided and collided fluxes, respectively. It is 

possible to obtain a closed form solution for the inversion of the uncollided flux. 



4.D. 1. Inversion of the Uncollided Flux. 

The uncollided scalar flux is again given by the inversion of Eq. (4.33b) 

(4.36s) 

(4.3 6b) 

Inserting the expression for Uo yields 

To perform the inversion we first assume there exists a function of the form 

(4.37a) 1 f(i9 = ; 6[P - x(a)lsEa - Y ( P ) l  

where x(a)  and y(p) are arbitrary functions. The double Fourier transform of this function 

is given by 

or 

- f(z.z) = eikx(y)cos(y-v) 

Thus, upon inversion, the original function is given by 

(4.37c) 

(4.37d) 
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which is similar in form to the uncollided scalar flux. Comparing Eq. (4.37d) to Eq. 

(4.36~) leads to the conclusion that for the equivalence of the two equations the following 

must be true: 

Z x(y) =-( I  - pi)1/2 , y = #o . 
PO 

Thus, the uncollided scalar flux is given by 

(4.38a) 

(4.38b) 

and upon inserting the collided flux and the step function in consideration of the sign of h, 

the scalar flux becomes 

(4.39) 

4.D.2. Inversion of the Collided Flux. 

The advantage of transform methods is that they allow a differential equation to be 

solved by algebra in the transformed space; the danger of using transform methods is that 

one may not be able to evaluate the inverse. Usually, talung a transform is relatively easy; 

however, difficulty often arises in attempting the inverse transform. In Eq. (4.39), there 

are two inversions required - a one-dimensional Fourier inversion in the z-variable, and a 

two-dimensional Fourier inversion in the ?-variable. T h s  equates to performing a triple 

integral. However, by considering some of the apparent symmetries, we may efficiently 

evaluate Eq. (4.39) by first assuming that the beam is normal to the transverse plane (emits 

along the z-axis). Thus upon setting ,u,, = 1 and @ = 0 (although since = 1, is 
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effectively arbitrary), Uo = 1 and the transformed scalar flux is now a function of k only 

and not 2. This simplification may be done for a beam at a general positim and emitting in 

a general direction by translation and rotation of coordinate axes. This procedure will be 

discussed later. By inserting the integrals associated with the inversions we have 

which upon recognition of the integral form for the zeroth order Bessel function becomes 

(4.40) 

Clearly, there will be no closed form solution for the inverted scalar flux; therefore. a 

numerical evaluation of an expression like Eq. (4.40) must be performed. Such an 

evaluation would be relatively difficult owing to the double inversion both of which involve 

infinite limits of integration. Instead of doing this, it is more convenient to reformulate the 

problem in terms of the solution for an isotropic point source at the center of an infinite 

homogeneous medium. As shown in Fig. 1.1 (the intuitive big picture), the isotropic point 

source solution may be obtained by integrating the point-beam solution [Eq. (4.39)] over 

all source directions. 

4.D.2.a. Generation of the Isotropic Point Source Solution. As previously 

mentioned, in principle, the scalar flux given by Eq. (4.39) serves as a Green’s function 

for all infinite homogeneous medium transport problems (that seek the scalar flux) which 

are generally of interest to transport theorists. For an isotropic point source at the center of 

an infinite medium, the Green’s function is integrated over all source angles to provide the 

solution in spherical geometry where r = ( p 2  + z * ) ’ ’ ~  as 



or 

Bringing the angular integrals inside the transform inversions, it is evident that the primary 

integral to be evaluated in the above equation is 

By letting s = ip and switching the integrals, Eq. (4.42a) can be restated as 

(4.42b) 

Noting that both s and U are complex numbers and recalling the residue theorem yields 
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(4.41) 

(4.42a) 

(4 .42~)  

An integral for the ( z  + l/U)-' factor is substituted and upon rearrangement of integrals 

there results 

(4.42d) 

which after recalling the definition of K(z;z)  in Sec. 4.B.3 produces 



By separating the p integrztion over positive and negative regions and evaluating the 

integral over t ,  I becomes 

Recalling the definition of 4 Eq. (4.43a) is simplified as 

or 

(4.42e) 

Again using the residue theorem gives 

which finally reduces to 

Thus, by integration of Eq. (4.39) over the entire range of the source angle 
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(4.43a) 

(4.43b) 

(4.43c) 

(4.43 d) 

(4.43e) 

(4.44) 
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The uncollided portion must now be determined. The uncollided flux from an 

isotropic point source is given by 

The q0 integral is trivial, and the 

identities. Upon evaluation of the & integral 

integral simply requires use of some del ta-function 

(4.45b) 

Using the following relationship regarding the arguments of delta-functions 

qx - y)ldxl= sg, - x)ldyl 

it is seen that 

(4.46) 

Inserting this into Eq. (4.45b) yields upon evaluation of the now trivial ,q, integral 

(4.47a) 

whlch with 3 = 2 + p 2  produces the well-known result for the uncollided flux from an 

isotropic point source in an infinite homogeneous medium 

e-' 
#+o(Z,P) = 4fi3 * 

Thus, the scalar flux from an isotropic point source is given by 

(4.47b) 
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or without separating out the uncollided flux 

If the functionfis defined by 

(4.48a) 

(4.48 b) 

(4.49a) 

and the change of variable u = ( p 2  + k2)11* is made, the longitudinal inverse Fourier 

transform, 

becomes (upon using evedodd arguments) 

(4.49b) 

Inserting this into the expression for the scalar flux [Eq. (4.48b)I and extending the lower 

limit of Eq. (4.49b) to zero by using a step function yields 

Q) du u f ( u )  cos[z(u2 - k 2 ) 112 ] 6(u - k )  ,(4.50a) 
( u 2  - k2)lI2 

which upon exchange of integrations and use of the step function in the k integral leads to 

(4.50b) 



c 
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The integral over k can be evaluated analytically as [Gradshteyn and Ryzhik] 

sin[u(p* + z’)“’] 
COS[Z(U’ - k’)‘”]  = , (4 .50~)  ( u 2  - k2)“‘ 

JO(P4 
(p* + z 2 ) ~ ~ ~  

which leads to the final result, the well-known expression for the scalar flux from an 

isotropic point source in an infinite homogeneous medium [see Eqs 2.25)]: 

4.D.2.b. Inversion in Terms of the Scalar Flux from an IsotroDic Point Source. In 

the last section, it was shown that the scalar flux from an isotropic point source may be 

expressed as 

(4.5 2a) 1 -  
4itZ’P) = 5 s, d k  k Jo(Pk) F ;  (i -Lc@;z,k,i f 

Again, defining the function f as 

(4.52b) 

and multiplying Eq. (4.52a) by e‘ produces 

This is now integrated over (-=J,z] so that 

or 
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the right hand side of which, except for some factors, is the desired scalar flux from the 

point-beam source. Thus, 

(4.53) 

Note that the solution for what seems to be the more basic point-beam/Green’s function 

source problem is obtainable from the isotropic point source solution. The phrase “more 

basic” is used because the isotropic point source may be constructed by integrating the 

Green’s function over all directions. The physical relevance of Eq. (4.53) is most easily 

seen using a simple change of variable and rearrangement so that 

y(z,p) = j’idzt e-‘‘ c cpi(z - z‘ ,p)  . 

Now it is easily seen that the scalar flux from the Green’s function source is the result of 

neutral particles being emitted along the positive z-axis, attenuating exponentially, colliding 

with the material at some z‘ with the probability c of surviving, and then appearing as if 

they came from an isotropic source due to the isotropic scattering of the medium. This 

phenomenon of deriving the flux from an anisotropic source from that of an isotropic 

source has been seen in previous work. When analyzing the infinite medium anisotropic 

plane source, Bell and Glasstone conclude after showing that the scalar flux from the 

anisotropic source may be written in terms of the flux from an isotropic source “[tlhus it is 

seen that the solution to a problem with an anisotropic source in a medium with isotropic 

scattering can be obtained from the solution for an isotropic source” (p. 85) .  

Eq. (4.5 l), with a change of variable and contour, and extracting the pole 

contribution, can be shown to be [Case, DeHoffmann, and Placzek] 



where 

1 2  2 - 1  
g(c,p) [( 1 - cptanh- p) + ( :cp)  ] , 

-- dki 2 G ( k :  - 1)  
- c ( l  - c - k i )  ' 

and ko satisfies the familiar dispersion relation 
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(4.54a) 

(4.54b) 

(4.54c) 

(4.54d) C 1 - - tanh-'(ko) = 0 . 

Inserting Eqs. (4.54) into the equation for the scalar flux in terms of an integral over the 

isotropic scalar flux [Eq. (4.53)J gives the general scalar flux for a normally incident beam 

as 

k0 

where 

(4.55 a) 

(4.55 b) 

Thus, the Green's function may be expressed as an integral of the point source solution. It 

is interesting to note that the isotropic point source solution may be obtained by integrating 

the point-beam solution (over source angle) yet the point-beam solution may be obtained by 

integrating the isotropic point source solution. With the form of the Green's function 

solution as given by Eqs. (4.53, the next step is to obtain numerical results for this basic 
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transport problem. However, due to the singular nature of the source, possible 

singularities are expected in the evaluation of Eq. (4.55b). 

4.E. Reformulations of the Scalar Flux to Address Singularities 

The infinite medium Green’s function when emitting from the origin along the 

longitudinal ( z )  axis exhibits variation in the radial and axial dimensions. By examining 

Eqs. (4.55) it is clear that a double integration must be evaluated. The nature of the source 

indicates that there will be a different treatment of the solutions for positive and negative z. 
The uncollided flux is zero behind the source indicating that a simpler treatment is possible 

for z e 0. For z > 0, the key to the special treatment lies with the term ,y,(z,p;a). 

4.E. 1. The Scalar Flux for z e 0. 

Examination of Eq. (4.55b) reveals that if z > 0 and p is equal to 0, then a 

singularity will occur as the integration variable (z?, whose limits are [-z,-), passes 

through zero. It is also evident that if z e 0 there is no singularity in the integrand. Thus 

for z < 0 and with the change of variable w = ,y,(z,p;a) may be written as 

(4.56) 

The integral over p in Eq. (4.55a) is convergent because the term x, z,p;- tenc, to zero 

exponentially as y approaches zero. This overcomes the infinity of the U p 2  term. 

However, it is numerically expedient to reformulate the p integral by “creating” another 

zero in the numerator (besides the e-dp term) to counter the zero in the denominator. 

( :> 

Noting that g(c,y) tends to 1 as p approaches zero, it is logical to rewrite Eq. (4.55a) for z 
e 0 as 
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where 

1 (l/p)[p'+(lnwz) 2 1  112 
e- 

Q g = I 1  1 dw [p2 + (lnw + z )  * 2 1/2 ] 
0 

(4.57b) 

Interchanging the integrals in Eq. (4.5%) and evaluating the y integral yields for Qg 

(4.57c) 

4.E.2. The Scalar Flux for z 2 0. 

Recalling that for z > 0 there is a singularity in ~,(z,p;a), the treatment of ~,(z,p;a) 

becomes critical. By dropping the term e-' from ~,(z,p;a) and separating the integral there 

results 

If the substitution z = -z is made then the following results 

and it is immediately seen that 

(4.5 9a) 

where 



I I- 

-. 

L 

Thus, the key to the evaluation of ~,(z,p;a) now rests on the evaluation offo(z,p;a). 

Substituting Eq. (4.59a) into Eq. (4.55a) yields 

I02 

(4.5 9b) 

(4.60a) 

or upon noting that the corresponding scalar flux for negative z is contained in this 

equation, it is evident that 

There are no concerns regarding singularities in the evaluation of the term Y(-z,p) 

in Eq. (4.60b). Given the functional form Dffo(z,p;ko) from Eq. (4.59b) it may be seen 

that the singularity at p = 0 in ~,(z,p;u) previously discussed is now present in this 

function. If p is zero then the integrand will eventually pass through z’ = 0 creating a zero 

in the denominator which is not countered by a zero in the numerator. This singularity will 

now be extracted. The change of variable w = z’/z is made to give 

(4.61a) 

or upon separating the integral over negative and positive ranges, making a simple change 

of variable in the [-I ,O] integral, and combining the result yields 
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(4.61b) 

A singularity occurs in the integrand only when both p and u) equal 0; therefore the 

evaluation of ths  integral as is will be difficult due to the singularity at the lower limit. 

When this singularity occurs, the numerator has the value 2, which is now extracted to give 

7 2 112 
1 dw [ (ea' + e -a(p2+w-z ) - 21 + Qo , (4.624 ( P 2 + @ Z )  2 2 112 

where 

do 

which explicitly contains the singularity and can be shown to be 

2 112 
Q0=21{(l +%) P +;] . (4.62b) 

As with the case for z < 0, it is desirable to make the p integral more convenient for 

numerical evaluation by countering the zero in the denominator at p = 0. As before, this 

gives 

where 
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(4.63b) 

Again, interchanging the integrals and evaluating the p integral yields for Qg 

(4 .63~)  

- -  

Thus, for z > 0, in order to evaluate the scalar flux, the scalar flux for the corresponding 

point at -2 must be evaluated, and then the single and double integrals specific to the 

formulation for positive z must also be evaluated. 

As seen in Sec. 4.D, the solution for the Green's function source may be expressed 

as an integral of the isotropic point source solution. It has also been seen that the solution 

for any source which emits particles isotropically may be constructed by integrating the 

point source solution over the source region. Thus, assuming all anisotropic sources may 

be constructed from this Green's function source, it is therefore noted that the isotropic 

point source in an infinite medium is the source from which all others may be constructed. 

4.F. Results for the Scalar Flux from the Green's Function Source 

Obtaining numerical results requires the accurate evaluation of integrals. The 

methods which accomplish this task have been discussed in the previous chapter. The other 

important task for the computer algorithm is to evaluate the scalar flux at spatial edit points 

so that the results are visually and conceptually useful, be they in tabular or graphical form. 

In order to use the equations derived for the Green's function source (and the finite sources 

as well), a general source must be placed in a convenient reference frame so that the source 

is at the center of the reference frame and is oriented appropriately. For the Green's 

function source, this means that the beam emits along the z-axis of the reference frame. 
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This is accomplished by translation and rotation of coordinate axes into a convenient 

reference frame for each type of source. 

4.F.l. Rotations of Axes. 

The solutions and solution methods discussed in the last two chapters are at least 

two-dimensional. However, since a source can be arbitrarily translated and rotated to any 

position and orientation in an infinite medium, the actual variation of the scalar flux in the 

infinite medium will be three-dimensional. Given the principle of superposition, a variety 

of sources can be placed in an infinite medium. The flux at any point can be evaluated by 

determining how that point relates to a convenient reference frame for the source. That is, 

by translating and rotating the general (transport frame) axes into a reference frame which is 

suitable for evaluation of the scalar flux (source frame), a problem with three-dimensional 

variation (using an “inconvenient” coordinate system) of the scalar flux may be numerically 

evaluated using two-dimensional techniques. 

Fig. 4.2 displays the necessary rotations to transform the general frame of reference 

into a convenient frame for solution methods. Note that translations are not shown; any 

necessary translations are assumed to have been completed so that the origin for the 

transport frame is at the same location as the origin for the source frame. The figure 

assumes that the source is the Green’s function source; however, any source may be 

substituted given that the placement in the source frame is appropriate for the kind of 

source. The beam source is placed in an arbitrary direction by assigning to it longitudinal 

and azimuthal angles. As is standard in transport theory, the longitudinal angle, e,, is 

measured from the z-axis, and the azimuthal angle, h, is measured from the x-axis. The 

first step is to rotate the axes in the transport frame an angle about the z-axis so that the 

source in the intermediate frame lies in the z’-x’ plane. The second step is to rotate the 

intermediate frame an angle e, about the y‘-axis so that the source lies along the 2”-axis. 
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The first axes rotation is displayed in Fig. 4.3a. The coordinate transformations for ths  

first step going from the transport frame (unprimed) to the intermediate frame (primed) are 

x' = X C O S # ~  + ysinqbo 

y '  = -xsin$o +  COS$^ 

z ' = z .  

Transport 
Frame 

Z 

Intermediate 
Frame 

z: z 

~ y '  I I 

X '  

Source 
Frame 

Fig. 4.2. Rotation of arbitrary transport frame into source frame convenient for 
numerical evaluation. 

Fig. 4.3a Fig. 4.3b 

Explicit rotations of axes for determination of coordinate transformations. Fig. 4.3. 
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The second axes rotation is displayed in Fig. 4.3b. The coordinate transformations for the 

intermediate frame (primed) to the source frame (double primed) are 

x" = X ' C O S ~ O  - z'sineo 

y" = y '  

z" = ~ ' s i n 6 ~  + z%ose0 , 

which gives for the net result of the two rotations 

X" = ~ ~ ~ ~ q o ~ ~ ~ e o  + ysin$ocos60 - zsineO (4.64a) 

y" = --xsimp0 + ycosqo 

z" = xcosqosin60 + ysinqj0sineo + zcoseo . 

(4.64b) 

(4 .64~)  

Thus, with the above coordinate transformation, a spatial point in general space (x,y,z) can 

be expressed relative to the source frame (x",y",z") and is then expressed in a format 

convenient to the sourc': rather than the original geometry. Note also when = 0 = 

(when the source happens to already be in a convenient coordinate system) the source 

frame and transport frame are equivalent. 

4.F.2. Spatial Edit Point Grids. 

In the last section, the means by whch an arbitrary point in space may be expressed 

relative to a coordinate system convenient to a source was derived. This section examines a 

couple of ways by which the arbitrary spatial points may be placed in convenient grids for 

use by a computer algorithm. 

4.F.2.a. Planar Grid. The most prevalent and convenient grid is a reczangular 

planar grid. In order to make the edit grid as general as possible, the finite grid is specified 

so that it may be rotated in the transverse plane and vertically. Given that the initial edit 
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point is specified as (xo,yo,zo) and the distance between points in the grid is specified as Ax 

and Ay, the grid may be rotated in the x-y plane an angle % so that (see Fig. 4.4) 

xV = xo + iAxcoscro - jAysinao 

yG = yo + iusincr, +j~ycoscrg 

zij = z o  , 
where i andj are the edit point index for x and y, respectively. 

Next, to make the location of the grid plane completely arbitrary, the grid is rotated 

about the axis labeled “Second Rotation Axis” in Fig. 4.4 an angle p0. Now, the projection 

of the grid in the x-y plane is such that AY is unaffected and Ax + &cos&,. Thus, 

xi = xo + i A x c o s ~ o c o s ~  - jAysinq, 

y $  = yo + iAxcos/30sinao +jAycosq . 

(4.65 a) 

(4.65b) 

Because the axis of rotation is along the rotated y-axis (y’), the hypotenuse of the triangle 

with base angle p0 is ihx, and therefore the height of the edit point is given as 

zI; = zo + iAxsinpo . (4.6%) 

This planar grid is most useful as a standard means of viewing the scalar flux as a function 

of position. Another means of selecting edit points is to have them on the surface of a 

sphere. 
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X 

Fig. 4.4. Rotation of edit grid in x-y plane. 

4.F.2.b. Spherical Surface Grid (Global View). Because the Green's function 

source is a directed source, it is desirable to obtain some means of examining the directional 

variation (or gradient) of the scalar flux. When direction is mentioned, one naturally thinks 

of the unit sphere with which to express the direction. To this end, an input option is 

provided to allow the set of edit points to lie on the surface of a sphere, denoted as a 

''global view" of the edit points. Such a set is specified when the center of the sphere 

(xo,yo,q,), the number of points in the 4 and 6 dimensions, and the radius of the sphere 

(Ro) are provided. Assuming the usual ranges for the angular variables, 0 5 0 5 x, 0 5 4 5 

2 s  then e, = idN& and =j2dN* Therefore, the spatial edit points are given by 

xii = xo + RosineicosGj 

y i j  = yo + Rosineisinqj 

zij  = zo + Rocosei . 

(4.66a) 

(4.66b) 

(4 .66~)  

A pictorial view of the edit grid for the global view is given in Fig. 4.5. Again, this grid 

allows in some sense examination of directional variations in the scalar flux. 
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Fig. 4.5. Global view edit grid. 

4.F.3. Results for Individual Sources. 

Most results were generated used the panels method described in Ch. 3. The outer 

integral is performed as described in ths method and the inner integral is evaluated only at 

the quadrature order of the outer integral. Thus, convergence on the inner integral is not 

performed based on quadrature order. For those sources which require evaluation of three 

integrals, the innermost integral is evaluated at one set quadrature order. The supposition 

in this scheme is that the accuracy of the inner integrals is not as important as the outer 

ones. Thus, less care is taken in the second integral's evaluation than for the first integral, 

and less care is taken in evaluating the third integral than the second integral. 

When the iterative Gauss-Legendre scheme is used, it is used on all integrals. This 

generally requires more computer time, but by comparing the results from these two 

integration schemes confidence that both are performing the integrals accurately may be 

built. 

The first set of results is an analysis of the two types of integration methods for all 

four sources discussed in the last two chapters. The mean number of secondaries per 

collision is set to c = 0.9. The Green's function source is located at the origin and emits 

along the positive x-axis. The other sources have the same characteristics as those used for 
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the error analysis in the last chapter. Table 4.1 shows a comparison of the two integration 

schemes as discussed above. For the iterative Gauss-Legendre quadrature schemes the 

initial and incremental quadrature orders were both set to 10. For the panels method the 

initial and incremental quadrature orders were set to 5, the number of panels was 4, and the 

quadrature order of the third integral was 20. Excellent agreement between the two 

schemes is obtained as shown in Table 4.1. There is some minor discrepancy in the last 

digits of the results from the rectangular source; this is due to the asymmetric nature of the 

source resulting in the need for slightly greater accuracy in the inner integrals. Increasing 

the quadrature order (to 50) in the third integral improves the agreement to within the given 

error of lod. Also, in the treatment of numerical singularities, the non-singular p integral 

was treated by subtracting 1 from g(c ,p)  to counter a Up2 term. Again, this term is non- 

singular, but adding this zero in the numerator for p = 0 makes it numerically easier to 

evaluate such integrals. The evaluation times for the case where these integrals are treated 

are typically three times faster than when the integrals are left as is. 

An error analysis and typical plot of the scalar flux as a function of position are 

provided in Table 4.2 and Fig. 4.6. In both cases the source is at the origin emitting 

particles along the positive x-axis. 
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Table 4.1. Integrztion Scheme Analysis. 

Iterative G-L 1 Panels 
Green’s Function 

Finite Line 
2.8 6975E+00 2.86975E+00 
2.79039E+00 2.79039E+00 
1.50877E+00 1.50877E+QO 
2.16606E-01 2.16606E-01 
9.72665E-02 9.72666E-02 

1.60976E+OO 1.60976E+OO 

1 8.48238E-01 8.48238E-01 
1.5 2.60607E-01 2.60607E-01 
2 1.32242E-0 1 i 1.32242E-0 1 

Rectangle 
1.70986E+00 1.70985E+00 

9.824 19E-01 9.824 13E-0 1 

1.7 13 1 1E-01 1.7 13 12E-01 

Table 4.2. Error Analysis for Green’s Function Source. 

err= 

1.1 19593 
1.61721 5 
1.725982 
1.686987 
1.599 19 1 
1.49492 1 
1.38685 1 
1.280623 
1.178900 
1 .Of32925 
0.993203 
0.8 3 2707 
0.696 105 
0.5808 18 
0.484020 
0.4030 18 

err= 10-~ 

1.119563 
1.617177 
1.72594 1 
1.686945 
1.599 149 
1.494882 
1.386813 
1.280587 
1.178867 
1.082894 
0.993 173 
0.83268 1 
0.696083 
0.580800 
0.484005 
0.403004 

err= lo4 

1.119558 
1.617171 
1.725934 
1.686938 
1.599143 
1.494875 
1.386807 
1.28058 1 
1.17886 1 
1.082889 
0.993 169 
0.832677 
0.696079 
0.580797 
0.484002 
0.403002 

err= 

1.1 19557 
1.617 169 
1.725932 
1.686936 
1.599141 
1.494873 
1.386806 
1.280580 
1.178860 
1.082887 
0.993 167 
0.832676 
0.69607 8 
0.580796 
0.484002 
0.403002 

err= 

1.119556 
1.617 168 
1.72593 1 
1.686935 
1.599 140 
1.494873 
1.386805 
1.280579 
1.178859 
1.082887 
0.993 167 
0.832676 
0.696078 
0.580796 
0.48400 1 
0.403002 
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Fig. 4.6. 

% 2 

Scalar flux at z = 0. i resulting from a single Green’s function source. 

In the derivation of the Green’s function, the scalar flu was expressed as an 

integral of the isotropic point source solution. The numerical solution uses the form of the 

isotropic point source solution expressed after a change of variable and contour in the 

complex plane (Case, DeHoffmann, and Placzek). The double inversion as given by Eq. 

(4.40) could have been done numerically as well; however, the numerical evaluation of Eq. 

(4.40) takes much longer than integrating the analytically continued point source solution as 

found in Eqs. (4.53) and (4.54). Table 4.3 provides a comparison of the scalar fluxes as 

obtained using these two formulations. The source is at the center of the infinite medium 

emitting particles along the z-axis. The number of secondaries is 0.9 and the desired error 

is lo4. Note that both sets of scalar fluxes agree within the desired error; however, the 
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evaluation time per point was about 0.14 seconds for the scalar flux after :he analytic 

continuation and about 9 seconds for the scalar flux obtained via direct double inversion. 

Table 4.3. Scalar Flux Analysis for Different Inversion Methods. 

Scalar Flux After Analytic Continuation 

0.5 0.255236 0.096383 0.049295 0.028570 
1 0.215929 0.091662 0.048670 0.028590 

1.5 0.160149 0.076275 0.043207 0.026325 
2 0.113094 0.059072 0.035685 0.0227 19 

Scalar Flux As Direct Inversion 

Z\P 0.5 1 .o 1.5 .2.0 

0.2 15929 
0.160 148 
0.1 13093 

1 .o 1.5 2.0 
0.096384 0.049295 0.028570 
0.091662 0.048670 0.028590 
0.076275 0.043208 0.026325 
0.059072 1 0.035685 0.022719 

With an algorithm to provide the scalar fluxes from these four sources which are 

derived from the isotropic point source, it is possible to combine the sources in a 

configuration that utilizes superposition to provide the scalar flux from an arbitrary 

distribution of sources. These specialized results will be presented in the next chapter. The 

Green’s function source will now be used to construct the anisotropic plane source 

solution, thereby adding one more piece to Fig. 1.2. 
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4.G. The Anisotrouic Plane Source 

In this section, the anisotropic plane source solution will first be derived from the 

generd Green's function, and will then be derived independently from an appropriately 

formed transport equation. The scalar flux from this source will, like the isotropic point, 

plane, and line sources, be one-dimensional; however, unlike these isotropic sources, the 

solution for the anisotropic plane source contains a parameter 4 describing the direction in 

which the particles are emitted. 

4.G. 1. Derivation of the Scalar Flux from an Anisotropic Plane Source. 

The scalar flux from the anisotropic planar source can be derived by integrating the 

Green's function over the transverse plane as 

(4.67a) 

This step in the completion of the suite of infinite medium benchmarks discussed in this 

work is displayed in Fig. 1.2g. Expressing Eq. (4.67a) as a double Fourier transform 

leads to a very simple means of obtaining the desired scalar flux once it is noted that when 

k' = 8 in the longitudinally transformed scalar flux, the following results 

From the transform of the scalar flux from the Green's function source, we have 

(4.68) 

So by setting L? = d in the above equation, Uo + h, and the longitudinally transformed 

scalar flux for the anisotropic planar source is therefore 
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Fig. 1.2g. The eighth step in constructing the suite of infinite medium benchmarks - 
deriving the anisotropic plane source from the Green’s function source. 

- 1 1 
yani@) = ’ 1 + ippo 1 - c L ( p )  

which upon inversion yields the scalar flux from the anisotropic plane source as 

(4.69) 
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(4.70) 

The scalar flux from the anisotropic plane source can also be derived by using a 

transport equation which is written for this source in an infinite medium. 

4.G.2. Derivation of the Scalar Flux Directly from the Transport Equation. 

Beginning with a simplified form of the one-dimensional linear transport equation 

(time-independent, one-group, constant cross sections) with a spatial delta-function source 

at the origin emitting neutral particles in the single direction 4, 

(4.7 1) 

we then assume azimuthal symmetry and scale the spatial variable by the total cross section 

(Le. use mean free paths instead of distances) to obtain 

where c is the single scatter albedo given by c = E& The flux is subject to the boundary 

condition 

_ .  

-. 

lim lU(x,p;po> < OQ f (4.72b) 
Ix/+= 

As usual for infinite medium problems, the solution method utilizes Fourier transform 

methods. The Fourier transform pair is defined as 

(4.7 3 a) 

(4.73 b) 
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Talung the Fourier transform of Eq. (4.72a) results in the following transformed equation 

(4.74a) 

(4.74b) 

Solving Eq. (4.74a) for the transformed angular flux in terms of the transformed scalar flux 

yields 

(4.75) 

thus, if the transformed scalar flux is known, then so is the transformed angular flux. 

The transformed scalar flux is obtained by integrating Eq. (4.75) over p [Le. using 

the definition given in Eq. (4.74b)l. This integration gives 

(4.76) 

or upon solving for the desired quantity 

where L(k) is defined by 

i i + k tan-'k L(k) = - ln- - ~ 2k 1 - k -  k 

(4.77.a) 

(4.78b) 

With this expression for the transformed scalar flux the desired scalar and angular fluxes 

can be found as 
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(4.79a) 

Recalling the expression for the scalar flux as derived from the Green's function source, it 

is seen that the two results [Eqs. (4.70) and (4.79a)I are identical, as expected. 

The numerical evaluation of Eqs. (4.79) requires that the real and imaginary parts of 

the solution be explicitly expressed. As e,,pected, when this is performed, the integrand of 

the imaginary part is odd with respect to k, and the integral therefore vanishes as it is over a 

symmetric range. Likewise, the integrand of the real portion is even with respect to k. 

This leaves for the scalar and angular fluxes 

cos(kx) + kposin(kx) 1 
& x ; h )  = Jowdk (1 + k2P$ 1 - c L ( k )  (4.80a) 

O0 (1 - k2pop)cos(kx) + k ( p  + po)sin(kx) 1 
1 - c L ( k )  + 

(1 + k2,&(l + k2p2) 

(4.80b) 

The simplest method for evaluating these integrals is separation into two integrals, each of 

which contains the portion of the integrand multiplying the sine and cosine functions, and 

reformulate the integrals over a semi-infinite range as two infinite series of integrals over a 

finite interval. The finite intervals are defined as the zeroes of the sine and cosine functions 

so that the value of the integrands will be zero at the endpoints. The individual integrals are 

evaluated and the convergence of the series is accelerated by an Euler-Knopp 

transformation [Press, et al.]. 
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Fig. 4.7 displays the collided scalar flux in an infinite medium resulting from an 

infinite plane source at the center emitting neutral particles in the direction 

(4.80a)l. Note the discontinuity in the scalar flux at the origin resulting from the source 

= 1 [Eq. 

emitting particles into the right half plane. When c is close to 1 the medium is approaching 

a conservative state where no particles are lost due to absorption. As with the isotropic 

plane source in Ch. 2, the scalar flux becomes uniform throughout the medium and 

increases without bound due to no loss of particles. Fig. 4.8 displays the collided angular 

flux for four positions relative to the source which again emits in the direction h = 1 and 

for c = 0.9 [Eq. (4.80b)l. Note there is an increase in the angular flux for y < 0 and z < 0, 

indicating that the particles in this region come from backscatter. Likewise, for positive z 
the angular flux is mostly the result of particles scattering in positive directions due to the 

emission angle of the source. 

1 .OE+3 
1 .OE+2 
1 .OE+1 

Fig. 4.7. Scalar flux as a function of position for a plane source emitting in the 
direction h = 1 for several values of c.  
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Fig. 4.8. 

1.4 

1.2 

1 

E 0.8 

o, 0.6 

0.4 

0.2 

x 
3 

- 2 
3 

c a 

V I  I I I I I I I I I I 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
P 

Angular flux as a function of p for a plane source emitting at 
several values of z.  

= 1 for 

4.G.3. Derivation of the Flux from an Isotropic Plane Source. 

Given the scalar and angular fluxes from the anisotropically emitting plane source, 

one should be able to obtain the solution for the scalar and angular fluxes from an isotropic 

planar source by integrating over the source emission angle. That is, 

(4.81a) 

(4.81b) 

This completes one more connection in Fig. 1.2 as we show the self-consistency of these 

solutions - since the scalar flux from the isotropic plane source can be obtained by 

integrating the isotropic point source solution, the solution from that analysis should be 
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identical to the solution as obtained by using the method of integrating the anisotropic plane 

source over the emission direction. This process is pictorially shown in Fig. 1.2h. 

Performing these integrations over source emission angle [using Eqs. (6.79)] yields 

dP0 1 "  eikx 

=5Jddk 1 - c L ( k )  -1  1 + i k p o  (4.82a) 

or upon evaluating all the integrals over ,u,, 

(4.82b) 

(4.83 a) 

(4.83 b) 

Converting the complex exponential in Eq. (4.83a) into sines and cosines leads to the 

realization that the imaginary integral vanishes due to the oddness of the integrand, and the 

remaining term for the scalar flux from an isotropic plane source is 

(4.84) 

which is equivalent to the equation for the scalar flux as derived in Ch. 2. 
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Fig. 1.2h. The ninth step in constructing the suite of infinite medium benchmarks - 
deriving the isotropic plane source from the anisotropic plane source. 
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CHAPTER 5: GENERAL RESULTS FOR THE 

GREEN'S FUNCTION AND FINITE SOURCES 

In the last chapter two means of viewing general results were derived - the global 

view where the scalar flux is evaluated on the surface of a sphere, and the planar grid, 

where the scalar flux is evaluated on a grid of points which lie in a plane. The utility of 

both means of viewing results will be explored in this chapter. It was also noted that using 

the principle of superposition, one can evaluate the scalar flux at a point whch is the result 

of an arbitrary array of sources. Such source configurations will also be examined. 

5.A. Results which Utilize the Global View 

As discussed in Ch. 4, one of the means of visualizing the data is on the surface of 

a sphere. The utility of this global view will now be demonstrated. Fig. 5.1 contains 

several global views of a Green's function source located at the origin emitting in the 

direction % = 90°, 61, = 45"; the beam is em3ting particles in the y-z plane. The number of 

secondaries is 0.9 and the source strength is 0.25. Note that the scalar flux on the surfaces 

of the global view spheres contain sharp peaks where the beam passes through the 

spherical surfaces. The evaluation sphere is slightly offset (by 0.01 mfp) so that the beam 

does not hit any of the evaluation points directly. As the sphere is placed farther from the 

source, the peaks remain yet become smaller in magnitude, and the size of the peak near 

where the source enters the sphere (at & = 270°, = 135") is larger than the size of the 

peak where it exits (h = 90", = 45"). 
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The second example of viewing the scalar flux with the global view as shown in 

Fig. 5.2 contains a finite line source centered at (0,-1,O) of length 3 parallel to the x-axis 

and of unit strength. The detector spheres are all centered near the origin (O,O,O.Ol) and 

have different radii (0.5, 1.0, 1.5, and 3.0). When the edit sphere does not contact the line 

there is no sharp peak in the resulting scalar flux but only a rounded peak where the surface 

of the sphere is closest to the source. At Ro = 1 .O the sphere barely touches the line source 

and therefore only one sharp peak is seen. At R, = 1.5 the sphere intersects the line at two 

points resulting in two sharp peaks in the scalar flux, and when the edit sphere is beyond 

the line, two smooth peaks are seen where the sphere's surface is closest to the source. 

Fig. 5.3 displays the scalar flux as viewed by several detector spheres of an 

isotropic disk source. The disk has radius 2 and the detector spheres are centered at 

(0,0,0.5 l), (1,0,0.5 l), and (2,0,0.5 1) and have radius 1. When the sphere is directly 

above the center of the disk there is symmetry in the azimuthal angle 4. As the sphere 

moves off the center this symmetry is lost, and as the sphere extends beyond the edge of 

the disk, the depression in the scalar flux is evident. 

The final example of the utility of the global view contains two finite line sources of 

length 1 centered at the origin lying on the x- and y-axes (see Fig 5.4). The spheres are 

very small (radius 0.01) so that in some sense the directional variation of the scalar flux 

may be examined. Note that the graphs for the points (0, I) and (1,O) have the same shape 

and magnitude with the peak being shifted in angle according to where the closest source 

points are. Also the graphs for the points (0.5,0.5) and (1,l) have the same shape with 

different magnitudes based on their distances from the sources. It is interesting to see 

where the peaks lie at the various points surrounding the sources. As expected, the peaks 

occur at 180°, 225", and 270" for the points (l,O), (0.5,0.5), and (O,l), respectively. 

These angles are the directions from the detector spheres to the areas of high scalar flux. 
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Fig. 5.1. Global views of Green’s function source. 
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Fig. 5.3. Global views of disk source. 
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Fig. 5.4. Global views of two line sources in a “plus sign.” 
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5.B. Multiple Source Results 

There is an infinite set of possible source configurations, edit grids or formats, and 

case studies which may be constructed in an infinite medium. Following are two possible 

multiple source configurations, one composed of four Green's functions and two finite line 

sources and one composed of four square and two disk sources. In both cases c = 0.9. 

The data regarding the first set of sources may be found in Table 5.1 and a pictorial 

representation of the source configuration is provided in Fig. 5.5. 

Table 5.1. Source Specifications for Green's FunctionsFinite Lines Example. 

Point Coordinates Direction r 

Sources (x,y '2 'SO) (QO,40> 
1 (-4,4,0,0.25) (90",-45") 
2 (3,4,0,0.25) (90",-90°) 
3 (0,0,0,0.25) (45",90") 
4 (0,-3,OS ,0.25) (135",0") 

Point Coordinates Direction 

Fig. 5.5. Four Green's function and two finite line sources configuration. 
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Fig. 5.6 contains the contour mapping of the scalar flux and an enlargement at z = 0. The 

enlargement has a dual purpose. Because this is an analytic benchmark formulation, any 

desired magnification may be obtained by considering a smaller region with the same 

number of edit points in the grid. Also, the edit grid has been rotated an angle q, = -30" 

displaying the possibility of using the arbitrary windowing feature previously discussed. 

Fig. 5.7 displays the contour mapping at z = 0.25. Note that the sources in the x-y plane 

are less well defined because the edit grid is farther from the sources. The Green's 

function source at (0,-3'0.5) is barely visible. This is a result of the edit grid missing the 

source which is not in the plane of the edit grid; that is, none of the edit points are close 

enough to the source to provide a clear source definition. Therefore, an enlargement is 

provided to show that the solution methods will properly display the source given adequate 

resolution. The final contour in Fig. 5.8 is the scalar flux evaluated at z = 0.5. Again the 

sources in the z = 0 plane are poorly defined and the Green's function source which was 

located at the origin and emitted toward greater z at an angle of 45" is now shifted slightly 

toward higher y due to the emission angle. Also, the other Green's function source which 

emitted at an angle not in the x-y plane is clearly visible again because the edit grid passes 

close to the beam. 
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Fig. 5.6. Contour mapping at z = 0 for six source configuration plus enlargement. 
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Fig. 5.7. Contour mapping at z = 0.25 for six source configuration plus enlargement. 
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Fig. 5.8. Contour mapping at z = 0.5 for six source configuration. 

The final example of a complicated source geometry consists of four rectangular 

and two disk sources surrounding the origin. The source specifications are given in Table 

5.2. Figs. 5.9 and 5.10 provide a contour mapping of the scalar flux at z = 0 and 7; = 0.9, 

respectively. In Fig. 5.9 there is a depression in the scalar flux (as indicated by the 

depression marks) as the sources which contribute most to the scalar flux are the square 

sources. However, as the edit grid approaches the upper disk source in Fig. 5.10 the 

influence of the disk source is seen as a peak in the flux at the center which 

correspondingly produces depressions between the peak from the disk and the peaks from 

the square sources. It is postulated that source configurations similar to this one may be 

used to provide a radiation dose to cancerous tissue where the sources may be activated 

foils which emit gamma rays. 



Table 5.2. Source Specifications for DisksRectangles Example. 

Sources 

(-1.1 ,o,o, 1) 
4 (0,-l.l,O,l) 131 (90",90") 

Disk Coordinates Dimensions Direction , 
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-2 -1.6-1.2-0.8-0.4 0 0.4 0.8 1.2 1.6 2 
X 

Fig. 5.9. Contour mapping of four square and two disk sources at z = 0. 
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-2 -1.6-1.2-0.8-0.4 0 0.4 0.8 1.2 1.6 2 
X 

Fig. 5.10. Contour mapping of four square and two disk sources at z = 0.9. 

5. C . Comm t ational Environment 

All calculations and results were obtained using a DEC 3000/400 Alpha workstation 

with 64 MB of memory. Table 5.3 provides some characteristic computational times for 

the various sources discussed here. The timing data are for the sources described in Tables 

3.1, 3.2, 3.3, and 4.2 and displayed in Figs. 3.4, 3.5, 3.6, and 4.6 (all scalar fluxes are 

evaluated at z = 0.1). The calculation times for the Green’s function and finite line sources 

are very short due to the evaluation of fewer integrals (the scalar flux expressions both 

contain double integrals), and the disk and rectangular sources require longer times for 

evaluation of the scalar flux due to the required evaluation of triple integrals. Evaluation 

times increase with stricter error requirements, as expected. 



Table 5.3. Characteristic CPU Time for 
Evaluation of Scalar Flux from Various Sources. 

x 1 err= 10-31 err= lo4! err= 10-~ x 1 err= 10-31 err= lo4/ err= 

0 0.03 0.07 0.16 0.96 3.86 

~ 

{5 1 :::; 1 :::: ~ 7.99 
0.5 0.02 0.05 

1 0.02 0.06 0.16 3.30 9.46 
1.5 0.03 0.07 0.17 1.5 1.16 3.66 9.47 
2 0.03 0.06 0.22 1 2 1.80 3.37 8.47 

Finite Line ! Rectangle 
0 0.05 0.08 0.19 0 1.54 7.50 34.45 

0.5 0.02 0.04 0.09 0.5 1.13 5.95 22.06 
1 0.02 0.04 0.10 1 0.7 1 3.09 8.47 

1.5 0.03 0.04 0.07 1.5 0.44 0.96 4.34 
2 0.03 0.04 0.07 2 0.43 0.86 j 2.37 

Green’s Function Disk 

0.14 
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The final source analysis required to complete Fig. 1.2 is the infinite anisotropic 

line source in an infinite homogeneous medium. The analysis of this source will use many 

of the mathematical and numerical techniques seen thus far. 



c 

138 

CHAPTER 6:  THE ANISOTROPICALLY E,h/LITTING INFINITE LINE SOURCE 

The next step in the progression of analytical benchmarks in infinite homogeneous 

media involves a source which is analyzed more for its mathematical curiosity than for its 

physical relevance. Benchmarks have been provided for those geometries which have one- 

dimensional (isotropic point source; isotropic in5nite line; isotropic and anisotropic infinite 

plane), two-dimensional (isotropic finite line, isotropic disk, Green’s function), and three- 

dimensional (isotropic rectangular source) variations in the scalar flux. However, in all 

cases of finite-sized sources, the variation in the scalar flux is seen to be three-dimensional 

by intelligently rotating axes and coordinate translations to place the source(s) at arbitrary 

locations in the medium; therefore, a three-dimensional scalar flux variation may be 

numerically evaluated using two-dimensional techniques. In general, the dimensionality of 

the solution method is associated to the number of implicit integrals which must be 

evaluated to obtain a numerical solution. 

The ultimate goal of this work is to obtain numerical results for a problem which is 

truly three-dimensional in nature - the classical searchlight problem with a canted incident 

beam. In order to expand the benchmarks which are available, to provide for a complete 

picture of benchmarks in infinite homogeneous media, and to study the mathematics and 

numerics required for the searchlight problem, a two-dimensional benchmark is considered 

in this chapter where an anisotropically emitting infinite line source is placed in an infinite 

medium, and the scalar flux is determined. Where most two-dimensional benchmarks for 

the scalar flux provide results in Cartesian (x,y) or cylindrical (p,z) coordinates, this 

analysis presents a two-dimensional benchmark in polar (p,a) geometry. 
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6.A. Anisotropic Infinite Line Problem Definition 

The setting for this problem is an infinite homogeneous medium which scatters 

particles isotropically. The properties of this medium are described by the factor c, which 

is the mean number of secondary particles produced per collision. A cylindrical coordinate 

system (p,a,z) best fits the geometry. The source is an infinitely long line located at p = 0 

along the z-axis which emits particles in a single direction do(@o,eo). A pictorial view of 

the source geometry is given in Fig. 6.1, and the step in the progression toward completion 

of Fig. 1.2 is shown in Fig. 1.2i. 

Fig. 6.1. Source geometry for an infinite line sowce emitting particles in the direction 
&)(@o,Qo). 

The flux from the anisotropically emitting line source is mathematically constructed 

by integrating the solution for a monodirectional point source (Green’s function) emitting in 

a specific direction over the full range of the z-axis. Using cylindrical geometry, the one 

energy group transport equation for this point source located at the origin and emitting 

particles in the direction do(Qo,eo) is 
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I / 
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Fig. 1.2i. The tenth step in constructing the suite of infinite medium benchmarks - the 
anisotropic infinite line source. 

(6. la) 

with the boundary conditions 
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(6.lb) lim$(z,d,72> < O3 , lun qxz,d,d> < O3 . 
Z+- l$l+- 

By taking a 2-D Fourier transform in the transverse $(p,a) plane [with z (k ,y )  as the 

corresponding transform variable], constructing a 1-D pseudo problem, and taking a 1 -D 

Fourier transform in the transverse ( z )  direction, it was shown in Chapter 4 that the 

transformed scalar flux from this Green’s function source is given by 

(6.2a) 

where FJ is the inverse Fourier transform in the longitudinal direction with transform 

variable p ,  and Uo is defined by 

PO 
1 - ik( 1 - p o )  2 112 u, = 

cos(#o - w) 

L(p,k) is the generalization of the one-dimensional transformed single scatter kernel 

tan-’(k2 + p 2 ) 1/2 

( k 2  + P ) 2 112 * 
L(p,k) = 

(6.2b) 

As previously noted, the scalar flux f-.r the anisotropically emitting infinite line 

source is obtained by integrating the Green’s function source over the entire z-axis as 

( 6 . 2 ~ )  

By cleverly using the definition of the Fourier transform, it is readily seen that the 

transversely transformed scalar flux resulting from the line source can be obtained by 

setting p = 0 in the following equation: 

(6.3a) 

(6.3b) 



J --m 

Assuming > 0 leaves 
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(6.5b) 

(6%) 

and with the following means of changing the argument of the delta function 

it is seen that 

which leaves for the uncollided scalar flux from the infinite anisotropically emitting line 

source 

e-PIYo 

P Yo $ o ( P , 4  = - 6(a - $0) - 
Because of the symmetries inherent in the problem, is arbitrarily set to zero as the 

(6.5d) 

solution for a specific emission angle may be obtained by a simple rotation of coordinates 

axes. 

6.B. One-Dimensional Cases Derived from the Anisotropic Infinite Line Source 

In order to provide simple generalizations of the two-dimensional source, cases 

which reduce to one dimension are considered. The two cases under consideration have 
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the beam emitting particles dong the z-axis (thus losing any angular dependence) and an 

integration over the unit circle so that particles are emitting along the surface of a cone. 

6.B. 1 One-Dimensional Cases: = 1. 

A special case arises when a = 1 (70 = 0). The source is now directed along the z- 

axis; thus, there is no a dependence in the qolution. Setting yo = 0 in Eqs. (6.4) and 

recalling the definition of the zeroth order Bessel function, the solution to this one- 

dimensional case is obtained as 

W Y o = O j  = & j i d k  k f ( W  J&p) - 

As shown previously, the scalar flux in an infinite medium containing an isotropically 

(6.6aj 

emitting line source at p = 0 is given by 

(6.6b) 

Thus, the one-dimensional case considered here may be written in terms of the isotropic 

source solution as 

&wio=o) = C@iS,(P> 

This result may be interpreted in the following manner: because the source is 

( 6 . 6 ~ )  

emitting strictly along the z-axis (p = 0), the only means by whch particles may appear at a 

position p > 0 is for the particles to have scattered somewhere along the z-axis. When the 

particles have collisions on the z-axis, there is a probability, 1 - c, that they will be 

absorbed, and if they scatter, they scatter isotropically as this is a property of the medium. 

Thus, the particles appear to have come from an isotropic source at p = 0, and the scalar 
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flux is adjusted by the fraction of surviving particles which were not absorbed in their first 

collision on the z-axis. 

6.B.2 One-Dimensional Cases: Emission Into All Transverse Angles. 

Another one-dimensional problem may be constructed by integrating Eqs. (6.4) 

over the full range of a. This is actually an ktegration over the emission angle h; 

however, since 6 was arbitrarily set to zero, the equivalent result is obtained by an integral 

over a. Thus, this problem contains a source whch emits particles in directions along the 

surface of a cone the angle of which is given by the parameter yo as shown in Fig. 6.2. 

Note in the figure that only the emission from the point z = 0 is shown explicitly; however, 

such emission occurs at each point along the z-axis. 

Fig. 6.2. Source emission into all transverse angles (onto surface of a cone). 
c 

The scalar flux is therefore given by 
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The primary integral to be evaluated in this case is 

Z(p) = jo2‘ d a  Z(p,a;k)  = 

Recognizing the integral for Jo(x) yields 

and by letting x = k~ (x > 0), the integral in Eq. (6.8a) is rewritten as 

u(x)=J-;a  1 - ixcosw d y  * 

A standard change of variable for an integration using complex variables containing a 

cosine function is to let z = ei which gives (after some simplification) 

dz 
u(x) = s z”?z + 1 ’ 

IzI= 1 

or 

(6.8a) 

(6.8b) 

( 6 . 8 ~ )  

(6.8d) 

(6.8e) 

where the poles lie on the imaginary axis and have the values p = ’[- 1 + ( x2 + 1) 1’2], 

q = i[-l .r - (x2 + 1)”2]. The following limits 
x 

limq(x) = -ice , lunq(x)  = -i , 
x+o x+O 
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show that the value of q ranges along the negative imaginary axis outside the unit circle and 

the value of p is on the positive imaginary axis inside the unit circle. Therefore, when the 

residue theorem is applied to Eq. (6.8e) the only pole which contributes is p .  Applying the 

residue theorem gives 

or upon introduction of the values for p and q: 

2 R  
u(x) = 

( x 2  + 1) 

By reverting to the original variables it is seen that 

(6.9a) 

(6.9b) 

( 6 . 9 ~ )  

Thus, for an infinitely long source which emits particles with equal probabilities into each 

transverse angular direction along the surface of a cone, the scalar flux is 

Note that if yo = 0, the uncollided takes the following form 

(6.10) 

and the form for the isotropic line source scaled by the factor c is obtained [Eq. (6.6c)I as 

expected. Again, if the beam emits along the z-axis, the above limit indicates that there are 

no particles found at p > 0 that are uncollided. Also, if yo = 1, the source emits 

perpendicularly to the z-axis in the ?-plane. 
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6.C. Alternative Formulation for Scalar Flux Solution: Infinite Series 

The scalar flux from the anisotropically emitting line source is given by Eqs. (6.4). 

In order to better faditate the numerical evaluation of the scalar flux, it may be desirable to 

obtain an alternative formulation which is more amenable to numerical evaluation. This ,. 

_- dternative formulation is obtained by representing the complex exponential in terms of an 

infinite series over Bessel functions [Crosbie and Lee]: ..,. 

m 

e-iqcosB - - C ( 2  - sm~)(-i)mJm(~)cos(me) . (6.1 la) 
m=O 

Recalling the expression for the collided portion of the scalar flux, 

(6.1 lb) 

we then define for convenience 

(6.1 IC) u(k;p,a) = - 

The series formula for the complex exponential is substituted into Eq. (6. I IC) and the 

remaining term is rewritten as an integral by noting that 

d z  e - ~ ( l  - ikyocosy) 1 
1 - ikyocosyl=j i  (6.1,2) 

so that (with rearrangement of integrals and the summation) 

(6.13a) 

where 



c 

By expanding the cosine via its addition formula it may be seen that 

d z  e-' cos(rna) fo2" dw eiqcosV cos(rny) + 

+ lomdz e-z sin(rna) Jo2K d w  eiqcosy sin(rny) , 
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(6.13b) 

(6 .13~)  

where q = zkyo. Using the following relations [Crosbie and Lee] 

with a = 0, Eq. (6.13~) becomes 

u,(ka) = j:dz e-' cos(rna) 2a (-i)MJ,(-zkyo) ; 

noting that .I,(-x) = (-I), Jm(x) and rearranging leaves 

(6.15a) 

u,(ka) = cos(ma) 2~ (i)" dz e-' J,(zkyo) . (6.15b) E 
The integral in Eq. (6.15b) is of the form of a Laplace transform and the formula for the 

Laplace transform of a Bessel function or order m is [Abramowitz and Stegun] 

1 [ ( s 2  + a2)"* - s]" 
j:dz edsr Jm(at) = - 

6" (s' + a')''* (6.16) 

It is then seen that 

cos(rna) (i)" 2 K  
2 2 1/2 u,(ka) = 

(1 + k Y o )  
(6.17) 
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.-- 

Inserting this into Eq. (6.13a), it is found that the inner integral may be written as the 

infinite sum (after some simplification): 

This gives for the collided portion of the scalar flux 

or with the integration and summation operations interchanged 

(6.18) 

(6.19a) 

(6.19b) 

A cursory examination of Eqs. (6.19) results in the realization that this alternative series 

formulation of the scalar flux from the anisotropically emitting infinite line source is a 

Fourier cosine series. 

6.D. The One-Dimensional Cases Using the Alternative Series Formulation 

A quick check that the results of the alternative series formulation is consistent with 

the integral formulation, from which it was derived, is to derive the one-dimensional cases 

from the alternative formulation. Again, the two cases under consideration are if the beam 
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emits particles along the z-axis (thus losing angular dependence) and an integration over the 

unit circle so that particles are emitted along the surface of a cone. 

6.D. 1 One-Dimensional Cases: = 1. 

The alternative formulation has the same uncollided flux as the integral formulation; 

therefore, only the collided portion is examined. The only terms in Eqs. (6.19) which are 

affected by setting ~0 = 0 (h = 1) lie inside the integrals. Therefore the limit Lo is defined 

as 

k yo 2 2 112 Lo= lim 
% - t O ( l  + k yo)  

which is seen to be 0 except when rn = 0, where it is 1. Therefore, Lo = 6mo and 

or 

y+9 = & j:d,'. 7: f ( k )  J o ( P ~ )  

which agrees with Eqs. (6.6) as expected. 

(6.20a) 

(6.20b) 

6.D.2 One-Dimensional Cases: Emission Into All Transverse Angles. 

The second one-dimensional problem integrates Eqs. (6.19) over the full range of 

a, indicating emission on the surface of a cone. The only place where there is dependence 

on a is in the term cos(0on). Noting that the appropriate integration is expressed as 

(6.21a) 
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and noting the integration over a yields 

k jo2x d a  cos(am) = 6mo , 

it is immediately seen that the expected form for @c,,,(p) is obtained as 

(6.21b) 

(6 .21~)  

6.E. Reformulation of Inversion in Cartesian Coordinates 

The cylindncal coordinate system is the most natural for this problem; however, the 

singularity along a = 0 creates problems for the numerical evaluation of the double 

integration for small a. Certain restrictions may be placed on a (examined in a later 

section) which will be seen to allow the inversion in cylindrical coordinates at smaller a 

than otherwise obtainable, but those restrictions violate the general philosophies of 

analytical benchmarking in that they restrict the values of the spatial angular variable at 

which the evaluation may be performed. Therefore, it is desirable to restate the inversion 

so that the singularity in angle is not so apparent. This is accomplished by reformulating 

the inversion integrals in terms of the variables obtained from an analysis using a Cartesian 

coordinate system. Again, the desired quantity is the scalar flux resulting from a source 

which is an infinitely long line on the z-axis located at x = 0, y = 0. The source emits 

particles anisotropically in a single direction E&(#o,60). As in Eqs. (6.4), the uncollided 

and collided portions of the scalar flux may be separated resulting in the following equation 

(6.22a) 

where 
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and 
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(6.22b) 

(6 .22~)  

6.E. 1. Direct and Transform Coordinate Transformations. 

Transforming the scalar flux in direct space and in transformed space requires two 

simple trigonometric changes of variables as seen in Fig. 6.3. 

Fig. 6.3. Trigonometric changes of va,.ibles for direct and transformecr space relating 
cylindrical and Cartesian coordinates. 

With the figure as a guide, it is easy to see that the following transformations hold 

k 2 2 2  = k x + k y  , ( 6.2 3a) 

2 2  p 2 = x  + y  , 

(6.2 3b) 

(6 .23~)  



k, = kcosy . 

Using the addition formula for the cosine, it is seen that 

cos( v/ - a) = cosy cosa + siny sina 
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( 6.23 d) 

(6.23e) 

(6.230 

which becomes (upon substituting the appropriate quantities as determined from Fig. 6.3) 

b 4 1  cos( ly - a) =- - +- 
k P  k P  

or 

kpcos(v/- a)  = X& + y$  . 

The integration range is over the entire transverse transformed plane; therefore, upon 

utilizing the Jacobian of the double integral operator [Zwillinger] given as 

I =  

the transformation of the integrals 

results. 

(6.24) 

6.E.2. The Scalar Flux in Cartesian Coordinates. 

Substituting Eqs, (6.23e) and (6.238) into Eq. (6.22~) yields the inversion using 

Cartesian coordinates: 
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where 

(6.25a) 

(6.25b) 

6.E.3. The Uncollided Scalar Flux in Cartesian Coordinates. 

As usual, it is possible to obtain analytically the uncollided scalar flux in a closed 

form. The uncollided scalar flux in cylindrical direct and transformed variables is 

(6.26) 

Making the same substitutions as in the last section yields the corresponding equation in 

Cartesian direct and transformed variables, 

which upon rearrangement becomes 

(6.27a) 

(6.27b) 

The two integrals which can now be evaluated independently of one another are given as 

(6.28 a) 
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(6.2 8 b) 

&Cy) is immediately seen to be the formula for the Fourier transform inversion of the 

function?(k,) = 2x, which is the transform o f f l )  = 2rr6(y). Il(x) is determined by using 

the residue theorem and the standard contour for Fourier transform inversions. It’s value 

may be seen to be (21r/y,)e-~%(x). Thus, the uncollided flux in Cartesian coordinates is 

(6.29) 

Comparing Eq. (6.29) to Eq. (6.5d) shows complete agreement between the uncollided 

scalar flux found using cylindrical coordinate systems and the same using Cartesian 

coordinate systems, as expected. The delta-function in y indicates the singularity at a = 0 

and the step function indicates that the beam emits only dong the positive x-axis. 

6.F. Generation of the Isotropic Line Source Solution 

The source under consideration is an infinite line which emits neutral particles in a 

general direction, thus making it an anisotropic line source. However, as a mathematical 

check, it is desirable to derive the solution for an isotropic line source in an infinite medium 

from this anisotropic source, thus completing Fig. 1.2 (see Fig. 1.2j following). This is 

accomplished by integrating the solution for the anisotropic line source over all possible 

emission angles as 

(6.30) 
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Fig. 1.2j. The eleventh step in constructing the suite of infinite medium benchmarks - 
deriving the isotropic infinite line source from the anisouopic infinite line 
source. 

6.F. 1. Integration of Integral Formulation Equation. 

The integral formulation of the scalar flux is given by 



158 

was arbitrarily set to 0 due to symmetry arguments. do is measured relative to the where 

spatial variable cu, therefore, in the above equation the integral over qo may be replaced by 

one over a. Thus, upon using the appropriate integrals there results for the scalar flux 

from the integrated anisotropic line source 

where 

(6.32a) 

Recognizing the integral for the zeroth order Bessel function in Eq. (6.32a) we have 

where 

(6.3 3b) 

The two tasks which must now be performed are the evaluations of the integrals Zo 

and I , .  Noting that the integral in Eq. (6.33a) has the zeroth order Bessel function 

integrated over a semi-infinite range, it is reasonable to evaluate Io by using Fourier-Bessel 

transforms. The Fourier-Bessel transform pair is defined as 

(6.34a) 
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c 

f ( P )  E -dk k J,(kP) F , (k )  . I, 
If it is assumed that f@) is given by 

then upon using the formula for the inverse Fourier-Bessel transform we have 

(6.34b) 

(6.35a) 

(6.3 5b) 1 
Io = 2 , j i d k  k J O ( W  F&) 7 

where FB(k) is the Fourier-Bessel transform of Eq. (6.34a). Thus the evaluation of Io is 

reduced to finding the Fourier-Bessel transform offfp): 

Reversing the integrals yields 

(6.3%) 

(6.3 6a) 

for which the second is immediately seen to be of the form of a Laplace transform of Jo. 

Thus, after evaluating the inner integral, 

1 dx 1 
(1 - x 2 ) 112 [ k 2  + ( 1 - 2 ) - ’ ] ” 2  ’ 

which upon simplification becomes 

( 6.3 6b) 

(6 .36~)  
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-... :. 

where a2 = This is immediately evaluated as 
k2 

which leaves for Io 

The second task is to evaluate 11, given again as 

(6.36d) 

(6.36e) 

(6.37a) 

By restating the inner integrand as an integral over an exponential and rearranging the 

integrals we have 

J O  
u 

which upon recognition of the Bessel function becomes 

Again recognizing the Laplace transform of the Bessel function yields 

which, as in the last section, is (after some simplification) seen to be 

tan-lk I @ )  = 4 n 7  = 4nL(k)  

(6.3 7b) 

(6 .37~)  

(6.3 7d) 

(6.37e) 
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Now that the integrals Io and 1, have been evaluated, the integration of the 

anisotropically emitting line source over all emission directions is (with the functional form 

o f f ( k )  inserted) 

which upon combining the integrals yields 

or 

( 6.3 8b) 

This is again seen to be the scalar flux from an infinite isotropic line source at the center of 

an infinite medium, as anticipated. 

6.F.2 Integration of Series Formulation. 

The series formulation of the scalar flux was seen to be 

As mentioned in the last section, has been set to zero and it is appropriate to replace the 

&-, integral with one over a. When the angular integrals are applied to the above equation, 

there results 
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(6.40a) 

where Zo was evaluated in the previous section, 

I ,  = ~ ~ ‘ d n c o s ( m n )  = 2r6m0 , 

and 

( 6.40b) 

(6 .40~)  

Because of the Kroneker delta in Eq. (6.40b), only the rn = 0 term survives in the infinite 

series, which leaves for Iko(k) 

4% 
z h o ( k ) = ~ l ( l  + k 2 yo)  2 112 - (6.41a) 

which after using the same techruques as in the last section is 

= 2 L(k) tan-‘k 
k Zko(k) = 2 -- 

Inserting the functional forms of the integrals into Eq. (6.40a) yields 

(6.41b) 

&&> = &[:dk k J o ( k p )  L ( k )  + & 2nj;dk  k f ( k )  J&k) 2 U k )  (6.424 

which after simplification again yields the scalar flux from an isotropic line source in an 

infinite homogeneous medium: 

(6.42b) 
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With the theory discussed above, the next task is to consider some of the numerical 

methods and techniques which will be used to evaluate the scalar flux. Again, one of the 

purposes of considering this problem is to gain insight into the numerics required for the 

three-dimensional searchlight problem. 

6.G. Numerical Methods 

The numerical evaluation of the expressions found in the last chapter requires that 

the values of improper integrals and infinite series be determined. Standard, yet advanced, 

numerical techniques are employed to achieve ths. 

6.G. 1. Direct Double Fourier Inversion. 

The scalar flux resulting from the anisotropic infinite line source is given by Eqs. 

(6.4). To numerically evaluate these expressions, which involve a double integral, 

standard integration techniques are used. The outer integral has the form 

whereflk) is strictly positive and I(p,a;k) is oscillatory. Given that 

(6.43a) 

(6.43b) 

it may be noted that for yo = 0 the inner integral reduces to the zeroth order Bessel function. 

Because it is easy to obtain the zeroes of this function and because the general form of the 

inner integral closely resembles the Bessel function, the outer integral is converted into an 

infinite series of integrals over the zeroes of the Bessel function. Thus, Eq. (6.43a) takes 

the form 
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.-. 

where lo( v,) = 0 and the series is almost purely oscillatory, that is occasionally two 

(6.44) 

consecutive terms may have the same sign. The individual integrals in Eq. (6.44) may be 

evaluated by the iterative Gauss-Legendre quadrature scheme discussed previously or by 

Romberg integration [Press, et al., Zwillinger]. Once each integral has been evaluated it is 

simply another term in an infinite series. Because the integrand of the original integral 

decreases with increasing k and oscillates, the telms of the series will also generally have 

alternating signs, the series is an excellent candidate for acceleration via the Euler-Knopp 

transformation [Press, et aZ.1. Again, this transformation was designed to accelerate the 

convergence of an oscillating series. The series is considered to be converged when three 

option is made included in the computer code for the user to choose the desired collided 

flux to be determined. 

The final task in the inversion scheme is to determine the value of the inner y 

integral given in Eq. (6.43b). Expanding the complex exponential into sines and cosines, 

rationalizing the denominator, and separating the integral into real and imaginary parts 

yields 

;?a cos[kpcos(a - y)] + kyocos( w)sin[kpcos(cc - y)] + 
1 + k2y&osZ(y) I ( p ~ ; k )  = Jo dw 

ky~cos(~)cos[kpcos(a - y)] - sin[kpcos(a - y ) ]  
1 + k2y&os2(ly) 

+ iSo2”dy 

consecutive values of the accelerated series are within a given error. 

The basic kernel in Eq. (6.43a) contains the functionfik), the kernel for the scalar 

flux. It is shown in Appendix B that the individual scalar collided fluxes (e.g. first 

collided, second collided, etc.) may be obtained by manipulating this kernel. Thus, an 

(6.45a) 
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Separating the integrals over the ranges [O,n] and [n,2n], using the cosine addition 

formulas, aid simplifying eliminates the imaginary integral and leaves for the inner integral 

cos[kpcos(a - ty)] + kyocos(y)sin[kpcos(a - w ) ]  
1 -+ k2&os2(ty) 

. (6.45b) 

The nature of this integral indicates that Chebyshev integration may be useful for evaluation 

of this integral. The following quadrature rule is given as [Abramowitz and Stegun] 

N 

d x  
-1 i= 1 

Making the change of variable x = COSU converts the rule to 

(6.46a) 

(6.46b) 

which may now be used for evaluating Eq. (6.45b). As with the iterative Gauss-Legendre 

quadrature, the quadrature order N in Eq. (6.46b) is successively increased until three 

consecutive values of the integral are within a given relative error or if the maximum N is 

reached an error message is returned. 

6.G.2. Fourier Inversion and Series Formulation. 

Eq. (6.19a) gives the scalar flux after the inner integral has been converted into an 

infinite series; the form of the outer integral is the same as Eq. (6.43a) with the function 

I(p,a;k) given by 

(6.47) 
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This series is evaluated without acceleration and is considered converged when five 

consecutive partial sums agree within a given relative error. This series converges rather 

quickly as the exponentiated fraction (the term in square brackets) is strictly less than one. 

That is, after only a few terms the term in brackets upon exponentiation to the mth power 

becomes exceedingly small. Generally, evaluating the scalar flux by performing this sum 

inside the k integral is the most convenient means of producing numerical results. 

However, this formulation is not efficient for small values of the angular variable a. 

6.G.3. Restrictions on a to Obtain Purely Oscillating Series. 

Generally the numerical evaluation of the scalar flux converges quickest when the 

series is evaluated inside the integral [Eq. (6.19a)], except for small values of a (a  < 1 5 O ) .  

The outer semi-infinite integral is accelerated by converting it into an infinite series of 

integrals and then using the Euler-Knopp accelerator, which works best when the series is 

purely oscillating. The pure oscillatory behavior does not necessarily occur in either Eq. 

(6.19a) or Eq. (6.19b) due to the cos(ma) term; this is especially true for small a 

therefore, it is desirable to obtain a formulation which is purely oscillating even in this 

range. As the problem is stated, the only way to do this is to numerically search for the 

zeroes of the outermost integrand and evaluate between these zeroes. This would be a very 

time consuming process. To avoid this undesirable task, it is possible to “intelligently” 

choose the value of a so that it is numerically convenient. Therefore, at small a, a is 

restricted to be dN, where N is an integer. In this case, the series 

m 

s = x u j  cos(aj) 
j=O 

becomes 

(6.48a) 
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m m 

j N -  1 

;=0 j= 1 

Letting rn’ = m - (‘j -l)N andj‘ = j  -1 results in 

m 

N- 1 
s = C c(-IY’ am+,N cos(+) , 

m=O 
;=0 

(6.48 b) 

(6 .48~)  

where the primes have been dropped and the cosine expanded in its addition formula which 

resulted in the (-1y term. Now, the range on the inner summation may be conveniently 

separated so that in the first half of the series the cosine is positive and in the second half 

the cosine is negative. Therefore, the inner series is separated into two summations whose 

ranges on m are [Ofl/2] and [N/2+1JV-l]. If Nis odd then the N/2 term is truncated; this 

ensured that the terms where the value of the cosine switches from positive to negative 

remain with the proyer summations. Upon such a separation there results for the series S 

m m 

where the am are found from Eq. (719b) to be 

(6.49) 

(6.50) 

This restriction on a produces a strictly alternating series, which allows effective use of the 

Euler-Knopp accelerator. However, it is generally undesirable to place such a restriction 

on a basic parameter such as the spatial angle a. Therefore, the initial purpose of the above 
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exercise may be expanded beyond being able to evaluate the scalar flux for small CY to 

include a form of check on the other calculational methods. 

6.G.4. Numerical Considerations for the Inversion in Cartesian Coordinates. 

The expressions which are to be numerically evaluated are 

L(k,,k,) e-irk, ,-iyk, 

dkY 1 - iyokx 1 - cL(k,,k,,) ' 4 2  

where 

(6.51a) 

(6.5 lb) 

6.G.4.a. Simplification of Integral Expressions. As some programming 

languages, such as FORTRAN, allow the user to create programs which are able to 

perform algebra using complex numbers the above equations could be programed 

essentially as is; however, in order to avoid unnecessary computations such algebra will be 

done here. The first important point is to note that L(k,,k,) is even in both k, and k,.. Eq. 

(6.51a) may be rewritten as 

The k,, integral is over a symmetric range and the kernel is even in k,,. Separating the 

complex exponential into cosine and sine functions immediately results in the elimination of 

the imaginary integral as it contains an even function multiplied by the odd sine function. 

Thus the inner integral may be rewritten as, 
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and the collided scalar flux is then given by 

where 

(6.5 3a) 

Next, the exponential and denominator in Eq. (6.53a) are expanded and rationalized, 

respectively. This yields 

(6.54a) 

Again noting that I(k,;y) is even in k,, the integral associated with the imaginary term is 

seen to vanish as its integrand is odd with respect to k,. The scalar flux is now written as 

(6.54b) 

Because the infinite integrals will be broken into a series of finite integrals that range over 

the zeros of the integrand, and the zeros nominally occur at the zeros of the sine and cosine 

functions, it is desirable to make the two changes of variable v = k s  and u = k,,y. After 

making the changes of variable and separating the cosine and sine integrals there results 

(6.55 a) 
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where 

(6.55b) 

( 6 . 5 5 ~ )  

(6.55d) 

, 6.G.4.b. Transformation of Integral Exmessions into Series. Given that a 

computer is not able to evaluate an integral which has an infinite range, such expressions 

are most often converted into an infinite series of finite integrals and the series is ultimately 

truncated. This will be done for the integral expressions Zc(x,y), Zs(x,y)7 and 1. Noting 

that the integrand of IC contains the cos(v) term, it is reasonable to break the cosine integral 

into a series of integrals which range along the zeroes of the cosine. Thus, I ,  may be 

written as 

The limits on all the integrals may be transformed so that all integrals have the same limits 

of integration. As Gauss-Legendre quadrature is often used for integrating functions, it is 

natural to make the limit on the integrals [O,l]. This is done by making the change of 

variable v’  = 2v/a in the first integral and V’ = v/a-J + 1/2 in the integrals under the 

summation. Completing this process (and dropping the primes) yields 



17 1 

xc 0 s ( m/2) 

+ r c $  Sldv xcos[7c(v+j-1/2)] I [ ;( v+j-;);y] . (6.56b) 
j = l  0 x + y; 2(v+j-1/2)2 

The same procedure is necessary for the sine integral. However, in this case, there is no 

need for a special first term as all the zeroes are at multiple of rc. Thus, 

and by making the change of variable v' = v/z - j there results 

(6.57a) 

(6.57b) 

One further simplification is found in the sine and cosine arguments under the new 

integrals. Using the addition formulas for the sine and cosine functions, it may be seen that 

sin[~c(v+j>l= (-1ysin(m) ; 

Thus Eqs. (6.56b) and (6.57b) become 

I [ ;( v+j-;) ; Y ] ; xsin( nv) m 

+ rcC (-1jJ;dv 
j= I x2  + y; &v+j-1/2)2 

(6.5 8a) 

(6.5 8b) 
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The inner integral [Eq. (6.55d)I is also a cosine integral and will therefore have the 

same form as Eq. (6.58a) after brealung up the infinite integral and malung changes of 

variable so that all integrals have the limits [0,1]. The result of these operations is 

where 

(6.59a) 

(6.59b) 

6.G.4.c. Treatment for Small x and Small Y .  As with the other numerical methods 

associated with this problem, difficulties occur when the spatial variables x and y become 

small. A procedure has been deveioped for such instances [Ganapol, priv. corn.] .  When 

the spatial variables are small, the series in Eqs. (6.58) are dominated by the first term; 

however, thesc are also the terms whch are most difficult to evaluate. Therefore, the first 

terms may be treated specially to assist the numerical method. The change of variable v‘ = 

v/x in the first term of the outer integral series gives the following result (after dropping the 

primes): 

(6.60a) 

(6.60b) 

Now as n decreases, the range on the integral increases, allowing the numerical methods to 

better determine the value of these first terms. A similar expression may be derived for the 

first term in the sum of the inner integrals as 
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I j o ( x , y )  = cJol"du cos(?) f (i.T) vm , 
2 (6.61) 

wherefis given in Eq. (6.59b). 

These integrals in Eqs. (6.60) and (6.61), which are the first terms in a series of 

integrals, are now separated into a series as well. The first term of this sub-series is always 

over the range [OJ] or [O,y].  Assuming that x is small (the treatments for small x and 

small y are formally the same) the integration range for the first sub-integral [OJ] 

necessitates that the entirety of the remaining sub-integrals is over the range [ x ,  l l x ]  so that 

the total sum of all sub-integrals is over the range [O,l /x]  as shown in Eqs. (6.60). For the 

sub-integrals, the number of integration intervals N,,, is specified. The logarithms of the 

integration endpoints are taken; because the endpoints of the quadrature scheme are lnx and 

In( l l x )  = -Inx, the range is symmetric. The endpoints of the individual sub-integrals x e  

then set arbitrarily to the abscissas of the Gauss-Legendre quadrature scheme for a 

quadrature order N,. The abscissas a, are determined and the [ x ,  l lx ]  integral is divided 

according to 

(6.62) 

where bo = x, bNm+l = l/x, and bi = e',. Obtaining the abscissas via the logarithms of the 

endpoints and then exponentiating these abscissas has the effect of concentrating the 

integration on the regions near x ,  where the integration is most difficult. For example, 

assuming x = 0.01 and N, = 4 produces the abscissas and interval endpoints shown in 

Table 6.1. Note that the Gauss-Legendre abscissas are symmetric and that the integration 

intervals will lead to concentrated integration effort toward the small end of the interval 

[ 0.0 1,1001. 
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Table 6.1. Example of Small x Integration Intervals. 

ai 1 bi =exp(ai) ~ 

I 

j -3.96568 0.0 1896 

1.56567 4.78588 1 3.96568 52.7561 

1 -1.56567 0.20895 

With these numerical methods the scalar flux from the anisotropically emitting 

infinite line source may be evaluated. This is done in the following sections. 

6.H. Results for the AnisotroDicallv Emittinp: Infinite Line Source 

The nature of the anisotropically emitting infinite line source limits the means by 

which results may be displayed. Because the scalar flux is not axially ( z )  dependent, the 

general means of viewing results will require three-dimensional plots of the scalar flux 

versus position in the transverse plane. However, before using this benchmark to generate 

the scalar flux in the transverse plane, several studies will be performed. 

6.H. 1. Numerical Studies: Error Analysis. 

One of the primary premises of analytical benchmarks is that the numerical results 

are accurate to a specified error. Table 6.2 provides the scalar flux as a function of radius 

and the relative error. The scalar flux was evaluated at a = 30" (an angle for which 

numerical evaluation is relatively easy), = 0 (emitting perpendicular to the z-axis), and c 

= 0.9. In all cases, the relative errors when compared to the data for error = lo4 agree to 

the number of digits required; for example, at r = 1 the relative difference between the 

scalar fluxes for error = lo4 and error = lo4 is 5.73 x lo-', which is withm the specified 

error. Fig. 6.4 displays the CPU times required to obtain the data in Table 6.2. Note that 
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CPU times become greater with stricter error requirements, and that Limes decrease as the 

edit points become farther from the source. 

Table 6.2. Scalar flux as a Function of Radius and Solution Relative Error. 

radius L 
1 1  

2 
3 
4 

I 5  
1 6  
' 7  
1 8  
i 9  
j 10 

Fig. 6.4. 

lo-* 

4.735 18E- 1 
2.3257 1E- 1 
1.20027E- 1 
6.4 193 1 E-2 
3.48666E-2 
1.9 1669E-2 
1.062 10E-2 
5.92 155E-3 
3.32761E-3 
1.87282E-3 

1 o - ~  
4.7 1409E- 1 
2.3 1634E-1 
1.20656E- 1 
6.44720E-2 
3.50 104E-2 
1.92029E-2 
1.06369E-2 
5.93 17 1E-3 
3.32868E-3 
1.87487E-3 

en-or 
10-~ 

4.71268E-1 
2.3 1566E-1 
1.20572E- 1 
6.44351E-2 
3.49902E-2 
1.92 148E-2 
1.06409E-2 
5.93340E-3 
3.32672E-3 
1.87390E-3 

1 o - ~  
4.7 1245E- 1 
2.31585E-1 
1.20563E- 1 
6.4432OE-2 
3.49883E-2 
1.92143E-2 
1.06415E-2 
5.93374E-3 
3.32695E-3 
1.87398E-3 

1 o-6 
4.7 1242E- 1 
2.3 1583E- 1 
1.20564E- 1 
6.443 17E-2 
3.49884E-2 
1.92 14 1E-2 
1.06416E-2 
5.93370E-3 
3.32693E-3 
1.87399E-3 

14 

2 

0 

, 
- - - _ _ _ .  .... - _ .  1 = = - - - -  

4. 
- . - .  

- - _ _ . _ _  . - _  
- _ _  - - - - - _  - -  - - - - - -  

I I I I I I I I I 

0 1 2  3 4 5 6 7 8 9 10 
r 

l -  err= - - err = 1 0 - ~  
I 

err = l o 3  err = 1 

err = I 

1 - _ _  
I 

._... 

' 
CPU time study for anisotropic infinite line source. 
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6.H.2. Numerical Studies: Individual and Total Collided Flux Analysis. 

Recalling that the individual and collective collided fluxes may be obtained by 

making simple changes to the kernelf(k) allows an analysis of the collided fluxes to test the 

numerics of the individual evaluations. Fig. 6.5 displays the first, second, third, and 

remaining collided fluxes along with the total collided flux. The curves in Fig. 6.5 are for r 

= 1, c = 0.9, = 0 and error = lo-'. Summing the individual components of the collided 

flux yields a number equal to the total collided flux, as expected. The relative magnitudes 

of the individual fluxes are interesting. 

Near the source (small a) there is an increase in the individual fluxes, and the first 

collided flux is greater than the second and the second collided is greater than the third. 

However, as seen in the figure near CY = 40" the first collided flux falls below the second 

collided flux. Although not visible, the magnitude of the second collided flux falls below 

the third collided flux around CY = 130". Ttzls phenomena indicates that near the source the 

first collided flux is largest and the individual fluxes decrease monotonically. This results 

from particles having their first collision near the regions in which they appear. However, 

after the particles have some collisions, they are distributed into other regions and the 

individual fluxes of successively greater collision numbers increase; that is, far from the 

source there are many particles which have had many collisions and few particles which 

have had few collisions. This agrees with physical intuition and theory. The remaining 

flux (4th+ Collided) is large because it is the accumulation of all individual fluxes with four 

or more collisions. 

6.H.3. Numerical Studies: Numerical Inversion Comparisons. 

Based on the theory and numerical methods discussed in the previous sections, 

there are several means by whch numerical results may be obtained. The most restrictive 
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requires the angular variabl? a to be an integer multiple of x ( a  = dN). However, this 

converts the series formulation into a series where the terms are purely oscillatory. 

1 st Collided 

I 0.7 4 _ _  2nd Collided 

3rd Collided I 

4th+ Collided 

. . . . . . . . . Collided Flux 

x 0.6-i 
3 

. . . . . . . . .~  - . . . . . . . . . .. .. --.. - - .  0.2 -i - .  

0 20 40 60 80 100 120 140 160 180 
a 

Fig. 6.5. Individual collided fluxes at r = 1 for anisotropic line source. 

The other methods which may be employed to achieve a numerical result are the (k ,  t+v) 

inversion technique. However, the inner integral may be evaluated by iterative Chebyshev 

quadrature as given by Eq. (6.45b) or by its reformulation as an infinite series as given by 

Eq. (6.47a). The former method is listed in Table 6.3 as “ ( k , ~ )  Integral” and the latter as 

“ ( k , ~ )  Series.” The other means of evaluation is in terms of the transformed Cartesian 

coordinate system (kx,ky). The data in Table 6.3 have been converged to a lo4 relative 

error tolerance and have all been evaluated at r = 1 and = 0. Note that for all cases 

where convergence was achieved, the different inversion methods agree to the given 

tolerance. However, by examining the CPU time data, it is clear that when a numerical 

scheme has difficulty evaluating the series or integrals that computer usage increases 

dramatically. In general, it may be seen that the (k,,k,) inversion scheme works best for 

small a and the ( k , ~ )  series inversion scheme works best when the edit point is not very 
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close to the source. When large production computer runs are performed, it is suggested to 

use the (kx.ky) inversion scheme if a < 30" and the ( k , ~ )  series scheme othe.wise. 

Table 6.3. Comparison of Inversion Methods for Anisotropic Infinite Line Source. 

I 
l a  

5 
10 
15 
20 
30 
45 
60 
90 
180 

01 

5 
10 
15 
20 
30 
45 
60 
90 
180 

( a =  TIN) 
8.21449E-01 
6.92765E-01 
6.13547E-01 
5 S5406E-0 1 
4.71242E-01 
3.86502E-0 1 
3.28470E-0 1 
2.55429E-01 
1.88063E-01 

(a=RIN) 
467.78 
105.9 
54.82 
36.53 
2 1.83 
13.51 
10.55 
6.2 
3.09 

Scalar Flux 
( k , ~ )  Integral 
8.22856E-01" 
6.92804E-01* 
6.13547E-01 
5.55406E-01 
4.7 12421-0 1 
3.86502E-01 
3.28470E-01 
2.55429E-0 1 
1.88063E-01 

CP1 
(k ,  ty) Integral 

656.15* 
656.5 1" 
463.69 
253.37 
111.86 
68.19 
21.6 
19.39 
17.4 

( k , ~ )  Series 

6.92805E-01* 
8.22887E-01- 

6.13547E-0 1 
5.55406E-01 
4.71242E-01 
3.86502E-01 
3.28470E-01 
2.55429E-0 1 
1.88063E-01 

time 
( k , ~ )  Series 

335.4* 
3 35.65* 
193.68 
58.88 
13.91 
2.75 
1.26 
1.14 
0.92 

[k,,k,) Inversior 
8.2 1449E-0 1 
6.92765E-01 
6.13547E-01 
5.55406E-0 1 
4.7 1242E-0 1 
3.86502E-0 1 
3.284708-0 1 
2.55429E-01 

L* -- 

(k,,k,,) Inversior 

13.99 
13.2 
9.18 
8.14 
10.49 
9.23 
0.74 

**  -- 
*Did not converge after 200 terms in the series. ** Unable to compute along x-axis. 

6.H.4. One-Dimensional Results. 

There are two one-lmensional forms of the anisotropically emitting infinite line 

source: emitting along the z-axis; and emitting along the surface of a cone. Because the 

numerical results come from single instead of double inversions, the computer times are 

greatly reduced. 
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6.H.4.a. Emission Along the z-axis. When the anisotropic line source emits along 

the z-axis, the variation in the spatial angle cy disappears. It has been shown that this 

specific case is related to the solution for the scalar flux from an isotropic infinite line 

source. Table 6.4 lists the scalar fluxes as a function of distance from an isotropic infinite 

line source and from an anisotropic infinite line source emitting along the z-axis. The mean 

number of secondaries is conveniently set to 0.1 so that it is immediately apparent from the 

data that d(p;yo=O) = c$~~&).  

Table 6.4. Comparison of the Scalar Fluxes from 
Isotropic Line and Anisotropic Line Sources 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Anisotropic 
Line (h = 1) 
6.0054E-03 
9.3991E-04 
2.0685E-04 
5.2562E-05 
1.447 1E-05 
4.1944E-06 
1.2600E-06 
3.8864E-07 
1.2233E-07 
3.9128E-08 

- 
Isotropic 

Line 
6.0054E-02 
9.399 1E-03 
2.0685E-03 
5.2562E-04 
1.447 1E-04 
4.1944E-05 
1.2600E-05 
3.8864E-06 
1.2233E-06 
3.9130E-07 

6.H.4.b. Emission Along the Surface of a Cone. When the particles are emitted 

uniformly in transverse angle at the same longitudinal angle, they are emitted along the 

surface of a cone. This produces a one-dimensional spatial variation in the scalar flux. 

However, the emission angle is a parameter which may be manipulated. A typical three- 

dimensional plot of the scalar flux from this source is provided in Fig. 6.6. Note that it is 

displayed as a function of position and as a function of the emission angle. The data were 

obtained with a relative error of and c = 0.9. 
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The scalar flux as a function of distance and emission angle when the 
particles are emitted along the surface of a cone. 

A typical decrease in the scalar flux as the distance from the source increases is 

evident, but an interesting feature may be noted by examining the 

p, there is a peak and then 3 sudden decrease in the scalar flux at 

z-axis). As approaches 1, particles are emitted on the surface of a very narrow cone. 

Hence, there are many particles near p = 0, which contribute to an increase in the scalar 

flux. At 

decreases. The primary source of the peak is that the uncollided particles are included in 

the total flux. Because the uncollided flux is not singular after integration in angle, it can be 

analytically determined. Magnified views which display this peak in the scalar flux arising 

from the uncollided flux are included in Figs. 6.7a and 6.7b. By noting the scales of in 

dependence. At small 

= 1 (emission along the 

= 1, the uncollided flux is lost for p > 0, and the total scalar flux therefore 

these two figures one can see how sharply peaked the scalar flux becomes when the cone 
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becomes exceedingly narrow and when the edit point is near the source. However, as 

should be true with all benchmark quality calculations. greater resolution of such peaks 

should be obtainable via magnification in a certain region of geometric or parametric space. 

6.H.5. General Results at Constant p. 

In order to present the general results from an anisotropically emitting infinite line 

source in an infinite homogeneous medium, the parameters of importance must be 

identified. Clearly the dependent variable will be the scalar flux resulting from this source. 

The independent variables are the two variables which describe the position in a plane - 
either @,a) or (x,y). However, the cosine of the emission angle a is such a crucial 

parameter that it may also be considered as an independent variable. Therefore, three- 

dimensional plots will generally be the scalar flux as a function of two of the three variables 

p, a, or h; in this section the primary independent variables will be a and a. 

X 
3 = 

Fig. 6.7a. 

u .  

8 -E 
7-i 
6-i 
5 - I  
4 -; 
3 -i 

- - -  

- - - - -  

- _ _ _ - - - -  

r = 0.4 

r = 0.2 

_ _ _ _ _  r = 0.1 

_ _  r = 1  

r = 0.8 

r = 0.6 

The scalar flux as a function of distance and emission angle when the 
particles are emitted along the surface of a cone (magnified). 
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700 1 

0.999 0.9992 0.9994 0.9996 0.9998 1 
Po 

Fig. 6.7b. The scalar flux as a function of emission angle for p = 0.01 when the 
particles are emitted along the surface of a cone (magnified). 

Fig. 6.8a, displays the scalar flux as a function of a and p,,, at the radial position p = 

1 and c = 0.9. Included in the figure is a magnification of the region 0.9 5 

magnified region clearly demonstrates one of the abilities of a benchmark-quality 

calculation. Note that for 

angle, as required. The effect of the drrectional source is seen as the flux increases 

dramatically at low angles. As j~ approaches 1, the flux approaches that of the one- 

dimensional case, i.e. the difference in the flux values between the one- and two- 

dimensional cases diminishes. With the use of the numerical inversion in (k,,k,) space, it 

is possible to evaluate the scalar flux at very small values of the angular variable a. Fig. 

6.8b provides a magnification of the region at small 01 for p = 1 and c = 0.9. Note again the 

qualitative consistency in Figs. 6.8. 

2 1. The 

= 1 (emitting along the z-axis) the flux is independent of 



Fig. 6.8a. The scalar flux as a function of angle and emission angle for the anisotropic 
infinite line source with c = 0.9 and p = 1 (Note standard and magnified 
scales). 

Fig. 6.8b. The scalar flux as a function of angle and emission angle for the anisotropic 
infinite line source with c = 0.9 and p = 1 at small a (Note standard and 
magnified scales). 
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As the angle from the source increases, the flux decreases, eventually falling below 

the one-dimensional values. In order for particles to appear in regions behind the source (a  

near E) they must be scattered from the region where 0 a 5 d2. However, when the 

source emits along the z-axis, the particles scatter on the z-axis and then move away from 

the z-axis isotropically, making the z-axis appear as an isotropic source. Thus particles are 

emitted directly into regions of large angle. Therefore, the scattering source of particles 

into regions behind the directional source is not as great as when the one-dimensional 

source emits some particles directly into these regions. This phenomenon is analyzed in 

Fig. 6.9. As approaches 1, the "cross-over" angle approaches 90" (this "cross-over" 

angle is determined by calculating the scalar flux as a position of angle, and then 

interpolating between the scalar fluxes which are on both sides of the scalar flux from the 

one-dimensional case). This is expected since as approaches 1 many particles are 

having their first collisions near p = 0. When this happens, the scattering source for 

regions behind the source increases and the point at which the two-dimensional and one- 

dimensional scalar fluxes are equal approaches the symmetric 90". At large radii the "cross- 

over" angle is closer to 90" for all values of ,q, as the farther the edit point is from the 

source, the more the source looks isotropic. In general, as the source emits closer to the z- 

axis, more particles are scattered behind the source and the more the source looks isotropic 

from regions behind the source. 

Figs. 6.10, and 6.11 display the scalar flux as a function of a and with c = 0.9 

at the positions, p = 0.1, and p = 10, respectively. Note that for p = 0.1 two sets of 

magnifications are required in order to see the smooth region at large ,q,; the closer, the edit 

point is to the source, the more anisotropic it appears. For p = 10, not only is the 

magnitude of the scalar flux smaller than for p = 0.1 and p = 1, but the variation of the 

scalar flux relative to the one-dimensional case is also less. That is, the scalar flux at large 

distances from the source gradually approaches the scalar flux from an isotropic source. 
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Fig. 6.9. 

c=O.9,r=1 - - -. c=0.9,r=4 - c=O.9, r=6 l -  
~ - _ _  c=0.9,r=2 . - c=O.9, r=5 

Angle at whlch the v a l u ~  of the scalar flux from the anisotropic source is 
equal to the one-dimensional case with = 1 as a function of N. 
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In a final examination p is considered to be a parameter with c very small. In this 

case, (Fig. 6.12) the medium is very strongly absorbing which makes it difficult for 

particles to scatter behind the source. Therefore, the anisotropic nature of the source is 

exaggerated with respect to cases with larger values of c. That is, the increase in the scaIar 

flux near a = 0 is very large as compared to the scalar flux away from the source; for the 

case where c = 0.9, the ratio of the maximum to the one-dimensional scalar fluxes is 

approximately 2.3, where the same ratio is 6.8 for c = 0.01. This is expected as once the 

particles move away from the source, they are quickly absorbed, effectively creating the 

relatively large scalar flux at angles near the source. 

Fig. 6.12. The scalar flux as a function of angle and emission angle for the anisotropic 
infinite line source with c = 0.01 and p = 1. 
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6.H.6. General Results in the Transverse Plane. 

To this point the primary means of displaying the scalar flux from the 

anisotropically emitting infinite line was as a function of the spatial angle and (the cosine 

of) the emission angle. However, in order to display the scalar flux as a function of 

position the independent variables are those which describe position in the transverse plane. 

Such a display is provided in Fig. 6.13. The mean number of secondaries (c )  for these 

cases is 0.9 and is considered a parameter which is different for each of the four plots 

found in the figure. As 4 changes from 0 to 1, the directed peak becomes more symmetric 

about the x-axis (it is always symmetric about the y-axis) until it becomes truly symmetric 

at 

on the scalar flux in the transverse plane. 

= 1. This provides a qualitative assessment of the effect of changing emission angle 

With the analysis of this source complete, the suite of infinite medium benchmarks, 

as presented in Fig. 1.2 is compIete. While constructing this suite the simplest problems in 

the form of those with isotropic sources, were presented first, and then the level of 

complexity was increased to consider anisotropic sources, culminating with the anisotropic 

line source. With the mathematics and numerical techmques established for this source, the 

next step is to utilize them to obtain results for the three-dimensional searchlight problem in 

a semi-infinite medium. 
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Fig. 6.13. The scalar flux in the transverse plane for four different values of 
0.9. 

and c = 
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CHAPTER 7: THE SEARCHLIGHT PROBLEM 

7.A. Searchlight Problem BackPround 

The searchlight problem was originally proposed by Chandrasekhar in the radiative 

transfer context [ 19581. The problem is defined by the illumination of a semi-infinite 

medium’s free surface by a radiation source, with the resultant surface and interior fluxes 

desired. In this analysis, the medium is assumed to be an isotropically scattering medium 

and the source is assumed to be monodirectional impinging at the center of the free surface. 

7.B. Searchlight Problem Solution Formulation 

The simplified form of the transport equation in cylindrical coordinates is similar to 

the one from the Green’s function formulation [Eq. (4.6a)l except that the source is now 

described as a boundary condition: 

(7. la) 

where 

(7. lb) 

(7. I C )  

(7. Id) 
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The current is defined in its usual form as 

J(z;b> =I dd P $(z,A.?z> . (7.le) 
4 K  

The geometry of the beam boundary source (illuminating flux) is described by the function 

S(3). The source is normalized such that Id? S(3) = 1. The solution method begins by 

tahng a two-dimensional Fourier transform of the transport equation in the transverse 

plane. 

7.B. 1. Fourier Transform in the Transverse Plane. 

Taking a Fourier transform in the transverse plane as in Ch. 4 yields 

where the Fourier transform pair is defined as usual as 

and 

u(sz,Z) = 1 - ik( 1 - p 2 ) 112 COS($-  v/> . 

(7.2a) 

(7.2b) 

( 7 . 2 ~ )  

(7.2d) 

7.B.2. Formation of an Integral Equation. 

As before, the procedure established in Ch. 4 for the infinite medium Green's 

function source is utilized for the derivation of the transformed and direct scalar fluxes for 

the searchlight problem. By using the integrating factor eUdp and integrating along the 

characteristics of motion the transformed angular fluxes are placed in integral form as 
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(7.3b) 

where 

To obtain the transformed scalar flux, the transformed angular flux is integrated 

over the unit sphere; this procedure yields (after considering positive and negative p) 

where the kernel K(z;k') is given as 

f7.4a) 

(7.4b) 

with 

(7.4c) 
u ( a )  

As shown in Sec. 4.B.4 it can be shown that the kernel K(z;z)  may be reformulated using 

Bessel function transformations as 

This alternative expression for K(z;z )  will allow the establishment of a pseudo problem to 

facilitate the scalar flux solution. 
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7.B.3. The Pseudo Problem. 

The solution to the transformed transport equation is accomplished by considering a 

corresponding one-dimensional pseudo transport equation [Rybiclu. Williams]. The 

pseudo transport equation for a half-space is written as 

where the pseudo flux satisfies the source condition 

& O , W * )  = e, %P - P*)  9 

for p,p* > 0 and the boundary condition 

(7.6a) 

(7.6b) 

( 7 . 6 ~ )  

As usual, the integral form of Eq. (7.6a) is derived, and then the scalar flux is obtained by 

integrating over p. The integral form is obtained by integrating along the particle trajectory 

for both p > 0 and p < 0 giving 

where the scalar pseudo flux is defined as usual and 

(7.7b) 

(7.7c) 

The pseudo scalar flux is now obtained by integrating the angular flux over the full range of 

p to give, after combining and arranging terms 
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where 

' d p  e? 
= JOT a(p)  * 

(7.8a) 

(7.8b) 

As with the Green's function formulation, comparing the equations for the actual 

and pseudo kernels leads to the conclusion that if 

( 7 . 8 ~ )  a(p) = (1 + k 2 p 2 ) ' I 2  , b(p )  = 1 + k2p2 

then k(z) = K(z;z) .  With the equivalence of the actual and pseudo kernels, the formal 

expression for the relationship between the actual and pseudo scalar fluxes is given as 

S ( { *  - Uo)'&z;p*) . (7.9) 

Thus, the determination of the desired scalar flux is easily obtained given the solution for 

the pseudo scalar flux in a semi-infinite medium. 

7.B.4. Solution to the Pseudo Problem in a Half-space. 

The solution to the half-space pseudo problem is obtained by following the methods 

established by Busbridge. The integral operator 

is defined, giving for the scalar pseudo flux 

(I  - ,?&j(z';p*) = e -dt* 

Next, Eq. (7.8a) is differentiated with respect to z as 

(7.10) 

(7.1 1) 
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(7.12a) 

which by substituting Eq. (7.1 11, adding and subtracting the term L, $azf;px) on the left 

- a -  $(z;p*> + -1; e-dt* = ; j’dz’ ; (z’;p*)  dz  d K ( I ~  - z ’ ~ )  , 
dZ 5 

hand side, and rearranging terms yields 

(1 - LJ[$ + $1 i%z;p*) = 

The right hand side of Eq. (7.12b) is explicitly expressed as 

(7.12b) 

(7.13a) 

and may be restated by noting that 

d d 
&f(k - yl) = - --f(lx - yl) , dY 

or in terms of the kernel under consideration 

d c & K(lz - z‘l) = - 7 dz K(lz - z’ l)  . 

Inserting this into Eq. (7.13a) gives 

which is immediately seen to be a perfect differential: 

RHS = -; j i d z ’  $ [ K(lz - z’l)?(z‘;p*)] . (7 .13~)  

Application of the fundamental theorem of calculus then gives 



or upon substitution of the limits 

RHS = K(z)?(O;p*) . 

Thus, the final result is obtained as 
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(7 .13~)  

(7.13d) 

(7.14) 

The next step involves the kernel K(z). By noting the structure of K(z) and that it 

contains the exponential term which can be written in terms of the integral operator L:, it is 

easily seen from Eqs. (7.11) and (7.8b) that 

Inserting this expression for K(z) into Eq. (7.14) and collecting terms yields 

(7.15) 

(7.16) 

As Busbridge shows for the albedo problem, the expression inside the operator Z - Lz can 

be shown to be in the null space of the operator; therefore, 

(7.17) 

A reciprocity relation between p and p* is obtained by a standard technique of 

multiplication and subtraction of the following equations: 

(7.18a) 
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(1 - Lz)&z;p‘) = e ;I{* . (7.18b) 

If Eq. (7.18a) is multiplied by &~‘;y*) and Eq. (7.18b) is multiplied by ;?l(z’;p), and both 

equations are integrated with respect to z’ over [ O , ~ ) ,  there results 

Subtracting Eq. (7.19b) from Eq. (7.19a) gives 

(7.19a) 

(7.19b) 

(7.20) 

Expressing the integral operator Lz explicitly immediately shows that the left hand side of 

Eq. (7.20) is equal to zero. Thus, 

From Eq. (7.7b) evaluated at z = 0 for p > 0 

the desired reciprocity relation is obtained as 

(7.21) 

(7.22a) 

(7.22b) 

(7.23) 
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The final step in the solution involves manipulation of Eq. (7.17). Multiplying by 

the term e-'{ and integrating over z on the range [O,-) gives 

(7.24a) 

The first term on the left hand side can be integrated by parts and yields upon collection of 

terms and some minor simplification 

Noting again that 

2 
C - w@) i%07-PqL*) = I," dz'  e-'/$ 'ib(z;p*) , 

it is quickly seen upon substitution into Eq. (7.24b) that 

The reciprocity relation [Eq. (7.23)] is now used in the integral on the left hand side to give 

(7.25b) 

By setting z = 0 in Eq. (7.8a), substituting the form of K(z) from Eq. (7.8b), and noting 

the definition of &O,-p;p*) from Eq. (7.22a), it is seen that 

(7.26) 

from which it follows that 
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or 

( 7.27 a) 

(7.27 b) 

Now, an integral equation for aO;p*)  is established by substituting Eq. (7.27b) into Eq. 

(7.26) as 

(7.28) 

or upon renaming aO;p*)  as H(t*;k) and letting e* -+ 5 there results the following non- 

linear integral equation for the H-function: 

(7.29) 

7.B.5. The Transformed Scalar Flux and Surface Current. 

The surface scalar flux and current along with the interior transformed scalar flux 

may now be obtained. Recollection of the equivalence relation between the pseudo scalar 

flux and the transformed scalar flux [Eq. (7.9)] 

and noting that &O;p*) = H ( c ; k )  leads immediately to the conclusion that the transformed 

scalar flux at the surface of the semi-infinite medium is given by 

(7.30) - 
Y(0;Z) = S(Z)H(Uo;k)  . 

The interior transformed scalar flux is obtained from Eq. (7.22a). It is easily seen that the 

Laplace transform of the interior pseudo flux is the integral term if 5 = l/s; thus, 
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(7.31aj 2 
- C W(P) %O7-P;P7 = L,{ ;(Z;P"> } 7 

where L., is the Laplace transform. Inserting this expression into Eq. (7.27b) then leaves 

for the Laplace transform of the interior pseudo flux 

L,{ T(GP*)  1 = 5*(1/s) H((*;kj H[( l / s ) ;k ]  . 
( + {* 

(7.31b) 

Considering again the equation relating the pseudo flux to the transformed scalar flux yields 

c 

or 

Using similar methods the transformed current at the surface is obtained as 

(7.32) 

(7.33) 

A detailed derivation of the transformed current at the surface is provided in Appendix C. 

7.C. The Scalar Fluxes and Current via Fourier Transform Inversion 

7.C. 1. The General Incident Beam. 

The direct scalar flux is obtained by inverting the double Fourier transform as given 

in the inversion [Eq. (7.2c)l: 

which is more explicitly written as 
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(7.34) 

Upon substitution of the transformed surface and interior scalar fluxes [Eqs. (7.30) and 

(7.32)] the scalar fluxes are 

(7.3 5 a) 

The current at the surface is similarly given by 

Substitution of the transformed current [Eq. (7.33)] into the above equation yields 

or upon evaluating the source portion 

(7.36a) 

(7.36b) 

(7.37) 

With this expression for the current two important items are evident. First, the current is 

composed of a term @($) which is the incoming current from the source. Second, the 
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other term is negative in sign indicating the current coming out of the medium. Thus the 

current is composed of an incoming source component and an outgoing component 

resulting from the scattering inside the medium. 

7.C.2. The Normal Incident Beam. 

A significant simplification occurs if the anisotropic source impinges normal to the 

surface. In t h s  case 4 = 1, whch implies that U, = 1, and z(x)  is only a function of the 

magnitude of k’. The entire dependence on yin the kernels in Eqs. (7.35) is lost except for 

the complex exponential; the y integral then becomes the zeroth order Bessel function. 

This leaves for the scalar fluxes and surface current: 

rp(0,p) = & J i d k  k S ( k )  H( 1 ;k)  J,(pk)  ; (7.38a) 

(7.38 b) 

Clearly if 

dimensional. This case has been treated numerically [Ganapol, et al. 19941. In general, 

= 1 the scalar flux is two-dimensional and the surface current is one- 

however, if # 1 the scalar flux is three-dimensional. 



7.D. Numerical Considerations 

As evident in Eqs. (7.35) the numerical solution for the scalar flux involves many 

procedures including a double Fourier transform inversion, Laplace transform inversion, 

and the determinatioii of the H-function. Each will be discussed separately, 

7.D. 1 .  Numerical Evaluation of the I!-Function. 

The numerical evaluation of the H-function is essential for the determination of the 

scalar fluxes. The non-linear integral equation to be solved is [with b(p) specified] 

which may be rearranged so that 

(7.39a) 

(7.39b) 

By using the relationship between p and 5, the integral in Eq. (7.39b) may be rewritten as 

(7.40) 

When k = 0 then 5 = ,u and Eq. (7.40) reduces to the integral equation for Chandrasekhar’s 

H-function (1960). A moment relation for the general H-function 

(7.41) 

may be derived which then reduces to the zeroth moment from Chandrasekhar when k = 0. 

% may be evaluated by dividing Eq. (7.39a) by b(p) and integrating with respect to p over 

[0,1] to give 
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The first integral may be evaluated as y= (tan-'k)/k so that 

-,'- 

Rearranging the second integral's kernel in Eq. (7.42b) as 
.I 

. 
. .- 

results in 
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(7.42a) 

(7.42b) 

(7.43a) 

(7.43b) C o - ~ ~ ~ d p H ~ ~ ~ d p '  H ( 5 ' ; k )  ____- 5 '  
b01) b(P') 5' + j * 

o =  y - a o + - a z  

Adding Eqs. (7.42bj and (7.43b) yields (after recognizing that the integral terms cancel) the 

following quadratic equation in "0 

0=2y-2%+-01 c 2  
2 O .  

(7.44) 

Solving for q shows that 

(7.45) 2 q)=,[l + ( 1  - cy)l'*] . 

It is desirable that q, remain finite if c = 0; therefore the "-" sign is chosen and "0 is seen 

to be 

ao=- 1 -  l - c -  '[ C ( tan-lk)i'21 k * 

(7.46) 
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A potential numerical difficulty is present in the evaluation of H(5;k) [Eq. (7.40)]. 

Near the upper limit 5’ will be equal to l lk ,  creating a weak singularity in the integrand. 

This problem is mitigated by making the change of variable 

sin(a8) 
5 ’ =  k 

where a = sin-’[k/(l + kz)1’2] = tan-lk. With this change of variable Eq. (7.40) becomes 

and the moment relation is 

sin(a0) 
dP H [ 4  

(7.47) 

(7.48) 

An important point which makes the evaluation of the H-function simpler is that the 

range of integration and the argument of the H-function inside the integrals in Eqs. (7.47) 

and (7.48) are real. Thus, an iteration scheme may be used to determine the H-function in 

the range of integration, and then this “converged” H-function is used to generate the value 

of the general H-function for any <, which may be complex [Ganapol, et al. 19941. The 

iteration scheme uses Gauss-Legendre quadrature of order L, to evaluate the integrals; 

thus, an iteration is performed for each H(5,;k) where {, = sin(aO,)/k. The iteration 

begins by setting the rn values of H(<,;k) to the analytic value for % as 

H,=c~,  0 . (7.49a) 

The next step is to use these values inside the integral equation for the H-function to 

determine a new value for the Hm’s (withj being the iteration index): 
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Now the moments may be calculated as 

Lm 

(7.49b) 

(7.49c) 

and the values of H, can be adjusted according to these approximate values of the moment 

and the exact values of the moment: 

(7.49d) 

The last two steps are repeated until the approximate value of the moment is equal (within a 

desired relative error) to the exact value of the moment for each H,. At this point, the 

process has converged and the converged values are denoted as Hc,. Thus, for a general 5 

the H-function is given by 

(7.50) 

Because the evaluation of both the surface scalar flux and interior scalar flux 

involve the term H( Uo;k) and the interior scalar flux involves evaluation of H( 1ls;k) in the 

Laplace transform inversion, proper treatment of the H-function for complex arguments is 

required. A dispersion relation for the H-function and a factorization may be obtained for a 

complex argument and are derived in Appendix D. These may be used as a measure to 

determine how well an algorithm is calculating the H-function for a general complex 

argument. 
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7.D.2. The Laplace Transform Inversion. 

The Laplace transform pair in its general form and like the Fourier transform pair 

contain integrals in the complex plane. The Laplace transform pair is defined as 

(7.5 la) 

f i t )  = L-; { F ( s ) }  = - 

By malung the change of variable s = y+ iw, the inversion becomes 

(7.5 lb) 

(7.52) 

If it is known thatfit) is real, it can be shown [Ganapol, 19891 that the inversion may be 

expressed as 

f i t )  = $ fi dw cos( ut) ReF( y + io) . (7.53) 

When dealing with quantities such as a scalar flux, it is evident that the final result must be 

mathematically real in order to be of physical significance. However, this does not imply 

that the kernels of integrals which produce real quantities must also be real. In order for an 

integral over a real variable to be real either the integrand itself must be real or the imaginary 

part of the integrand must integrate to zero. The latter case often occurs when an odd 

function is integrated over a symmetric range. The integrand for the interior scalar flux 

[Eq. (7.35b) contains a Laplace transform inversion; however, this inversion is multiplied 

by a complex exponential and other complex quantities such as Uo and H( Uo;k). 

Therefore, if the scalar flux is determined as shown in Eq. (7.35b), the result of the 
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Laplace transform inversion will be complex and therefore Eq. (7.53) may not be used as 

is. Only if the integral over y~ is taken inside the Laplace transform inversion giving 

can Eq. (7.53) be used. The only means by which the interior scalar flux is real for all z 

and 3 is if the integrand (i.e. the Laplace transform inversion) is itself real. However, it 

will be desirable to determine the interior scalar flux by both means. By separating the 

integral in Eq. (7.52) over the ranges (-=,O] and [O,=), making a simple change of 

variable in the first integral, and combining terms yields 

e 1  
f(t) = zjo dw [ eiwr F (  y + i w )  + e-'Wr F (  y - i w ) ]  . (7.5 5a) 

Assuming thatfit) is complex and that there are no interesting symmetries in the integrands 

over this range of integration it can be shown (Appendix E) that Eq. (7.55a) may be written 

as 

(7.5 5b) 

The complex functionf(t) is separated into real and imaginary parts by separating the 

complex function in the integrand into real and imaginary parts: 

At) = S f  Jm d w  cos(wt) Re[F( y + i w )  + F (  y - io)] + 
n o  

(7.5 5c) 

Now two integrals must be evaluated; however, the same numerical techniques which are 

used to evaluate the Laplace transform inversion for real functions can also be employed 
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here, A few examples of some “simple” complex functions and their inverses are shown in 

Table 7.1. In these cases the desired relative error was lod8 and U, = 0.5 + 0 3 .  

7.D.3. The Double Fourier Transform Inversion. 

The double Fourier transform inversion is common to the surface and interior scalar 

fluxes and the surface current. It is of the form 

(7.56) 

One fortunate Occurrence in the integrands of the Fourier inversions is that all H-functions 

are parameterized in k only. For example, consider the function H( Uo;k). A converged H- 

function can be determined as in Sec. 7.D. 1 for a given k.  Uo is a function of y, but the 

same set of converged H-functions can be used for each y in the evaluation of H( Uo;k) as 

given by Eq. (7.50). The iteration to determine the converged H-function may then be 

performed outside the y integral, and all that need be done inside the integral is the 

interpolation of this H-function to give H( Uo;k). The ability to do the iteration in the 

outermost integral saves much computational effort. 
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Table 7.1. The Complex Laplace Transform Inversion for Some Complex Functions. 

1 W) Analyticalf(t) t Numerical At) Error 
1 e- Uof 

s + uo 
0.01 (7.95000E-01,-4.97504E-03) ?.06E- 13 
0.1 (7.50041E-01,-4.75417E-02) 8.48E-10 
1 (5.32281E-01,-2.90786E-01) 4.64E-10 
10 (1.91 130E-03,6.46118E-03) 1.86E-10 

1 te-'Of 
(s + uo)2 

0.0 1 (7.95000E-03,-4.97504E-05) 7.04E- 10 
0.1 (7.50041E-02,-4.75417E-03) 8.47E-10 
1 (5.3228 lE-01,-2.90786E-01) 4.83E- 10 
10 (1.91 130E-02,6.46118E-02) 4.29E-10 

1 sin( Uot) 
s2 + u,2 UO 

0.01 (1.00OOOE-02,-8.33333E-08) 5.62E-09 
0.1 (1.OO000E-01,-8.33333E-05) 7.94E-IO 
1 (7.97917E-01,-8.33085E-02) 2.8 1E- 10 
io (-5.0 1 13 lE+O1,9.22 104E+O 1) 7.47E- 10 

S cos( Uot) 
s2  + u,2 

0.01 (1.00OOOE+00,-2.500OOE-05) 1.67E-08 
0.1 (7.99999E-01,-2.500OOE-03) 6.87E- 10 
1 (7.89585E-01,-2.49826E-01) 1.07E-10 
10 (2.10506E+O 1,7.11553E+0 1) 9.19E- 10 

1 1 __ 
S 112 ( J i p  

0.01 (5.64190E+00,0.00000E+00) 3.79E-10 
0.1 (1.78412E+OO,O.OOOOOE+00) 3.04E-10 
1 (5.64190E-0 1,0.00000E+00) 2.03E- 10 
10 (1.78412E-01,0.00000E+00) 4.56E-10 

~ $2 +q -- -- 
+[l - COS(U(-$)] 

S 

0.0 1 
0.1 (2.08333E-05,5.00000E-02) 7.93E-10 
1 (2.08302E-02,4.99653E-01) 2.82E- 10 
10 (-4.0101 1E+OO,-1.423 llE+Ol) 6.35E-10 I 
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The k integral in Eq. (7.56) is evaluated by converting the infinite-ranged integral 

into an infinite series of finite-ranged integrals. That is, 

(7.57) 

where the uj are points at which the k integral is partitioned. Because the function F(k)  

contains a zeroth order Bessel function the uj points may be set to the zeros of Jo(k); 

however, in general a zero finding scheme (such as the bisection method) may 5e used to 

determine the zeroes of F(k) itself and these zeroes may be used as the points a,. The y 

integrals are generally performed by Chebyshev integration as discussed in Sec. 7.G. 

7.D.3.a. The Scalar Flux at the Surface. The only source considered for the 

searchlight problem is a point source which impinges the surface of the half-space at the 

origin. Thus, s(”,) = s(p)/(27cp) and 3(c) = 1. It is numerically convenient to extract the 

particles which come directly from the source by subtracting 1 from H( Uo;k) giving for a 

general source variation on the surface 

and for the point source 

(7.5 8b) 

Because the H-function of a complex argument is also complex, it is desirable to 

determine some of the characteristics of this function. This is done by turning our attention 

to Eq. (7.40). First, note that k, 5’ E %, k is a parameter which ranges along IO,-), and 5’ 

ranges in value along [0,1]. Letting 5 = a + ib where u and b are real and rationalizing the 

denominator inside the integral yields 



or after separating into real and imaginary parts 

l / ( l+kz)l /*  d { ’  H ( { ’ ; k )  
- i ; J o  (1  - k  2 5 ’ )  2 112 ( a  + {‘)2 + b2 

This may be written in simpler notation as 

X - + i = H R ( { ; ~ >  + iHk<;k) , H({;k)  = - - 1 
x - i Y  x 2 + y  x + y  

where HR({;k) ,  Hrf{;k) E 93 and 

1/(1+k2)1’2 d{ ’  H(<’ ;k )  b t ’  
2 2 112 (1 - k 5 ‘  ) ( a  + + b2 
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(7.59a) 

(7.59b) 

(7.60a) 

(7.60b) 

(7 .60~)  

It is easily seen now that if { is real (b = 0) then H({;k) will also be real. It is also obvious 

that Hk{;k) is odd with respect to the imaginary part of 5 [i.e. Hrfa + ib;k) = - Hrfa - 

ib;k)]. Thus, the H-functions of a complex conjugate pair are also complex conjugates [i.e. 

H(<*;k) = H*({;k) where “*” denotes conjtigation]. 

With the H-function separated into real and imaginary parts, the complex algebra 

may be done for the integrand in Eq. (7.58b). Expanding the complex exponential into 

sines and cosines, and writing the H-function as above there results 
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+ iHf (Uo;k)]  , (7.61a) 

where q = kpcos(w- a). Separating real and imaginary parts yields 

ly cos(q)Hi((Uo;k) - isin(q)[HR(Uo;k) - 11 . 

Rationalization of Uo [Eq. (7.4c)l shows that (with 6 = 1 - pi) 

(7.61b) 

(7.62) 

from which it may be noted that Uo on the range [n,2n] is the complex conjugate of U, on 

the r&ge [O,n]. Noting that the integral over vcovers the full range of the cosine and sine 

it is immediately seen that the imaginary integral is zero as this integral over [OJ]  is equal 

and opposite in sign to this integral over [z,2rc]. Thus, the scalar flux on the surface of the 

half-space is given by 

When the beam is normal, U, = 1, H I  = 0 [as b = 0 in Eqs. (7.60)], and the cosine term 

integrates to a zeroth order Bessel function to give the expected two-dimensional result. 

As in Ch. 6 with the anisotropic infinite line source, it is possible to perform the 

double Fourier inversion in (k,,k,) space instead of (k,y). This will provide a check for 

some of the numerical results from the evaluation of Eq. (7.63) and will be briefly 

summarized in Appendlx F. Unfortunately the H-functions in the derivation are still 

parameterized by k = (e + /$1’2. Thus, the iteration which produces the H-function must 
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be done inside both integrals where in Eq. (7.63) it is done outside the y integral. The 

computational cost is enormous. 

7.D.3.b. The Interior Scalar Flux. Evaluation of the interior scalar flux is 

extremely difficult as there are effectively three inversions to be performed. However, 

some simplifications can be-made by noting that the final result must be real. When the y 

integral is performed inside the Laplace transform inversion [see Eq. (7.54)], the result of 

the inversion must be real for the scalar flux to be real. Stating the Laplace transform 

inversion explicitly as 

where F(s) is the image function given by 

and 

Note that the spatial parameter a has been moved from the argument of the complex 

exponential into the cosy terms in V,. Defining the integrand of the w integral as 

and inserting the form of F(s) yields 

(7.64b) 

(7 .64~)  

Expressing the H-function in real and imaginary parts and collecting terms gives for g( o) 
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It can be shown that the terms above in square brackets, when expressed as integrals 

“simplify” to 

For an integral of a function of angle ( y) over tne full period of the cosine it is also easily 

shown that separating the y integral into two integrals over the ranges [ O , J ~ ]  and [7r,27r] and 

making a simple change of variable in the second integral yields 

Now by inserting Eqs. (7.66) and (7.67) into the equation for Z(W), there results 

where 

‘ I  (7.68b) 
H(Uo;k)  [Re(s) + q -  1 H(Ui;k) [Re(s) + T 

UO 
ss* + ~ + -  + eia 2Re(s) 1 S,(W) = e-io 2Re(s) 1 

+3 UT, U;s2 
ss* + ~ 

UO 

With S,( y) and S2( y) expressed as above, it is easily seen that the first and second terms of 

the two sums are complex conjugate pairs. Therefore, SI( y), S2( yi )  E 93 and 
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* 2Re(s) 1 
+7 ss + ____ 

S2( y) = 2Re 

(7.69a) 

(7.69b) 

Since SI( y) and S2( y) are real, then g(w) must also be real, and so is the interior scalar 

flux. 

If the scalar flux is determined by performing the Laplace transform inversion 

inside the double Fourier inversion, then the Laplace transform inversion will be a complex 

function and must be determined by using Eq. (7.5%). However, as usual the final result 

must be real to be of physical significance. Manipulating the form of the scalar flux [Eq. 

(7.35b)I and using Eq. (7.67) to change the yintegral over [0,27r] to one over the range 

[OJ] provides the following equation for the scalar flux: 

where 

(7.70b) 

Again, adding K to the argument of the function T2( w) has the effect of conjugating the 

terms U,. The integrand of the modified inverse Laplace transform is an addition of two 

functions with complex conjugates as their arguments. Therefore, it follows that T2( y) and 

T2( y + n) are complex functions which are also complex conjugates. Eq. (7.70a) is then 
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seen to have an integrand which is the sum of complex conjugates, is therefore real, and 

may be expressed as 

(7.71) 

Again, if the beam is normal to the surface, T2( y) is no longer a function of y (but is still a 

function of the parameter k )  as it was such only through the term U,, which is 1 for a 

normal beam. The complex exponential in Eq. (7.7 1) becomes Jo(kp), and the two- 

dimensional form for the interior flux is recovered. 

7.D.3.c. The Current at the Surface. The current at the surface is given by the 

inversion of Eq. (7.33). This is explicitly given as 

(7.72a) 

where 

The inversion of the transformed source is simply the source itself and for a beam source 
- +  S ( k )  = 21c. Thus 

J(0,iV = P&b> - J,(07b> * (7.73) 

Using the relationship between ,u and 5 so that the innermost integral in Eq. (7.72b) is 

integrated over <', and making the change of variable {'= sin(ae)/k, a = tan-lk, as in Sec. 

7.D. 1 yields for the emerging current 



where 
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(7.74a) 

(7.74b) 

(7.74c) 

Separating I ,  into two integrals, one with the range of integration [O,n] and the other over 

[ K ~ z ] ,  making a change of variable in the second integral so that both are over [O,n], and 

combining the integrals shows that the two integrated terms are a sum of complex 

conjugates. Therefore, 

and 

(7.75) 

(7.76) 
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The results for the current at the surface of the half-space is clearly a real number, as 

required, and the evaluation of the integral expression contains three embedded integrals. 

If the beam is normal to the surface of the half-space, 

to 

= Cr, = 1 and Eq. (7.76) reduces 

(7.77) 

The evaluation of Eqs. (7.64a), (7.7 l), and (7.76) may be done numerically and are 

discussed in the next section. 

7.E. Results for The Searchlight Problem 

The searchlight problem provides the benchmarking community with a case study 

which is rich in both numerical analysis and mathematical theory. It also provides a 

benchmark which is three-dimensional. Due to the complexity of the integral formulations 

which provide the scalar flux, it will be seen that the calculations which evaluate the 

integrals are numerically and computer intensive. 

7.E. 1. The Scalar Flux at the Surface. 

The numerical evaluation of the scalar flux is relatively easy as the only 

complication is the evaluation of an H-function. As mentioned, the techniques used for the 

anisotropic line source in an infinite medium will be used here. 

7.E. 1.a. Numerical Considerations for the Scalar Flux at the Surface. The 

numerical evaluation of the surface scalar flux resulting from a beam impinging at some 

angle at the center of a free surface is obtained by using the numerical techniques discussed 
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thus far. These include iterative Gauss-Legendre integration, Chebyshev integration, 

transformation of a semi-infinite integral into an infinite series, Euler-Knopp acceleration, 

and double inversions in Cartesian coordinates. All of these techniques were used in the 

evaluation of the scalar flux from the anisotropic line source in an infinite medium. The 

experience gained there with the double Fourier inversion is now used with the additional 

complications of having to evaluate H-functions and Laplace transform inversion in the 

integrand of the double Fourier inversion. 

The surface scalar flux is given bv Eq. (7.63). The required inversion contains a 

double integral, of which the outer integral is over the k variable and the inner integral is 

over i,u. As noted, it is quite fortunate that the H-function is parametrically only a function 

of k. This allows the H-function iteration to be done outside the y integral which saves 

considerably on computational resources. With the converged values of the H-function 

calculated for each k all that must be done inside the y integral is one interpolative 

evaluation of the H-function at the particular tyvalues associated with Uo. As usual, the k 

integral, which has a semi-infinite range, is converted into an infinite series of integrals. 

The intervals of integration for these integnls may be the zeroes of the zeroth order Bessel 

function or the zeroes of the integrated function. In general, it is seen to be most efficient 

when the outer integrals use Gauss-Legendre quadrature or Romberg integration and the 

inner integral uses Chebyshev integration. 

Some numerical results are presented in Table 7.2 in the form of an error analysis. 

The results were generated with a scattering coefficient of c = 0.9, an incident angle ,uo = 

0.7, and at y = 0.1. The numerical integration parameters include outer integration using 

variable Gauss-Legendre quadrature with an initial quadrature of 10 and increment 2,  and 

an inner Chebyshev integration with initial quadrature 20 and increment 20. The zeroes of 

Jo(k) are the endpoints of the finite outer integrals. It may be seen that for each value of the 

desired error on the final result the numerical values of the scalar flux agree with each other 
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to the required number of significant digits. It is also seen that the values of the scalar flux 

are greater at positive values of x than at negative values of x due to the canted beam 

shining particles into the region of positive x. 

Table 7.2. Error Analysis for the Surface Scalar Flux. 

X err = err= 10-~ err= lo4 err = 10-~ err= 
-2 4.424424E-3 4.425 169E-3 4.425259E-3 4.425270E-3 4.425272E-3 

- 1.5 8.720801B-3 8.721863E-3 8.721989E-3 8.722005E-3 8.722007E-3 
-1 1.965904E-2 1.967439E-2 1.967635E-2 1.967637E-2 1.967637E-2 

-0.5 6.050579E-2 6.054 166E-2 6.054566E-2 6.0546 19E-2 6.0546 18E-2 
0 6.873938E- 1 6.872902E- 1 6.872764E- 1 6,87274 1E- 1 6.872742E- 1 

0.5 2.047136E-'l 1 2.047531E-1 2.047594E-1 2.047592E-1 2.047591E-1 
1 7.20223 1E-2 7.204633E-2 7.204537E-2 7.204524E-2 7.204522E-2 

1.5 3.322871E-2 3.322389E-2 3.322325E-2 3.3223 15E-2 3.3223 1 5 2  
2 1.730579E-2 1.730218E-2 1.730159E-2 1.730162E-2 1.730162E-2 

As mentioned, a check on the numerical results obtained from the standard double- 

Fourier inversion from (k,y) transformed space is to do the inversion in Cartesian 

coordinates. When this is done, the H-function becomes a parameter of both k, and k, ; 

therefore, the iteration must be performed inside the k, integral. Thls will significantly 

increase the computer time. 

Table 7.3 contains a comparison of the two inversion methods. In each case c = 

= 0.5, y = 0.5 and the same integration parameters are used as those for Table 7.2. 0.9, 

The (kx,k,,) inversion integrals used variable Gauss-Legendre quadrature for both inner and 

outer integrals beginning with a quadrature of 10 and incrementing in steps of 2. Both sets 

of data have been converged to err = lo4. Note that the computer time required to obtain 

the scalar fluxes from a Cartesian inversion are approximately 50 times greater than those 
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from the standard inversion, as expected. However, since the Cartesian inversion is used 

solely as a check on the results from the standard inversion, it has proven itself effective for 

its purpose. 

Table 7.3. Inversion Method Comparison for the Surface Scalar Flux. 

scalar Flux 

-2 2.57605E-3 
- 1.5 4.96987E-3 
-1 1.05774E-2 
-0.5 2.60357E-2 
0.5 7.35475E-2 

1 4.75558E-2 
1.5 2.7 2023E-2 
2 1.55 150E-2 

x ( k , ~ )  Inversion 
CPU 

time(s) 
5.5 
s .5 
5.4 
5.3 
5 .O 
5.1 
5.1 
5.1 

scalar Flux 
(k, ,k,)  Inversion 
2.57607E-3 
4.9699OE-3 
1.05774E-2 
2.6035 7E-2 
7.3 5473E-2 
4.75557E-2 
2.72022E-2 
1.55 149E-2 

CPU 
time (s) 
256.3 
260.8 
290.3 
249.2 
234.9 
274.2 
245.9 
242.0 

7.E. 1 k. General Results for the Scalar Flux at the Surface. The surface scalar 

flux is primarily a function of two spatial variables (x ,y)  or (p,a), and one source 

parameter, h. As with the anisotropically emitting infinite line in an infinite medium, it is 

useful to examine the scalar flux on the surface versus angle and source incident angle. 

Such plots are displayed in Figs. 7. la  and 7. lb. These figures were generated at c = 0.9 

and the scalar fluxes are converged to lo4. Figs. 7. la and 7. lb  show the scalar flux as a 

function of a: and at p = 0.01 and p = 1, respectively. 



5 

Fig. 7. la. The surface scalar flux as a function of positional angle (a) and beam 
incident angle (k) at p = 0.01 with c = 0.9. 

1 

Fig. 7. lb. The surface scalar flux as a function of positional angle (a) and beam 
incident angle (k) at p = 1 with c = 0.9. 
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First, it is clearly noted that the values of the scalar fluxes at p = 0.01 are 

considerably greater than those at p = 1. In both figures, when = 1 (a normal beam) the 

scalar flux is independent of angle, as expected, and the value of the scalar flux agrees with 

that of the two-dimensional version of the searchlight problem [Ganapol, et al., 19941. 

When the incident beam is a grazing one (k = 0),  the scalar flux is zero, and as 

approaches zero the scalar flux does likewise. At small angles, the scalar flux begins to 

increase as decreases, peaks, and the decreases to zero. This graphically describes the 

phenomenon that as the beam is canted more particles are scattered into the areas which 

have small spatial angular coordinates but that there comes a point where the beam is so 

canted that the effect of scattering more particles into that region is overcome by either the 

loss of particles through the surface. At large angles (a near E),  when the beam is canted it 

shines particles in a direction which is increasingly farther from the spatial point and 

therefore the scalar flux continually decreases. 

An analysis of the behavior of the surface scalar flux at various values of the 

scattering coefficient is provided in Fig. 7.2. A wide range of c values are examined, and 

both the shape of the scalar fluxes and the magnitudes of the scalar fluxes at the values of c 

follo6r expected physical trends. 
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Fig. 7.2. 

-2 -1.5 -1 -0.5 0 0.5 
X 

1 1.5 2 

The surface scalar flux as a function of c and x at y = 0.1 and % = 0.5. 

The most natural form of general results for the surface scalar flux in the searchlight 

problem is the scalar flux as a function of position on the surface. Fig. 7.3 contains three 

such contour p:ots for three values of the incident angle k. In each case c = 0.9 and the 

scalar flux is plotted in a 4 x 4 mean-free-path square around the center of the surface. 

When the beam is very canted (small k) the scalar flux is directed along the x-axis and the 

magnitude of the scalar flux varies rapidly. As the beam becomes closer to normal to the 

surface, the scalar flux becomes more symmetric about the center and less variable with 

distance from the source. 
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
X 

Contour mapping of the surface scalar flux for three values of the incident 
angle with c = 0.9. 
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7.E.2. The Interior Scalar Flux. 

As with the scalar flux at the surface of the half-space, evaluation of the interior 

scalar flux requires evaluation of the H-function. However, this is further complicated by 

the need for a Laplace transform inversion inside the double Fourier inversion. 

7.E.2.a. Numerical Considerations for the Interior Scalar Flux. The interior scalar 

flux is obtained after numerically performing a double-Fourier transform inversion and a 

Laplace transform inversion. Clearly, this is the most computationally intensive calculation 

thus far in this work. The “simpler” numerical inversions allowed the use of techniques 

such as iterative Gauss-Legendre quadrature and iterative Chebyshev quadrature. 

However, with three embedded integrals to compute it is more efficient to set the 

calculations so that no iterations are used. Without the confidence in the answer which 

comes from a solution which has used the iterative processes, some measure must be found 

to provide confidence in the numerical results of this calculation. This is accomplished 

primarily by testing the results at various quadrature orders and by occasionally allowing 

the algorithm to iterate. When this is done, it is seen that the outer integral may be 

evaluated via Gauss-Legendre quadrature at orders around 10. The Chebyshev integrals 

generally require quadrature orders around 50 for most problems; however, when c is 

small higher orders are required. 

The Euler-Knopp series accelerator is a crucial part to this numerical evaluation. 

The k integral is, as usual, converted into an infinite series of integrals. The zeroes of the 

integrand are determined by bisection (a time consuming process). These zeroes are used 

as the limits of integration for the integrals which make up the terms of the series. These 

terms are purely oscillatory, and therefore the series is an excellent candidate for Euler- 

Knopp acceleration. 

One drawback to setting the quadrature orders and not allowing iteration is that the 

results are limited in their accuracy. It will be seen that the lowest relative error which can 
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be obtained for most results is lo4. First, the time required to obtain this error is quite 

long, and second, the algorithm often becomes unstable if lower errors are requested. This 

instability arises because the quadrature order of the inner integrals is set, and for large k, 

as required for evaluations at low relative errors, the quadrature order is not sufficient to 

provide an accurate determination of the function being integrated. Thus, at sufficiently 

large k the terms of the series mention previously are no longer accurate, and the 

acceleration scheme fails. Again, this instability is not inherent in the mathematics of the 

problem, but arises solely due to the limited computer resources and the consequences 

thereof. 

The computer time required to evaluate the interior scalar flux at a single spatial 

point is considerably large - on the order of 15 minutes. Thus, it is evident that the 

searchlight problem is certainly one which could greatly benefit from the use of parallel 

processing - by giving each processor a spatial point the calculation clock time is decreased 

according to how many processors can be devoted to the problem. The amount of special 

programming that would have to be done to paralielize the calculation is minimal as the 

calculation for each spatial point is independent of all other spatial point calculations. 

An error analysis of the results from calculating the interior scalar flux as given in 

Eq. (7.64a) (where the wintegral is performed inside the Laplace transform inversion) is 

provided in Table 7.4. The physical and spatial parameters are p = 1, a = 30°, c = 0.9, 

= 0.9. Generally, the inner y integral used a Chebyshev quadrature order of 50. It is 

notable that the values of the error go only as low as lo4. These calculations take a great 

amount of time, and an error of lo4 is the lowest one which may be done in a reasonable 

time and with confidence that the answer is correct. As usual, the results agree with each 

other to the required number of digits. 
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Table 7.4. Error Analysis for the Interior Scalar Flux. 

Z err= err= j err= lo4 
0.5 1.0828E- 1 1.0823E- 1 1.0825E- I 

1 1.2466E- 1 1.2446E- 1 1 1.2445E- 1 
1.5 1.1289E-1 1.1281E-1 1.1282E-1 
2 8.3406E-2 8.3359E-2 8.336 1 E-2 

2.5 5.3373E-2 5.3358E-2 5.3352E-2 
3 3.2717E-2 3.2738E-2 3.2741E-2 

3.5 2.03578-2 2.0337E-2 2.0338E-2 
4 1.2961E-2 1.2953E-2 1.2952E-2 

4.5 8.4463E-3 8.4454E-3 8.4452E-3 
5 5.62018-3 5.6172E-3 5.6167E-3 

One of the means of verifying results from the inversions for the surface scalar flux 

involved inverting in Cartesian coordinates. The calculations for the interior flux take 

enough time as it is with the H-function iteration occurring outside the Laplace transform 

inversion and the pintegral, and if the iteration had to be done inside the wintegral the 

calculations may become prohibitively long. Therefore, another simple mearls of testing 

the results from the inversions is to perform the inversion integrals in various orders. It 

was shown earlier that the Laplace transform inversion could be done either inside or 

outside the v/  integral: Eq. (7.64a) has the p integral inside the Laplace transform integral 

which is inside the k integral, and Eq. (7.71) has the Laplace transform integra1 inside the p 

integral which is inside the k integral. These two inversion methods are compared in Table 

7.5 along with the CPU times required to obtain each result. The scalar fluxes have been 

converged to lo4, and y = 1, z = 1,  c = 0.9, 

obtained by each method agree with each other to the required number of significant digits, 

and the CPU times are comparable. It has been found that the method given in Eq. (7.71) 

works best for small values of c and the incident angle k. 

= 0.9. It is clear that the scalar fluxes 
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Table 7.5. Comparison of Two Inversion Methods. 

0.5 

1.5 

dk-L;'-dy dk-LT'-dyr dk-dyr-L' 1 dk-dyr-L:' 
[Eq. (7.64a)l [Eq. (f64a)l [Eq. (7.7f)l i [Eq. (7.7f)l 

scalar flux CPU time (s) scalar flux CPU time (s) 
766.6 1.0247E-2 8 18.0 
856.6 1.6884E-2 847.7 

2.7936E-2 843.5 2.7933E-2 875.5 
4.4748E-2 1024.9 4.4746E-2 929.3 
6.3362E-2 984.3 6.336 1E-2 980.8 
6.8988E-2 867.6 6.8982E-2 1058.0 
5.500 1E-2 989.7 5.500 1E-2 1027.2 
3.6423E-2 979.0 3.6422E-2 970.4 
2.2746E -2 954.1 2.2745 E-2 927.2 

I 
1.0248E-2 
1.6885E-2 

7.E.2.b. 3. The various possible ways 

one can view the interior scalar flux are infinite because there are three spatial dimensions to 

be varied along with the physical parameter c and the source parameter h. The fact that it 

can take 15 minutes to obtain one point (as seen in Table 7.5) makes it even more difficult 

to use standard methods of display such as three-dimensional graphs or contour plots as 

these displays require a few hundred points to provide sufficiently smooth curves. 

The interior scalar flux results are first analyzed at different values of the scattering 

properties of the half-space. Table 7.6 contains the interior scalar flux along the z-axis ( p  = 

0) resulting from a canted beam with 

generally converged to lo4; however, at small values of c convergence to 

obtained. For small c, the inversion from Eq. (7.7 1) is found to converge faster and is 

more stable than Eq. (7.64a); however, even this method had such difficulty that 

convergence to only was attainable for some of the scalar fluxes at c = 0.1. 

= 0.9 at several values of c. The results are 

was 
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Table 7.6. Interior Scalar Flux as a Function of Position and c. 

Z 
0.5 

1 
1.5 
2 

2.5 
3 

3.5 
4 

4.5 
5 

c = 0.1 
3.883E-2" 
1.000E-2 

3.529E-3" 
1.443E-3 
6.308E-4 
2.925E-4 
1.404E-4 

6.935E-5" 
3.504E-5* 
1.795E-5 

c = 0.3 
1.3 127E- 1 
3.5903E-2 
1.3409E-2 
5.7338E-3 
2.639 1E-3 
1.2739E-3 
6.3574E-4 
3.255 1E-4 
1.6992E-4 
9.002OE-5 

c = 0.5 
2.4597E- 1 
7.3033E-2 
2.9320E-2 
1.3357E-2 
6.52 17E-3 
3.3276E-3 
1.7505E-3 
9.4 1948-4 
5.156SE-4 
2.8608E-4 

c = 0.7 
3.93 13E-1 
1.29 13E- 1 
5.6824E-2 
2.820 1 E-2 
1.4943E-2 
8.2505E-3 
4.6863E-3 
2.7 175E-3 
1.607E-3 
9.5446E-4 

c = 0.9 
5.928 1E-1 
2.2346E-1 
1.1243E-1 
6.37 15E-2 
3.8547E-2 
2.43 11E-2 
1.5784E-2 
1.0470E-2 
7.06 14E-3 
4.8256E-3 

c = 0.9999 
7.3204E- 1 
3.0820E- 1 
1.75 14E- 1 
l.1332E-1 
7.9102E-2 
5.8 129E-2 
4.4373E-2 
3.4890E-2 
2.8097E-2 
2.308OE-2 

*Converged to 

The other parameter which may be varied is the source incidence direction k. Fig. 

7.4 displays one possible means of examining the effects of changing h. Three spatial 

points are fixed [the points are (x,y,z) = (1,0.5,1), (2,0.5,1), and (3,0.5,1)] and the 

scattering property of the medium is described by c = 0.9. When x = 1 and z = 1 the scalar 

flux should peak when the incident angle is around 45" (h = 0.707 1). The peak actually 

occurs near ,q, = 0.8 due to the spatial point of evaluation being offset by one-half of a 

mean-free-path from the source plane (y = 0.5). When x = 2 the peak would come at 4 = 

0.4472 for y = 0 and actually occurs near h = 0.55. A similar physical analysis may also 

be used for x = 3. As on the surface, the scalar flux rises from zero for a grazing beam (k 

= 0), peaks at some % where the beam emits into a direction which passes near to the 

specified spatial point, and then decreases again as the beam direction moves away from the 

spatial point until it emits along the z-axis (j+, = 1). The final and possibly most useful 

means of viewing the scalar flux comes as a contour plot which has two spatial dimensions 

as its axes. 
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Fig. 7.4. 
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Interior scalar flux as a function of 
and c = 0.9. 

for three values of x at z = 1, y = 0.5, 

When a beam of light illuminates a water surface which has some scattering centers 

in it (such as dilute milk), one can see a buildup of light intensity just inside the surface 

where the beam impinges. When the beam is canted the expected result is seen as the 

buildup simply moves with the direction of the incident beam. It is therefore desirable to 

obtain some graphical representation of the aforementioned phenomenon. 

This graphical representation comes as a contour plot of the scalar flux versus 

position in the medium. A slice of the medium is taken parallel to the z-axis at a particular 

position y so that the canted nature of the beam is clearly visible. The variation in z begins 

at the free surface and extends to some point in the medium. Figs. 7Sa, 7Sb, and 7% 

display contour plots of the scalar flux versus x and z at the positions y = 0.5, 1, and 2 ,  

respectively. x ranges from [-2,2] and z ranges from [0,5]. The beam impinges on the 

free surface of a c = 0.9 medium at an angle = 0.9 (e, = 25.8'). When the evaluation 

grid is near the source (Fig. 7.5a), the directed nature of the source is clearly visible. The 

buildup peak inside the surface is also clearly visible. As the evaluation grid moves farther 
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from the source the buildup peak moves into the medium and the directed nature of the 

source becomes Iess evident. When a point is far enough away from the source, the source 

should appear as though it emitted particles isotropically. 

In each of the three figures, the grid consists of 20 x 17 points. At the rate of 10 

minutes per point for 

for each plot. As mentioned previously, this leads to the conclusion that the searchlight 

convergence it takes 2.23 CPU days to compile the data needed 

problem could benefit greatly by the use of parallel processing techniques. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Z 

Fig. 7.5a. Contour mapping of the interior scalar flux as a function of x and z for c = 
0.9, po = 0.9, and y = 0.5. 
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Z 

Fig. 7.5b. Contour mapping of the interior scalar flux as a function of x and z far c = 
0.9, po = 0.9, and y = 1. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Z 

Fig. 7%. Contour mapping of the interior scalar flux as a function of x and z for c = 
0.9, po  = 0.9, and y = 2. 
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7.E.3. The Current at the Surface. 

7.E.3.a. Numerical Considerations for the Current at the Surface. The current at 

the surface has been shown to be comprised of two components: a positive component due 

to the incident source, and a negative component due to the return current from the 

medium. All results presented will be of this return current, and are the magnitude thereof 

(i.e. the values of the current are positive, and the negative sign in the derived integral 

equations indicates the current in the negative z-direction). 

The current at the surface of the half-space is obtained by numerically integrating 

Eq. (7.76). This includes an outer k integral over a semi-infinite range, an inner e integral 

over [0,1], and a I+V integral over [0,4 The k integral is evaluated, as usual, by converting 

the integral into an infinite series of integrals where the ranges of integration are the zeroes 

of Jo(k) or are the zeroes of the integrated function. These integrals are generally evaluated 

using iterative Gauss-Legendre quadrature as described previously for the scalar flux at the 

surface. It is also noted that the numerical evaluation of the H-function conveniently results 

in the H-function evaluated at the arguments used in the second integral in Eq. (7.76). This 

integral is evaluated using the input Gauss-Legendre order L, used for the H-function 

iteration. Therefore, no iterations are done 

evaluated using iterative Chebyshev integration as usual. 

the e integral. The innermost I+V integral is 

The first investigation regarding the numerical aspects of the evaluation of Eq. 

(7.76) is to determine what values of L, are necessary for an accurate determination of the 

current at the surface. Table 7.7 displays the current as a function of x and L,. The 

current is evaluated with the following parameters: c = 0.9, 

outer integral is converged to lo4. 

= 0.9, and y = 0.1. The 
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Table 7.7. Quadrature Order Study for the Surface Current. 

X 

-2 
-1.5 
-1 

-0.5 
0 

0.5 
1 

I .5 
2 

L,= 10 
2.98458E-3 
5.67721E-3 
1.237 13E-2 
3.73657E-2 
4.6368 1E- 1 
7.82324E-2 
3.16336E-2 
1.40507E-2 
7.2065 1E-3 

L, = 20 
2.98458E-3 
5.67722E-3 
1.237 12E-2 
3.73647E-2 
4.59024E- 1 
7.82383E-2 
3.16333E-2 
1.40507E-2 
7.2065 1E-3 

L, = 30 
2.98458E-3 
5.67722E-3 
1.237 12E-2 
3.73647E-2 
4.59 166E- 1 
7.82383E-2 
3.16333E-2 
1.40507E-2 
7.2065 1E-3 

L,n = 40 
2.98458ET 
5.67722E-3 
1.237 12E-2 
3.73647E-2 
4.59 163E- 1 
7.82383E-2 
3.16333E-2 
1.40507E-2 
7.2065 1E-3 

L,?, = 50 
2.98458E-3 
5.67722E-3 
1.237 12E-2 
3.7 3 647E-2 
4.59 163E- 1 
7.82383E-2 
3.16333E-2 
1.40507E-2 
7.2065lE-3 

L, = 60 
2.98458E-3 
5.67722E-3 
1.237 12E-2 
3.7 3 647E-2 
4.59 163E- 1 
7.82383E 2 
3.16333E-2 
1.40507E-2 
7.2065 1E-3 

Note that for values of x far from the source (x = 0) the inner integral is converged aroun, 

L, = 10 or 20. Near the source a greater quadrature order (L, = 40) is required to obtain 

pure convergence. If the spatial evaluation point is very near the source, successively 

greater quadrature orders are required for convergence. Table 7.8 contains the value of the 

surface current for x = -0.5,0, and 0.5 with y = 0.01 and the same source and scattering 

properties as those used for Table 7.7. The interesting point is that for (x ,y)  = (0,O.Ol) a 

quadrature order of 80 or 100 is required to obtain convergence within the desired relative 

error for the final result (in this case again err = lo4), and quadrature orders up to 200 are 

required for convergence to all significant figures shown in the table. 

Given that proper use of the quadrature order for the 8 integral is understood, the 

next important step is to ensure that the resultant calculation of the current provides 

benchmark quality results. Therefore an error analysis for the final result is provided in 

Table 7.7. As with the previous tabular results, the source and scattering properties are 

,q, = 0.9 and c = 0.9. The quadrature order for the 8 integral is set to 40 and the required 

error tolerance for the innermost y integral is lo4. Therefore the error analysis is only on 

the outer integral, which provides the final numerical value for the return current. The 
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current is given as a function of x with y = 0.1. Note that in all cases the results agree to 

the required number of significant digits. 

Table 7.8. Quadrature Order Study for the Surface Current Near the Source. 

L m  x = -0.5 
50 3.822076E-2 
60 3.822076E-3 
80 3.822076E-2 
100 3.822076E-2 
120 3.822076E-2 
140 3.822076E-2 
160 3.822076E-2 
180 3.822076E-2 

I 200 3.822076E-2 

x = o  
5.666583E+0 
5.574652E+0 
5.577080E+0 
5.577148E+O 
5.577124E+O 
5.577122E+O 
5.577 123E+O 
5.577 123E+O 
5.577 123E+O 

x = 0.5 
1.027947E- 1 
1.027947E- 1 
1.027947E- 1 
1.027947E- 1 
1.027947E- 1 
1.027947E- 1 
1.027947E- 1 
1.027947E- 1 
I .027947E- 1 

Table 7.9. Error Analysis for the Surface Current. 

x err= IO-* 
-2 2.98523E-3 

-1.5 5.67813E-3 
- 1 1.23726E-2 

-0.5 3.73917E-2 
0 4.59267E-1 

0.5 7.82508E-2 
1 3.16438E-2 

1.5 1.40588E-2 
2 7.20578E-3 

err = err = lo4 
2.98465E-3 2.98458E-3 
5.6773 1E-3 5.67722E-3 
1.237 13E-2 1.237 12E-2 
3.73678E-2 3.73647E-2 
4.59140E-1 4.59163E-1 
7.82399E-2 7.82383E-2 
3.16346E-2 3.16333E-2 
1.40505E-2 1.40507E-2 
7.20638E-3 7.2065 1E-3 

With a good understanding of the numerical requirements for obtaining benchmark 

quality results the next step is to generate general results which display the physical 

properties of the return current. 
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7.E.3.b. General Results for the Current at the Surface. As with the surface scalar 

flux there are several variables and parameters which may be studied for the return current. 

The current as a function of angle and source incident angle is the first means of viewing 

the current and is displayed in Fig. 7.6. The return current looks and behaves very much 

like the scalar flux at the surface, as expected. Also, for 

invarid with respect to the positional angle and agrees with the values obtained from the 

two-dimensional calculation. 

= 1 the return current is 

Fig. 7.6. The return current as a function of positional angle (a) and beam incident 
angle (h) at p = 1 with c = 0.9. 

The final display of the surface current is the most obvious means of display - that 

of current as a function of position on the surface. As with the scalar flux this is done in 

contour plots as seen in Fig. 7.7. As expected, the sharply canted beams produce lower 
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valued currents yet more directed contours on the surface. As the beam approaches ,q, = 1 

the contours become more symmetric about the origin. Thus the general results for the 

surface scalar flux and current look and behave similarly. 

It has therefore been demonstrated that the calculation of the scalar flux resulting 

from a canted beam impinging on the surface of a half-space, which involves integrals 

related to three inversions, requires a great deal of computational power and time to 

produce results. Results can be provided to a lo4 accuracy in a reasonable time for 

problems which are not highly absorbing and for beams which are not severely canted. 

However, given the nature of the inversions these calculations would have been impossible 

without the improved speed of computers whch are now avaiiable in desktop workstations 

and personal computers. 
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Contour mapping of the return current for three values of the incident angle 
po with c = 0.9. 
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24 1 

A wide variety of benchmark-type problems have been investigated. The basic 

theme of this work was the examination of the suite of infinite medium benchmarks and 

how they are related to one another, with the ultimate goal of obtaining results for the three- 

dimensional searchlight problem. Because the searchlight problem is extremely complex 

with regard to the mathematics and numerics required for solution, the infinite medium 

problems were investigated to gain experience with benchmarking in general, and to 

develop numerical methods which would eventually be applied to the three-dimensional 

searchlight problem. 

The study of benchmarks progressed from the fundamental problems in infinitc 

media: the isotropic point, plane, and line sources. The solutions were obtained through 

Fourier transforms and inversions. The methods to obtain numerical results using the 

Fourier inversion were thus established, as was the concept of integrating one source to 

obtain the solution for another. In this light, is was shown that, intuitively, all sources and 

geometric shapes can be derived from the solution to a point source emitting particles in a 

specific direction, called the Green’s function source. Mathematically, however, all 

sources and geometric shapes, including the Green’s function source, can most 

conveniently be derived from the solution for the scalar flux from an isotropic point source. 

The benchmarks progressed from those which have one-dimensional variation in 

the scalar flux arising from isotropic sources, to those which have two-dimensional and 

three-dimensional variation arising from finite isotropic sources. Here, the methods for 

evaluating multiple embedded integrals was established. T h s  progression of complexity 

then led to anisotropic sources and the evaluation of the Green’s function source. 
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The final case which was studied for the infinite medium suite of benchmarks was 

the infinite line source emitting particles in a particular direction. This case was unique in 

that the scalar flux’s spatial variation was two-dimensional in a plane, that is, the variation 

was according to polar coordinates. This benchmark was considered in order to complete 

the suite of benchmarks in infinite media and to gain experience with double-Fourier 

transforms and inversions - the scalar flux in the plane is obtained by a double-Fourier 

inversion. With this benchmark, the basic suite of problems in infinite homogeneous 

media was considered complete. Thus, with the infinite medium benchmarks well- 

characterized, the next step was to progress to semi-infinite media. 

There has been much analysis of one-dimensional half-space problems from the 

astrophysical and radiative transfer communities; however, only recently have the 

computational platforms been available which d o w  numerical analysis of problems having 

two-dimensional variation of the scalar flux in a half-space. In the case of the searchlight 

problem, two-dimensional Fourier transforms and inversions are used for the transverse 

plane, and the Laplace transform is used for the longitudinal dimension. The results of 

such analyses are embedded integrals which contain generalized Chandrasekhar’s H- 

functions. It was found that the scalar flux on the surface was relatively easy to evaluate 

owing to the fact that only a double integral need be evaluated. When the interior scalar 

flux was considered, much more difficulty was encountered and much more computer 

resources were required. Very oblique incident angles presented some difficulty, as did 

small values of c. 

One purpose of analyzing these benchmarks is to develop more comprehensive 

benchmarks so that those who create production-scale codes would have test problems 

which they may use to benchmark new and more complicated codes. Again, the ultimate 

goals of ths work were to obtain numerical results for the three-dimensional searchlight 

problem and, secondarily, to provide a compilation of benchmarks in infinite homogenous 



243 

media. Both goals were met; however, there are multiple opportunities for further research 

regarding both infinite medium benchmarks, semi-infinite medium benchmarks, and the 

searchlight problem, in particular. 

Even though the suite of infinite medium benchmarks is considered “well- 

characterized,” it is far from complete. The solutions which may be generated are as varied 

as the hnds of sources which may be envisioned. As mentioned, shell sources and finite 

volumetric sources have not been investigated in this work, and are certainly of interest. 

When considering a radioactive foil for radiation oncology applications, it is understood 

that a foil has a finite thickness; therefore, obtaining solutions for finite volumetric sources 

will be important for benchmarking codes which are capable of modeling such sources. It 

may therefore be desirable to investigate other source geometries like cylinders or helixes, 

but the solutions will be more difficult when compared to the isotropic surface sources. 

One possible means of approximating such sources is to construct such sources out of an 

array of isotropic point sources. For example, the scalar flu from a finite isotropic line 

source may be approximated as a series of point sources placed in a line. The scalar flux 

from the finite line source was obtained by mathematically integrating the solution from the 

isotropic point source, so in the approxima;, xse,  the fluxes from the poilit sources would 

be used as interpolation points by which a polynomial expression may be produced and 

integrated. This would then produce an approximate value for the scalar flux from a finite 

line source. Similarly, the rectangular source could be approximated by a series of line 

sources or an array of point sources. Such approximations could allow the evaluation of 

the scalar fluxes from more complex sources. 

Construction of a semi-infinite suite of benchmarks would be complementary to the 

one for infinite mela .  Past work has been performed regarding plane and point sources on 

the surface of a half-space, but to date no one has considered the solutions which have 

isotropic and anisotropic line sources on the surface. 
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It was seen that the searchlight problem required extensive computational effort to 

produce results. Further research should be devoted to obtaining quicker and more 

extensive results from the searchlight problem. Ths  is especially true for small values of c 

This may involve better integration techniques, or better use of the ones available. Other 

acceleration schemes, such as the epsilon algorithm, may also be investigated. It was also 

noted that convergence to errors below 104 was difficult due to the required in- Lrease i,i 

quadrature order to obtain accurate values for the integrands at large k.  Methods of 

mitigating this must be developed in order to obtain numerical results for tighter error 

requirements. Ultimately, however, the future of analytical benchmarking lies in the use of 

parallel processing. The formulations are such that a minimal amount of parallel 

programming would have to be done so that individual processors could be devoted to 

separate evaluations of the integral expressions based on spatial or source parameters. 

Accomplishment of these tasks should be a part of a subsequent and consistent effort to 

provide more complex and realistic benchmarks for the nuclear, medical, astrophysical, and 

earth sciences communities. 

Another area which may be interesting to pursue is that of visualization. With the 

production of benchmarks which produce a scalar flux as a function of three spatial 

variables there results a four-dimensional system. Clearly, with graphics as they exist 

presently, only three-dimensional images may be produced. Development of new and 

innovative means of visualizing or manipulating three-dimensional data fields (such as 

shining light on the data field and noting the effect) may be of great benefit regarding the 

use of these kinds of benchmarks, and may also be very educational. 

Finally, the ability to use these benchmarks as pedagogical tools can not be 

understated. Great insights regarding physical phenomena may be gained by using these 

simplified problems. The proper use of certain numerical methods may also be a result of 

using these benchmarks in consideration of the numerical methods used therein. Students 
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and teachers alike often gain the most knowledge by being familiar with basic problems and 

their associated physics. 
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APPENDIX A: SCALAR FLUX EXPANSIONS NEAR VARIOUS SOURCES 

It may be useful to have asymptotic forms of solutions for various problems in 

infinii, media. It is usually more difficult to obtain numerical solutions near sources; 

therefore it is desirable to use asymptotic solutions to check standard numerical results and 

perhaps as the solution if the desired edit paint is sufficiently close to the source so that the 

asymptotic form is very dominant. Such asymptotic forms are obtained using limiting 

processes found in Case, DeHoffmann, and Placzek for several source types. 

A. 1. The Scalar Flux at Small Y for an Isotropic Point Source in an Infinite Medium 

The scalar flux from an isotropic point source in an infinite homogeneous medium 

is given by 

where the functionflk) is given by 

tan-' (k) 
L(k) = k . 

In order to determine the behavior of p(r) at small Y, a simple change of variable is applied 

to Eq. (A.l) to give 
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then from Eq. (A.2) 

(A.6a) 

Combining integrals yields 

(A.6b) 

Upon introduction of the definition offik), the term in square brackets becomes 

The asymptotic expansion for the inverse tangent (for 1x1 > 1) is 

By approximating the inverse tangent using the first two terms, Eq. (A.7) becomes 

which upon simplification is 

2 2 
- - +  -- - r C A  r cm- 

2 42 2z2 
L ,  = 2 

22 22 
czr cr  1 - - + -  

(A.8a) 

(A.8b) 
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For small r L ,  becomes 

C 2  Defining al as 4 - 1 and inserting Eq. (A&) into the equation for p l ( r )  produces 

(A&) 

The integral in Eq. (A.9) has the value of d2 [Gradshteyn and Ryzhik]. However, for 

consistency, Laplace transforms may be used to obtain this value. The following property 

of Laplace transforms, 

produces is employed. Lettingflt) = sin(t) and F(s) = ___ 
1 

1 + S  

Now taking the limit as s approaches zero gives the desired result: 

(A. 10) 

Inserting this expression into Eq. (A.9) yields the second term for the expansion of the 

scalar flux from a point source at small r: 

(A. 11) 

The next term in the expansion is obtained in a similar fashion. Let 
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Introducing the integral forms of the above terms and combining the integrals yields 

Again manipulating the term in square brackets and using the first two terms in the 

expansion of the inverse tangent as above produces 
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(A. 12) 

(A. 13) 

To obtain the next term, the denominator is expanded in its Taylor series and the numerator 

is simplified (with terms of 3 and greater neglected) as 

Inserting the definition for a1 and rearranging terms yields 

(A. 14b) 

(A. 14c) 

When Eq. (A. 14c) is placed into the equation for p2(r) and the individual integrals are 

evaluated the first two terms in 4 cancel, as do the third and fourth terms. When the 

remaining two terms are placed in the integral there results 

p2(r) =a[- 1 cn + c2z3] - J ; ~ ~  sin(z) 
8 z2 

(A. 15) 
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Again, the integral in Eq. (A.15) does not have a finite value. However, recall that this 

expression is the result of a limit as r approaches zero, and the manner in which it diverges 

may be determined via Laplace transform methods. Lettingf(t) = sin(t)/t and F(s)  = 

tan-'( Us) in Eq. (A. 10) produces 

Now taking the limit as s approaches zero gives 

which can be evaluated as 

sin(t) Jo dt 7 :: I + lim ln(s'> = 1 - lim In($') = - ~rm In(sl> . 
s'+m S'+O S'+O 

Recognizing this logarithmic singularity, Eq. (A. 15) can be rewritten as 

(A. 16) 

(A. 17) 

Successively performing this analysis yields an infinite series of constant terms. 

Thus, for an isotropic point source in an infinite medium, the scalar flux near the source is 

given by 

(A. 18) 
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A.2. The Scalar Flux at Small r for an IsotroDic Planar Source in an Infinite Medium 

It was shown that the scalar flux from a plane source in an infinite medium could be 

expressed as 

(A. 19a) 

or upon using the integrated form of a point source solution after a change of variable and 

contour in the complex plane can also be written as [Case, DeHoffmann, and Placzek] 

where 

2 - 1  
g(c,pu> -= [ (1 - cptanh-'p)2 + ( g c p )  ] , 

and ko satisfies the dispersion relation 

C I - - tanh-'(ko) = o . 
k0 

Subtracting and adding 1 inside the integrand yields 

By applying the following infinite series expansions for the exponentials and the 

exponential integral in the above equation 

(A.19b) 

(A. 19c) 

(A.19d) 

(A. 19e) 

(A.20) 
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the expansion for the scalar flux from a planar source near the source is obtained by 

truncating the resultant infinite series at an appropriate point. The result is [Case, 

DeHoffmann, and Placzek] 

’[- y +  T - , ( c )  + L3]+<1 2 - $)+O(z2)  , (A.21a) = - 5 lnz+T 
ko dc 

where 

and the fact that 

(A.21b) 

(A.21~) 

has been used [Case, DeHoffmann, and Placzek]. Clearly, as the source plane is 

approached, the terms containing powers of z become exceedingly small and the remaining 

asymptotic scalar flux is given by a logarithm plus a constant term. 

A.3. The Scalar Flux at Small r for an IsotroDic Line Source in an Infinite Medium 

The scalar flux from an isotropic line is 

which may also be written as 

(A. 22 a) 

(A.22b) 
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nr For small r, the functionf ; may be approximated by z, which leaves for the 

approximate scalar flux 

0 

( A. 23 a) 

The above integra! has a value of 1, which can be obtained from Laplace transform 

arguments as 

I,”. e-s‘Jo(at) = 1 
(s2 +,y ’ 

(A.23b) 

or upon taking the limit as s approaches zero the value of the above integral is obtained. 

Thus, near the source, the scalar flux from an isotropic line source is 

Defining p l ( r )  as 

(A.23~) 

1 
Pl(r) = $line(r) - & 3 

and inserting the expression for $ljm(r) yields 

(A.24a) 

(A.24b) 

The term in brackets may be shown to be 

so that 

(A.25) 
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Using the formula for Laplace transforms divided by t as done previously, it is seen that the 

above integral is logarithmically singular. Thus, 

which gives for the approximate flux 

(A.26) 

(A.27) 

Continuing the singularity subtraction and limiting process results in a series of constants. 

Therefore, the asymptotic scalar flux near in an infinite line source in an infinite medium is 

A.4. The Scalar Flux at Small r for Sources Derived from the 

Isotropic Point Source Solution in an Infinite Medium 

(A.28) 

Because the isotropic point source in an infinite medium is one of the most basic 

problems in transport theory, other sources can be constructed by integrating the point 

source solution over a line, surface, or volume. In this section, the scalar flux near the 

sources which are derived from the isotropic point source, the finite line source, the finite 

disk source, and the rectangular source, will be approximated. 

A.4.1. The Scalar Flux at Small r for an Isotropic Finite Line Source. 

In a fashion similar to that above, the approximate form of the scalar flux near a 

finite isotropic line source is obtained by integrating the asymptotic form of the isotropic 

point source solution as 
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which becomes 

where 

I, = J“ du 
r2  t (z - u y  

’ 
-zo 

du 

du h [ r 2  + (z - u)’] . 
= lp, 

(A.29) 

(A.30a) 

(A.30b) 

(A.30~)  

(A. 30d) 

All three integrals may be evaluated analytically to give for the approximate scalar flux near 

the finite line source 

( r 2  + (z-zo)2)1’2 + zo  - 2 

( r2  + (z+zo)2)1’2 - zo-z 
2-zo - a 1 2  ln[r2 + (z-z0)*] + a. In 

A.4.2. The Scalar Flux at Small r for an Isotropic Disk Source. 

As with the Green’s function and the finite line source, the approximate form of the 

scalar flux near a finite isotropic disk source is obtained by integrating the asymptotic form 

of the isotropic point source solution over the source disk as 
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(A.32) 

where 

the isotropic point source yields the usual 

= 2 + z2 + u2 - 2pucosB. Inserting the expression for the asymptotic flux from 

where 

(A. 33a) 

(A. 3 3 b) 

d u  u (A.33~) I2 = lnde 6 [r2  + z 2  + u 2 2  R o  - 2puRoc0s8]"~ ' 

I3=J:'d6j; du ln[r2 + z2  + u 2 R i -  2puRocos6] . (A.3 3d) 

The first integral may be analytically evaluated (see Sec. 3.B) and the last two may be 

partially evaluated. In the terms of Sec. 3.B, I ,  = ezIg2JRi, I2 = e"lZ/Ri (which has the e 
integral analytically evaluated), and the 6 integral may also be evaluated for I3 by noting 

J:%e ln(a - bcose) = 2~ 1 

Combining all the terms results in the following expression for the approximate scalar flux 

near a finite isotropic disk source: 
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where p = r2 + z2 + u2R; + [ ( r 2  + z 2  + u 2 R i ) 2  - ( 2puR0)‘] ‘‘‘ 

A.4.3. The Scalar Flux at Small r for an Isotropic Rectangular Source. 

The approximate form of the scalar flux near an isotropic rectangular source is 

obtained by integrating the asymptotic form of the isotropic point source solution over the 

source area as 

(A.35) 

-% J 

where e = (x - x’ )~  + ( y  - Y ’ ) ~  + z2. Inserting the expression for the asymptotic flux from 

the isotropic point source again yields 

where 

(A. 3 6a) 

(A. 36b) 

(A.36~) dv 
z2 = [ [(x + a. - 2aou)*  + (y + bo - 2 b o ~ ) ~  + z2]1’2 ’ 

0 

Z3 = J f d u  dv In[(x + a. - 2aOu)2  + ( y  + bo - 2bov)2  + z 2 ]  . (A.36d) 

In all three integrals the v integral may be evaluated analytically; the first two are given in 

Sec. 3.C where it is also seen that I ,  = Zg2z and I2 = It. The integral over the logarithm is 
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7 
evaluated by making the change of variable s = (j + bo - 2bov)/p where p -  = (x + a. - 

2aOu)2 + z2 to give 

where q+ = (y + bo)/p and q- = (y - bo)/p. Integrating this expression over u will yield the 

third term Z3. 
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APPENDIX B: MULTIPLE COLLISION ANALYSIS 

The basic kernel that appears throughout infinite medium transport theory in the 

Fourier inversion integrals is 

(B. la) 

where L(k) = 7 tan-’k. Noting thatfik) has the form ( I  - x)-’ and cL(k) 5 1 (equality 

occurs only for a conservative system, c = 1, and k = 0), it may be restated as a Taylor 

series as 

f ( k )  = 1 + cL(k) + [cL(k)]2 + [cL(k)]3 + . . . = C [ c L ( k ) ] ”  , (B.lb) 
n=O 

where the term cnLL(k) is denoted upon inversion as the “n-th collided flux.” Thus the 

inversion of the first term [I]  is the uncollided flux, or the flux of those particles which 

have suffered zero collisions, the second term [cL(k)] is the first collided flux, or the flux 

of those particles which have suffered one collision, etc. The sum of each collided flux 

will equal the total flux, the kernel of which is appropriately seen in Eq. (B. lb). With this 

Taylor expansion, it is possible to determine both the scalar flux from particles that have 

had n collisions and the scalar flux from all the remaining sets of collided fluxes. 

Invariably, it is necessary (due to mathematical singularities) to extract the 

uncollided flux before evaluating the inversion integral(s). When this is done, the 

remaining flux is the collided flux, or those particles which have suffered at least one 

collision. In general, it is desirable to define the “N-th+ collided flux” which is the scalar 
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flux from those particles which have suffered at least X collisions. This is determined by 

subtracting the kernels of the collided fluxes up to N -  1 from the total flux kernel as 

or 

- 1 - cL(k) - . . . - P-'LN-'(k) . fitk) = 1 - c L ( k )  
1 

Placing all terms in the numerator with the appropriate common denominator yields 

(B.2a) 

(B.2b) 

1 $1 1 - [l - cqk)]  - cyk)[l - cqk)] . . . - f? L (k)[l - cL(kll 
f d k )  = 1 - c L ( k )  7 

which is immediately seen to be 

(B.3a) 

cNLN(k) fitk) = 1 - c L ( k )  (B.3b) 

Recalling that when the uncollided flux is extracted, the remaining flux of collided particles 

has the kernel 

which agrees with the above analysis for N = 1. Thus, it is possible to evaluate the scalar 

flux from particles which have had only n collisions by replacing the standard kernel [Eq. 

(B.la)] with PLn(k) and it is possible to evaluate the scalar flux from particles which have 

had at least Ncollisions by replacing the standard kernel with cNLN( k )  
- cL(k ) .  
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APPENDIX C: THE TRANSFORMED CURRENT AT THE SURFACE 

The transformed current at the surface for the searchlight problem is obtained in the 

same way as the transformed scalar flux. Integral transport theory, the formation of a 

kernel, and the pseudo problem are all used in the derivation. 

The transformed current is defined as 

J ( z ; s )  = d i t  ,LL Y ( z , ~ $ )  , 4n 

which can be decomposed into regions of positive and negative p so that 

(C.2a) 

Inserting the appropriate expressions for the transformed angular flux in the above equation 

leaves 

(C.2b) 

The Q integrals may be evaluated by inserting the form of U to give 

The kernel of the integrals in Eq. (C.2b) is now defined as 
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Using methods similar to those found in Ch. 4, ths  kernel may be reformulated as 

-z( 1 .kZp2)”2/p L(z)  = ji dp e 

Thus, Bq. (C.2b) is seen to be 

J ( z ;Z )  = e -dU 0 - S ( k )  + + i j :d z ‘  sgn(z - z’)  F(z ’ ;x )  L( lz  - 2’1) . 

Applying the same mathematical analysis to the pseudo transport equation 

yields a similar expression for the pseudo transformed current at the surface: 

dz;p*) = p*a(p*)  e-d5* + $ j r d z ’  sgn(z - z ’ )  ?(z ’ ;p*)  L(lz - z‘l) 

where 

(C.4a) 

(C.4b) 

(C.6a) 

(C.6b) 

The equivalence relation between the pseudo current and the actual current is obtained by 

multiplying Eq. (C.6a) by s(2) (de*/dp*) s(<* - Uo) and integrating over p* to give 

f i z ; z )  =s(z)U&b4Uo)] e-duo + dz‘ sgn(z - z’)  T(z‘;Z) L( iz  - z‘l)  , (C.7a) - 

where 

(C.7b) 

which upon substitution of the initial definition of dz;p*) yields 

(C.7c) 
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Substitution of the integral term in Eq. (C.7a) into Eq. (C.5) gives the transformed current 

as 

?(z;ki) = e-dUO $ k i )  ( p o  - u ~ ~ [ , . L ( u ~ ) I  1 + 2 z ; d )  . 
Letting z = 0 gives the transformed current at the surface of the half-space: 

7(0;Z) = S(Z) { p, - Uob[p( U,)] } + 20;ki) . (C.9a) 

is evaluated as (with the interchange of integrals and separation of the p integral into - 
positive and negative portions) 

It is now recalled that &O,p;p*) = QO 6@ - p*)  and 

&O,-P&*) = 2 &H(j';k)H({;k)  5 + { *  , 

which leaves for 3O;g) 

Combining Eqs. (C.9a) and (C.9c) yields 

(C. 10) 

which is the final form of the transformed current at the surface of the half-space. 
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APPENDIX D: H-FUNCTION FACTORIZATION FOR A COMPLEX ARGUMENT 

It is desirable to obtain some analytical expression to whch an evaluation of an H- 

function with a complex argument may be compared. This is done by deriving a type of 

dispersion relation to provide the analytical expression desired and using the standard 

factorization of the H-function as seen in Eusbridge and Chandrasekhar to obtain the 

numerically evaluated expression. 

D. 1. H-function Calculus: Derivation of the Disuersion Relation 

The H-function is given by the non-linear integral equation 

(D. la) 

where 5 may be complex and H(6;k) is analytic in the entire complex 5 plane cut from 

-( 1 + k2)-1'2 to 0. Eq. (D.la) may be rewritten as 

(D. lb) 

The methods of Chandrasekhar and Busbridge will be followed in this analysis. Eq. 

(D. lb) is multiplied by the inverse of the right hand side and then multiplied by a similar 

factor to give (with a change in integration variable and letting 6 = z )  
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dv 

With the following definition 

Eq. (D.2a) becomes 

(D.2a) 

where the regions of analyticity for H(z;k) and A(z;k) are shown in Fig. D. 1. 

Fig. D. 1. Regions of analyticity for H(z;k) and A(.&) in the complex plane. 

It is desirable to obtain a simpler expression for A(z;k). Performing the indicated 

multiplication in Eq. (D.3) produces 
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Using the following definition 

and noting that 

2 U V 
( z  + u>(z  - v )  = ( z  + u ) ( u  + v )  + ( z  - v ) ( u  + v )  

yields 

( 1 + k2)-1/2 du ( 1  +k2)-l12 dv ” = i o  ( 1 - k u )  2 2 112 2 2 1 / 2 x  lo ( 1 - k v )  

1 U V + 
[(I + u) (u  + v )  ( z  - v ) ( u  + v )  ’ x :H(u;k)H(v;k) 

(D.6a) 

(D.6b) 

or 

Upon recollection that 

J1 becomes 
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Inserting this expression into Eq. (D.5) and canceling like terms yields 

dv 
2 2 112 . ( Z  - v ) ( l  - k v ) 

Making the changes of variable u = (sin@)/k and v = (sin#)/k in the above integrals 

produces 

(D.8a) 

(D.8b) 

. The integrals in Eq. (D.8b) may be evaluated using 1 k  
(1 + k2)’I2 

where p = sin- 

[Abramowitz and Stegun] 

a tan(z/2) + b - ( b2 - a2)”’] 
, b2 > a 2  . 2 112 

1 - Ja +dbzsinz - a tan(z/2) + b + (b2 - a ) 

Thus in Eq. (D.8b) a = zk and b = +1. Evaluating the integrals in Eq. (D.8b) with the 

limits [ O p ]  yields (after some simplification) 

Noting that tan@/2) = k[ 1 + ( 1 + k2)lt2]-l, inserting this into Eq. (D.9), collecting like 

terms, and factoring out the term [ 1 + ( 1 + k ) 
A(z;k): 

2 112 ] leads to the final expression for 
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(D. 10) 

Note that in the limit as k approaches zero, A approaches the standard dispersion relation 

given in Chandrasekhar and Busbridge: 

(0.11) 

D.2. H-function Calculus: Factorization 

With the dispersion relation above, the H-function may now be factored and related 

to this dispersion relation. From Eq. (D. lb) 

Letting z + -2 and u + v 

(D.12a) 

(D. 12b) 

Multiplying the left hand side of Eq. (D.12a) by the left hand side of Eq. (D.12b) gives 

doing the same for the right hand sides of Eqs. (D. 12) gives 

X 
du ( l+k2)-'/* d v  

(1 - k2u2)''2/o (1 - k 2 v 2 ) 112 

(D. 13b) 
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which is also ?.I1. Using Eqs. (D.5) and (D.6a) 

%J = A(z;k)  - 1 + 2 1  

Inserting Eqs. (D. 12) into the above expression yields 

or 

(D. 14) 1 1 2J1 = N z ; k )  + 1 - H(z;k)- H(-z;k) * 

Thus, upon equating Eqs. (D. 13a) and (D. 14) there results the expected formula for the H- 

function factorization: 

(D. 15) 

Eq. (D. 15) provides an excellent check for determining whether or not the 

algorithm which calculates the H-function with a complex argument is accurate. The 

algorithm would calculate the H-functions on the left hand side of Eq. (D. 15), and the 

results may be compared to the analytical expression on the right hand side as given by Eq. 

(D. 10). Note however that this comparison may not be done on the real axis from -( 1 + 
l?)-1’2 to (1 + as the analytical expression is singular in this region. 
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APPENDIX E: THE INVERSION FOR THE SURFACE 

SCALAR FLUX IN (k,,k,) SPACE 

In order to provide some check on the numerical results of the double Fourier 

inversion for the seachlight problem, an alternative inversion method is considered. A 

transformation of coordinate systems is performed which provides an analytical expression 

for the scalar flux using a different inversion. 

As in Ch. 6, the Jacobian matrix may be formed for the transformed polar 

(k,y) and Cartesian (kx,ky) coordinate systems. The ultimate result of such a 

transformation on Eq. (7.60) is 

and 

Again separating the H-function into real and imaginary parts as in Eqs. (7.57) and 

making the change of variable 5' = p = sin(ae)/k, (a = tan-lk) yields 

X - + 1 = HR(t;k) + i HdS;k) , 1 H(6;k) = - - 
* - i Y  x 2 + y  x + y  

where HR({;k), Hh$;k) E % and 

(E.2) 

(E.3a) 

(E.3b) 
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Examination of Eqs. (E.2) and (E.3) will show that the real part of the H-function 

is even with respect to both k, and k, while the imaginary part of the H-function is 

even with respect to ky and odd with respect to k,. A fair amount of algebra will 

show that by using evedodd arguments the integral for the imaginary part of the 

scalar flux is seen to vanish (as it must) and the remaining terms combine to provide 

the surface scalar flux as 

+ sin(kg)cos(k,y)HI( U,;k,,k,)} . 

The numerical methods used to evaluate this double integral are the same as those 

presented in Ch. 6.  Note that an iterative evaluation of the H-function is required in 

the integrand, making this a very inefficient means of evaluating the scalar flux as 

(E.3c) 

(E.4) 

compared to the inversion in transformed cylindrical coordinates. 
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APPENDIX F: THE LAPLACE TRANSFORM INVERSION 

FOR A COMPLEX FUNCTIONf(t) 

It is shown in Ch. 7 that the Laplace transform inversion for a general (possible 

complex) functionfir) is given by 

f(f)=gjr dw [eior F(y+ i w )  + e-'@'F(y- i w ) ]  . (F.1) 

Expanding the exponentials into sines and cosines and collecting terms yields 

f ( t )=dJwdwcos(or)  2n 0 [ F ( y +  io) + F ( y -  io)]+ 

. ev  O0 +,,Io dw sin(wt) [ F ( y +  iw) - F ( y -  iw)] . 

Defining the second term as 

Z2 = gj: do sin( or) [F( y + io) - F (  y - iw)] , (F.3a) 

the sine is then converted back into complex exponentials and the terms are rearranged to 

give 

Z2 = zf(t) 1 -&Io ev - d o  [evior F (  y + io) + eiW' F ( y  - io)] . (F.3b) 
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Replacing the second term in Eq. (F.2) with this modified term and simplifying yields 

f(t) dw cos(ot) [ F ( r  + i ~ )  + F ( 7 -  io)] - 
E O  

Considering the second integral as 

= 1; dw F ( y  4. iw) + eior F (  y - iw)] = 

=I," dw F ( y +  iw) + do eiw' F ( y -  io)) , K 
the change of variable w' = -w in the second integral is made to give for 

12a = J dw e-'@' F ( y  + iw) 
--oo 

(F.5a) 

(c..5b) 

Determining the value of I ,  is made possible by recalling the form of the inverse Laplace 

transform itself: 

f(t) = j rn  dw eiwt F(  y + io) 21c -00 

In order to obtain Eq. (F.6), the change of variable s = y+ iw (or o = (s - $/i) was made. 

This can be thought of as two changes of variable: w' = s - yand o = (-i)w'. In the 

original s frame, the Bromwich contour is such that all the singularities of F(s) lie to the left 

of the contour. The first change of variable has the effect of shifting the Bromwich contour 

so that it lies along the imaginary axis in the w' frame. Now all singularities lie in the plane 

such that their real component is negative. The second change of variable rotates the points 

in the w' frame -90" so that the contour lies on the real axis of the w frame and all 

singularities lie in the upper half plane. These transformations are shown in Fig. F. 1. The 
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exponential in the integrand (eiwt) and the fact that t > 0 requires that the contour be closed 

in the upper half w plane for a convergent integral. This is expected as all the poles lie in 

this region and the original contour in the s plane was closed to the left. If the contour were 

closed in the lower half plane, as would be required if the exponential term was e-'w, the 

value of the closed contour integral would be zero. The integral in Eq. (F.5b) is the real 

line contour of the contour closed in the lower half plane and is therefore zero. Therefore, 

since IZa = 0, the Laplace transform inversion is given by 

At) =?lm d w  cos(&) [ F ( y  + iw) + F ( y -  iw)] . 
I C 0  

(F.7) 

Imw" X ImS Imw' 
x x  

i x  X X 

X X 

1). 1 L  X 
" " L 

n Res K n Reo' c Rem" 
c) 

x x  x y  
X 

Fig. F.1. 

O ' = S - - y  oll = o'/i 

Changes of variable to place Bromwich contour onto the real axis. 
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