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1. Introduction 

In sections 2-4 we present the fundamental mathematical model and the 

important features we have discovered during the last three years. The model 

presented in section 2 is typical of the set of equations studied by 

researchers in the past. However, a novel approach is taken here by the 

introduction of a stream function for the total mass flux. This is done 
because the differences and similarities between the one-dimensional and 

two-dimensional models emerge very clearly in this setting. The mathematical 

model is a quasilinear hyperbolic-elliptic system of partial differential 

equations. In one dimension the hyperbolic and elliptic parts decouple and 

in two dimensions they do not. As shocks and free boundaries are expected to 

play an important part, we also develop the jump conditions for the model in 

section 2. 

Due to the difficulties in studying such a complicated model, it is 

natural to try to find simple sub-models. In our one-dimensional analysis, 

the kinematic model which omits particle inertia and particle phase pressure 

as well as fluid inertia played such a role. However, in two-dimensions it 
is easy to show that the kinematic model does not allow for variations in 

particle concentrations in the horizontal direction nor for slip between the 

horizontal velocity component of the gas phase and particle phase. Unlike 

the one-dimensional case, it appears that particle inertia plays an 

important role in non-trivial solutions of the two-dimensional equations. 

This leads to a consideration of travelling wave solutions of the full 

equations which we regard as the model for slugs and bubbles. Section 3 

discusses the restriction of the model to travelling Waves, reviews some of 

our past work on one-dimensional Waves, and outlines our own bubble theory. 
This bubble theory arose from our formulation of the problem in section 2 

and our experience with the one-dimensional wave. 

During the 1991-92 academic year we provided salary support for a 

graduate student in mechanical engineering at West Virginia University. 

Using university equipment he is building a (one-dimensional) slugging 

fluidized bed. He is studying it using a high speed camera and computer 

analysis of the data. We intend to continue this support and ultimately 

compare our theory to this data. 
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2. The Mathematical Model 

We use a continuum approach for both the particle phase and the gas 

phase. The derivation of these equations is found in Drew (1983). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

- aa + V.(av 1 = 0 
at P 

a(l-a) + v. (1-a)v = 0 
at 4 

0 = -(l-a)Vp - B(v -vP) 
9 9 

Equations (2.11, (2.2) are the continuity equations for each phase and 

(2.31, (2.41 are the momentum balances. The concentration of particles by 

v are the velocities in the particle and gas volume is denoted by a; 

phases; p,, p are the actual densities of the particles and gas; g is the 

>> pg, the acceleration due to gravity; B is the drag coefficient. Since p 

inertia of the gas is neglected in (2.4) leaving Darcy's law. 

As in Needham and Merkin (19831, Fanucci et a1 (1979, 19811, and Liu 
(1982, 19831, we are using a linear drag law, primarily because of its 

simplicity. The use of more realistic drag laws such as those used by 

Foscolo and Gibilaro (1987) is not expected to affect the qualitative 

behaviour of solutions. Our numerical work on a one-dimensional model 

supports this view. In our numerical calculations, we take (see Needham and 

Merkin 1983) 

vP' Q 

9 

P 

where ns4 and v is the terminal velocity of an isolated particle. 
t 

The difference between the pressures in the two phases is modelled as 

It is usually assumed that F'(a)>O. For example, in Needham and Merkin 

(19831, Liu (1982, 19831, and Homsy et a1 (29801, F' is assumed to be a 

positive constant and in Fanucci et a1 (1979, 19811, F' exhibits rapid 

growth for larger particle concentrations. In this last choice for F', the 
physically motivated properties are that F' is small for small a and becomes 



infinite as a approaches a packing concentration a C1. These are essentially 

the properties of an incompressible model. 
P 

The continuity equations are manipulated in the following manner: 

Adding (2.1) and (2.2) implies that the vector field av +(l-a)v is 

divergence-free. Since we will study at most problems with spatial 

variations in the vertical direction (z-axis) and the horizontal direction 

P Q 

(x-axis) this constraint on av +(l-a)v can be satisfied by the introduction 

of a stream function # ( x , z )  with the following properties: 
P 9 

(2.5) 

( 2 . 6 )  

av +(l-a)vgx - - a# az 
PX 

The subscripts x and z denote to the first and second components of the 
velocity vectors respectively. Equations (2.5) and (2.6) can then be used to 

eliminate v and v from the problem. In particular, (2.3) becomes in 

component form (after using ( 2 . 4 )  to eliminate Vp 1 
gx gz 

9 

2 

Assuming - - - a - pg in (2.4) yields an equation for # given by 

B(a)  It is clear that this is an elliptic equation for 9. m' where C(a) = - 
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Since G(O)=O, the equation is singular at a=O. In the one-dimensional 

analysis (v H 0, - 01, $ must satisfy Laplace’s equation even where 

a=O. For two space dimensions the original model only implies that Vp=O and 

the behaviour of the gas is unknown (in one-dimension it must flow along the 

one streamline - the tube). In our present analytical and numerical work we 

are assuming that the flow of gas is irrotational and that (I satisfies 

Laplace’s equation when a=O. 

a ( + )  
PX ax 

The dependent variables we study are a, v v and (I with equations 

(2.71, (2.81, (2.91, and (2.1). The pressure gradient and the velocity of 

the gas can be found from (2.41, (2.51, and (2.61. 

px’ pz’ 

The boundary conditions on $j and v can be easily found from 12.5) and 

(2 .6) .  The horizontal velocity of both phases at the vertical walls located 

at x=fa is zero and, therefore, E O  and v =O at x=fa. Since our model 

contains no viscosity, we allow for slip at the walls. At the distributor 

plate (z=O) we assume that v =O and the volumetric flux of gas (volume per 

unit area per unit time) in the vertical direction equals a constant j, the 

flux of gas entering the distributor plate: 

P 

az PX 

PZ 

- 9 = j = (l-a~v at z=o. 
ax 92 

The same condition is imposed at the top of the bed. The boundary conditions 

on $j can obviously be integrated, eliminating an arbitrary constant in the 

solution for (I. This result is illustrated in Figure 1. 

z 
A 

#=-j(x+a), v =O 
PZ 

#=o t,h =-2aj 
v =o v =o 
PX PX 

> x  
-a 0 a 

6 

(I =-j(x+a), v =O 
PZ 

Figure 1 



A reason for the introduction of the stream function is to cast the 

problem in such a way that our one-dimensional analysis can be easily seen 
as a special case and to make generalizations to two-dimensions more likely. 

In a one-dimensional analysis we have a=a(z,t), v =v (z,t), and v EO. 
Consequently, from (2.71, we must have This means that (2.9) reduces 

P= PZ PX 

az 
to Laplace's equation for Ji and, therefore, Ji = -j(x+al. In one space 

dimension the equation for Ji does not depend an v or a and can be solved 

independently of these fields. 
P 

T 

Figure 2 

To complete the description of the mathematical problem we list the 

jump conditions. Let f denote the two sides of the jump and n the unit 

vector at the jump pointing into the + region. The velocity of the jump is 
v and T is a unit tangent vector (see Figure 2). The jump conditions are 

calculated in the usual way from the integral form of the balance 

laws. Conservation of mass of particles gives 

S 

(2.10) a+(v+ - v S 1.n = a-(vp - v S 1.n 
P 

and conservation of mass of the total flux av +(l-a)v gives 
P Q 

which can be expressed in terms of Ji as 

(2.11) V$+.T = VJi'.T. 

From conservation of momentum of the particles we have 
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and, from conservation of momentum of the gas 

or, in terms of a, v , and @, 
P 

(2.13) 

Actually, (2.13) says that the change in pressure along the 

discontinuity is the same on both sides; Vp+.T=Vp-.T. A special case is a 

bubble where a's0 and consequently no particles enter the bubble. Then 

(2.12) reduces to F(a+)=F(a-). We assume F(a+)=O. If F>O for O<a<a then 

a-=O and there is no jump in particle concentration at the bubble surface. 

On the other hand, if F(a)=O for a>O, say, as in the incompressible case 

where F(a)=O for OsaCa , then a jump in a is possible. Obviously a nonzero F 
provides the mechanism for a smooth transition in particle concentration at 

the bubble sui.face. 

P 

P 

At the surface of a bubble in the case when F(a)=O near a=O (2.13) 

reduces to 

(2.14) 
a@- =: - v - .T 

P an 

since G(a+=O)=O and G(a-)*O. An alternative form of (2.14) can be found by 

w- eliminating an using (2.7) and (2.8) to give 

dV- * 
(2.15) d - a  th-t at - at _. 

.T = -8.T. dt 
VPX a ax + vpz k-) 

This can be found directly from (2.3) and (2.4) since Vp =O inside a bubble 

and consequently in the incompressible case the only force acting on the 

particle in the tangential direction at the bubble surface is gravity. In 
the special case of a bubble moving with speed s=uB, (2.15) can be 

manipulated to give the differential relationship 

Q 
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where z’=z-uBt is the coordinate moving with the bubble (see section 3.1). 
Physical and mathematical arguments imply that (2.14) and (2.15) would also 

hold in the case F(a)>O if F(a) vanishes fast enough as a approaches zero. 

The problem for a, v v and is a two-dimensional quasilinear 

hyperbolic-elliptic coupled system. At present there are no analytic results 

available for the study of this system. However, there has been work done on 

similar hyperbolic-parabolic coupled systems by Li (1987, 1988b). 

px’ pz’ 

3. Travelling Waves in One and Two Space Dimensions 

In this section the equations describing a travelling wave moving at a 

constant speed in the vertical direction are developed. This is done 

assuming variations in two space dimensions. We continue to seek 

formulations that allow the results of our one-dimensional work to assist in 
the two-dimensional analysis. One such formulation permits us to find (or 

approximate) the momentum av as a function of position and then to 

calculate a and v . Although not perfectly suited to this plan, the equation 
for evolution of momentum vorticity derived in section 3.1 allows us to make 
some progress. The Bernoulli equation conceived by (2.7) and (2.8) also 

derived in section 3.1 is the equation that then gives a as a function of 

position. This strategy works perfectly in one-dimension and gives us the 

opportunity in section 3.2 to demonstrate this approach and review our 

results of the last three years. Section 3.3 discusses our current and 

proposed research into the stability of the one-dimensional travelling wave. 

In section 3.4 we outline our bubble theory which is an extension to two 

space variables of the strategy used in section 3.2. 

P 

P 

3.1 The equations for a travelling wave. 

Let z’=z-st, x’=x, v‘ =v -s,  and v‘ =v denote the variables for a 
travelling wave moving at speed s in the vertical direction. We now look for 

solutions which are functions of x’ and z‘ and independent of t directly. 
Equation (2.11 becomes 

PZ PZ PX PX 
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(3.1.1) 

As will be shown, a natural generalization of the one-dimensional analysis 

is to calculate the Bernoulli equation corresponding to (2.7) and (2.8). In 

travelling wave variables these equations can be rewritten as 

1 av'.vv' = -V;VF - ag - - 
P P  PpVPg 

since (3.1.1) holds. We have temporarily replaced the drag term with Vp for 

simplicity of notation. Since 
g 

1 
V'.vV' = v. -IV'l2 - V' A C W l  V' 
P Q  2 P  P P 

the above equation becomes 

where 

To remove the quantity v' A curl v', the dot product of the above equation 

with dr z is calculated, where r is the position vector for a particle 
P P 

streamline and Q is the arclength: 

(3.1.2) 

dr dr (v' A curl v'1.z vanishes since - is parallel to v'. 
In the one-dimensional analysis (= = 0, v' 

P 

PX 

da a(*) P P 
= 0) equation (3.1.11 

implies that av' = c = constant. In this case there is only one streamline 
and it is in the vertical direction. (= = a constant unit vector in the dr PZ 

vertical direction. ) Using v' = c/u, (3.1.2) shows how a varies with z'=d. 
PZ 

In the general two-dimensional case this simple relationship between 

the velocity field and particle concentration does not exist. However, a 

relationship does exist which can be studied by finding how the vorticity of 

10 



the momentum field 

evolves. This equation can be found using the standard arguments applied to 

an inviscid fluid with variable density (see Yih 1979 page 62). The usual 

vorticity equation found involves the vorticity of the velocity field 

but it is easy to convert the result to momentum vorticity. This result is 

best stated in terms of a stream function # which automatically solves 

(3.1.1): 
P 

a+P - av' az l -  PX 

The equation for momentum vorticity is 

(3.1.3) 

that at d = v' a + v' 
px ax' 

In the calculation of the travelling wave the distributor plate is not 

present and the bed extends to infinity in all directions where it is 

uniformly fluidized with particle concentrations ao. The boundary conditions 

for q9 come from av' =-as and av' =O at infinity and (2.10) at 

discontinuities. For example, in the case of a two-dimensional bubble 

av' . n=O at the surf ace. 

P PZ 0 PX 

P 
The relationship between # and its form in the travelling wave 

variables is 9 = ##-sx which can be deduced from (2.5) and (2.6). It is easy 

11 



to calculate the new problem for @' in terms of travelling wave variables. 

In (2.91, (2.111, and (2.13)-(2.15) primes are inserted and, in Figure 1, j 
is replaced by 3-s. The dependent variables in the travelling wave problem 

are @', @p, and a. 

3.2 One-dimensional travelling waves. 

We now review the main analytical work completed by our group on the 

one-dimensional waves as well as describing the direction of our current 

research on their stability. 

= 0 and - a(') - - 0. Equation (3.1.3) 
reduces to terms involving only the Laplacian of c(r . The obvious solution 
satisfying the boundary conditions is @ = asx + arbitrary constant, giving 

the expected result 

In the one-dimensional analysis v' 
P X  ax' 

P 

P 0 

(3.2.1) 

The solution for $ in one space dimension has already been given and, in 

terms of *', it is 

(3.2.2) 

For the one-dimensional analysis it is not important whether we recognize 
the boundaries at x=+a or not. This obviously becomes important in two space 
di mens ions . 

It remains to determine how a varies with Q=Z' using (3.1.2). Vp can 

be eliminated again in favour of v' - v' using (2.4) and these velocities 

can be put in terms of a using (2.51, (2.61, (3.2. I), and (3.2.2). After 

some manipulation, this gives 

Q 

92 PZ 

(3.2.3) 2 2  - H(a) (c -vta%'(a)) g, = H(a) + aJ - c - as 
a3g 

which is equation (6) in the paper by Ganser and Lightbourne (1991). H(a) is 
a more convenient function for analyzing the kinematics of the problem. It 
is defined on page 1340 with graph shown in Fig. 1 of the paper. 

The analysis of (3.2.3) is presented in section 4 of that paper. We now 

summarize those results. Equation (3.2.3) describes a transition in a from 
al at z'=w to ai at z'=-o3. Control over ai and a6 is through the choice of s 

12 



and c. The relationship between a1 and a’ and the other parameters in the 

problem follow. The most important parameter is the concentration a=a‘ which 

separates (linearly) stable uniformly fluidized states with eau from 

unstable states with a<a‘. For a >au there is an a2<au which depends on a1 

such that smooth transitions from a1 to a; exist as long as a’% and a’<al. 

It can be shown that as al+ au+, a2+ a‘-. The choice of s and c which 

gives a’=a is singular and instead of a(-m)=a we have a(-m)=a3<a2. Choices 

with “;<a2 do not yield simple transitional solutions. 

As discussed in section 4 of Ganser and Lightbourne (19911, the 

transitional solutions from a to a’>a have been known for some time. 

However, the solution from a1 to a3 is new. It also has the important 

property that a family of admissible shocks as shown in Fig. 2 on page 1344 

2 

1 

2 2  2 

2 2  2 

1 2 2  

of the paper exists (here E = z ’ ) .  There are no admissible shocks for 

transitions from a1 to a;>a2. The oscillatory solutions shown in the figure 

clearly are conceived by the unstable nature of the solutions of the 

equations. In the next section we present some of our current work on 

stability of the travelling waves themselves. 

3.3 Investigations into the stability of one-dimensional travelling waves. 

Traditionally, transition solutions connect two stable equilibrium 

states. However, our transition solution connects the stable a1 state to an 

unstable a3 state. Fortunately, an admissible shock exists so that the a3 

state is never attained. Nevertheless, the question of stability is more 

interesting and delicate than in the traditional problem. 
Since we are interested in stability, we must return to the 

one-dimensional version of the original transient equations. This can be 

simplified to equations (2a) and (2b) in the paper by Ganser and Lightbourne 

(1991). One approach taken by our group is to recast the problem in terms of 
a and t as the independent variables and x and av as the dependent 

variables. After considerable calculation this yields an equation for av, 

(3.3.1) 2 2 2 a2(av) + 2wza a2(av) + z2a2 a2(av) 
aaat aa2 

(w -a vtF‘ 1 - 
at2 

where 

13 



a(av) 
aa w = av - a - 

and two equations for x 

(3.3.2) 

(3.3.31 

The compatibility condition for (3.3.21 and (3.3.3) is (3.3.11. 

The equations for the two dependent variables are now decoupled. Once 

(av)(a,t) is known then (3.3.2) and (3.3.3) can be used to find x(a,t). This 
transformation ostensibly requires that the relationships between variables 

is monotonic and the results based on this must be viewed in this light. 

The travelling wave is now the stationary solution of (3.3.1) 

(av)=as+c. To study the linear stability of the wave connecting ai to a we 

look for solutions of the form 
3 

(av) = as + c + u 

where s and c have the same meaning as before. Retaining only linear terms, 

the equation for u is 

(3.3.4) - a2u 
aaat 

2 
2 2 2  o = (c -a v t ~ l  I au + zcza - 

at2 

2 2 2  au -ga (c -a V t ~ l  1 - 2c;] at 
2 

2-2 + 

+ a z  aa2 [ m  
where 

;(a1 has the graph shown in Figure 3. 

14 



Figure 3 

Equation (3.3.41 is put into canonical form by considering u as a function 

of a and 7 where 

(3.3.5) 

y i e 1 di ng 

(3.3.6) 

y = 2 [  t - 3 

4v:F' Z U ~  [ -ga(c2-a2vrF') - - - cz + caz H(a) a o = u  - -  u + -  
aa -2 irir a2;2 Z 

The subscripts a and r denote partial differentiation with respec, to "hose 
variables. The indefinite integral in (3.3.5) must not include a2 as an 

interior point in its interval of definition since ;(a]-' is singular at 

a=a Thus the problem is naturally divided into the two problems al>a>a2 

and a <a<a2. We shall discuss the problem with a3<a<a2. As one might expect, 
this is the domain in which there is growth. Similar calculations for 

a>or>a2 suggest that perturbations decay in this domain. This forms the 

basis for assuming that the perturbations u(a, t) satisfy "(a2, t)BO for t>O 

in our analysis of al<a<a2. 
Although we are unable to find the general solution of (3.3.61 we are 

able to solve a "model" equation obtained by expanding (3.3.6) for a near a2 

giving 

2' 

3 

1 

15 



(3.3.7) u * = o  4ri + 2r2 
p'** 2 

u - -  aa 
(a-a21 ;r ;r (a-a2) ;r 

where 

and 

vt H ( a2 1 
r =  > 0. 
2 ga (s-j-H'(a2)) 

2 

Equat i n (3.3.7) can be classified as a wave equation with :gat ive damping. 

The general solution of (3.3.7) in terms of the original variables a and t 

satisfying u(a2,t)=0 is 

(3.3.8) I u(a, t) = exp[ t/(2r2) 1 f 1 (a2-a) 

where f(O)=O and u(a,t=O)=f(a -a). Note that the behaviour of u as t+ 00 fo r  
a fixed a depends on how fast f goes to zero as a+ ai. If u(a,t=0)=o(a-a2) 

then u+ 0 as t+ co for fixed a. If f does not go to zero fast enough, say 

f(a2-a)=(a2-a) then u(a,t) = exp[t/(4r2)l(a2-a) and u does not decay 

to zero. Note, however, that along the characteristic curve given by 

2 

1/2 1 /2 

<=constant=t-2r lnla -a1 any non-trivial solution of u grows. 
2 2 

A similar situation appears to exist for (3.3.6). A geometrical optics 
approximation to the behaviour of the wave front (which corresponds to the 

behaviour f o r  large time) gives 

U 
3 

where 

c - v t a P  

az 
da 

3 

and f8(a) depends on the coefficients in (3.3.6). Applying this technique to 

(3.3.7) yields (3.3.8). 

16 



The conclusions on growth are identical to those found in the model 

equation. For a fixed position along the travelling wave (a fixed value of 

a )  we expect decay if f goes to zero fast enough as a+ ai. Along the 
characteristic curve <=constant we expect growth. In terms of the travelling 

wave, <=constant corresponds to a position moving down the travelling wave 

towards the equilibrium at a=a3. This behaviour is consistent with the fact 
that the equilibrium at a=a3 is linearly unstable and yet forms a basis for 
considering the travelling wave with the admissible shock as a stable 

ent i ty. 

Another approach taken by our group, which is still in the preliminary 
stage, is to study the original equations directly. Both approaches support 

the conclusion that the travelling wave is stable in the region where ">a2 

and unstable for a<a In the latter case, however, perturbations grow while 

moving down the travelling wave leaving behind the original wave. Numerical 

calculations also support this view. Figure 4 shows perturbations in two 
adjacent transition solutions. The perturbations can be detected beginning 

near a Figure 5 shows a later time and how the shock absorbs the 

perturbations which, left on their own, grow as they approach the 

equilibrium a=a (See section 4 for details of the numerical methods.) 

2' 

2' 

3' 

a 

. . .  
. .  

. .  

.- 

> x  

Figure 4 
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Further study is still necessary, in particular on the stability of the 

shock. The corresponding analysis for the incompressible case leads to an 

equation which can be classified as a backward heat equation. Remarkably we 
have found meaningful stable solutions due to the unusual boundaries and 

singularities in the coefficients of the differential equation. This will be 

investigated further both analytically and numerically. 

We also intend to study the stability of the one-dimensional travelling 

wave as a solution of the two-dimensional equations. This would be an 

important step in the understanding of a two-dimensional bubble. A similar 

analysis by Clift et a1 (1974) was done on a motionless roof of particles 

over a void. Such a situation corresponds to studying the stability of one 

extreme member of our family of travelling waves, i.e. the case where F=O, 

a =a, a3=0, and s=O. O u r  objective is to investigate whether the stability 

is altered when a more realistic basic solution is used. 
1 P  

a 
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3.4 Travelling waves or bubbles in two dimensions. 
The first theoretical work on bubbles in a fluidized bed was done by 

Davidson in 1961. Later work by Jackson (1963) and Murray (1965) 

complemented Davidson’ s approach. We shall first discuss Davidson’s results 

and then introduce our work on bubbles. 
Davidson‘s main assumption is that the particle concentration a is 

constant outside the bubble. Inside the bubble a=O. As is usual in 

incompressible inviscid flow theory the corresponding velocity is then taken 

to be irrotational (see equation (3.1.3)) and hence the particle velocity 

field is in potential flow about the bubble. Davidson assumes the bubble is 

a circle of radius r In terms of our stream function $ with cL-’ao, 

Davidson’s result is (see Figure 6) 
b’ P 

2’ 

T 

(3.4.1) 

(3.4.2) 

(3.4.3) 

Figure 6 

$ = -u a sine(r-rb/r) 2 
P B O  

1 - a v’ = -u a l-r,,/r 2 2  1 
rae-  0 Pr B O  

a$ 2 2  - - = a v‘ = uBaosine(l+rb/r 1. ar 0 Pe 

We have let s=u the speed of the bubble. 
B’ 
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Since a=ao=constant also implies that the gas phase is incompressible 

(see equation ( 2 . 2 ) )  a similar approach to the gas velocity is possible. 

However, Davidson chooses to eliminate v and v from ( 2 . 4 )  using (2.1) and 

(2 .2 )  with a=a resulting in 
P Q 

0 
2 v pg = 0. 

It is easier to solve this problem than the corresponding problem for the 
gas potential since the pressure is known to be constant at the bubble 

surface and the pressure gradient far from the bubble in the uniformly 

fluidized bed can be found from ( 2 . 4 ) .  Knowing the pressure and the particle 

velocity we can then use (2 .4 )  again to find the velocity of the gas: 

( 3 . 4 . 4 )  

(3 .4 .5 )  
2 r 

“0 r 
v’ = [ uB - -1 3 sine + [ 1-06 s + u ] b sine. 

B 98 

Using Davidson’s results many general features of a bubble can be predicted, 

such as the existence of a “cloud” about the bubble rising in the 

laboratory. Collins (1965) showed that particle momentum (which Davidson 

ignored) can be satisfied in the tangential direction although only at the 

apex of the bubble, if 

( 3 . 4 . 6 )  u B 2  =i** 

Since particle momentum ( 3 . 1 . 2 )  is ignored except at the apex, 

discrepancies between Davidson’ s theory and experiment are expected 

especially as one moves away from the bubble apex. Consider, for example, 

what is the expected behaviour of the particle and gas velocities in the 

tangential direction at the bubble surface (v‘ v’ 1 and those predicted by Pe’ g e  
(3 .4 .2 )  through ( 3 . 4 . 5 ) .  Although ( 3 . 4 . 2 ) - ( 3 . 4 . 5 )  give the same value for 
v’ and v‘ (2uBsine) as is necessary for the pressure to remain constant 

along the bubble surface, v’ =v‘ =O at the bottom of the bubble. However, 

particles at the surface are acted upon by only gravity in the tangential 

direction (see equation ( 2 . 1 . 5 ) )  and consequently we expect v‘ =a at 8=n 

where D=2rb is the vertical distance the particles have fallen. Davidson and 
the other researchers realized this and placed no faith in the results in 

PO 9 8  

Pe so 

Pe 
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this region. 

We now present our work on bubbles in two-dimensions which is a 

modified version of Davidson’s theory. Briefly, we assume that the momentum 

av instead of v is in potential flow. With a undetermined but av known, 

we are now in a position to solve (3.1.2) in a manner analogous to the 

one-dimensional analysis. There is no a priori justification f o r  this except 
that it is a natural generalization of the one-dimensional analysis. 

P P P 

We begin by assuming as did Davidson that a=constant in (2.93 and 

(3.13) and that the bubble is a circle. This implies that both #‘ and yi 
P 

satisfy Laplace’s equation. Taking the boundary conditions into 

consideration gives the same problem for # as derived by Davidson. The 

difference is that (3.4.2) and (3.4.3) are replaced by 
P 

(3.4.7) 

(3.4.8) 

av ’ 
P= 

av’ 
Pe 

2 2  u a sine( l+rb/r 1. 
B O  

The boundary conditions for #’ are taken as (2.14) with (2.15) 

rewritten in current notation as (dropping minus for simplicity) 

(3.4.9) 

Fortunately, we can calculate v’.T from (2.16) assuming v’=O at the top of 

the bubble at 6=0. This gives v’.T== where L is the vertical distance the 

particle has dropped from the bubble apex. In terms of polar coordinates, 
(3.4.9) becomes 

P P 

P 

(3.4.10) 

Note that the right hand side of (3.4.10) is discontinuous in physical space 

at the bottom of the bubble. This must be the case since particles falling 
from either side of the bubble along the surface meet with speed Gb at 
the bottom but moving in opposite directions. Since there is a flux of mass 
into the ray at €)=a on both sides this solution obviously does not satisfy 

conservation of m a s s  flux, equation (2.11). However, a calculation shows 
that the total flux into the ray at G=n (8rbGb) equals the total flux out 

of the bubble. Although this is not completely satisfactory it suggests a 
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physical picture that has some merit. Applying the boundary condition 

far from the bubble (here we let a+ 0 0 )  gives to within an arbitrary 

constant 

6 sin- 2' 

" 4 e  r3l2 

r 

2 
b b b  
r 

$' = (j-u,) r sine + (j-uB) sin0 + 
1/2 

(3.4.11) 

With t,6' and $. known, it is now possible to determine how a varies with 

Q along the streamlines by using (3.1.2). This process should be considered 

an iterative calculation. The solution to (3.1.2) along with $' and JI can 

now be substituted into (2.9) and (3.1.3) to find new approximations for t,6' 

and $p. We shall use this iterative process to provide insight into the 

structure of the bubble at the bottom and its wake and to resolve the 

problem with JI at 0 = f ~ .  

P 

P 

It is possible to find exact solutions to (3.1.2) along two 

streamlines. We first consider the boundary of the bubble with r=rb. From 
(3.4.7) and (3.4.8) we see v' =O and 

Pr 

(3.4.12) sine. v' = - 
P9 a 

2uBa* 

Substituting (3.4.12) into (3.1.21, assuming we are in the incompressible 

case where 3(a)=O (and thus a =a 1, and using V p g . s O  along the boundary of 
the bubble yields 

O P  

Assuming a nonzero value for a at 0=0 determines the arbitrary cons-ant 
and consequently 

1 

u a sine 
a =  [ r g(l-cose 1 1 '  B p  

(3.4.13) 
b 

for 0<6<n. This solution for a varies from a = 2u a /* at 9 = 0 (using 

l'H8pital's rule) to a = 0 at 8 = R. Equation (3.4.12) now can be used to 
B P  
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give 

As we arranged, this gives the expected value v‘ = as 8+ n-. 
Pe b 

Since uB is not determined at this point in our analysis neither is the 
value of a at the bubble apex: 

We note, however, that if uB satisfies (3.4.6) then a(e=O)=a . 
More insight can be found by calculating the dependence of a on 

arclength on the center streamline corresponding to 8=0 where 6=r. Knowing 
the values of v’ and v’ allows us to simplify (3.1.2) to 

P 

P 9 

(3.4.14) uBao(l-rpr2)2 - v:a2F’ (a) ] - - 

2 2 
-aj - H(a) + auB - U a - (I(,j-UB) 3 b + UBao - b r r 

r r2 B O  

2 2 2  2 
2 a ~  r r  

r 

2H( a 1 uBaOrb 

ga2r3 
- - - 3. 

312 

We have included the particle phase pressure F(a) in order to study the 

shock structure near the bubble. Preliminary analysis of (3.4.141 shows that 

there is a solution such that a(r=m)=ao and a(r=rb)=O. Further, as F 
approaches the incompressible model a(rl+ a for every r>rb. This suggests 

that the relevant solution of (3.4.14) is a=a for the incompressible case. 

This also shows that the correct choice for the particle concentration at 

the top of the bubble is a=a in the incompressible model and hence u B = f q  
as in the classical theory. 

Assuming F=O, Jackson (1963) constructs a theory that also introduced a 
as a variable. Jackson’s theory allows a to vary only in the drag term in 

(2.3) and (2 .4 )  (B/(l-a) in our model) while assuming a=constant in all the 
other terms. He is able to show among other things that there is a region 

above the bubble where a has reduced values. This is in agreement with our 

P 

P 

P 
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own bubble theory. 
Murray (19651, Collins (19651, and Stewart (1968) all had their own 

modifications of Davidson's theory. All of these theories are different to 
our own bubble theory. Stewart (1968) points out that none of these 

classical theories individually contains the most important characteristics 

observed in a rising isolated bubble. 

4. Numerical Methods 

First we discuss some numerical techniques for solving (2.11, (2.71, 

(2.81, a non-homogeneous system of hyperbolic conservation laws, and (2.91, 

an elliptic equation for the stream function. In recent years, a large 

number of papers on numerical schemes for hyperbolic conservation laws has 

been produced by many researchers. The survey articles by &her and Sweby 

(1987) and Woodward and Colella (1984) provide a comparison of some possible 

methods of solution. The books by LeVeque (19901 and Sod (1985) describe 

methods for scalar problems and systems in one and several space variables. 

While numerical methods for problems involving a single space variable 

appear to be well advanced with several techniques being capable of accurate 

shock resolution, the same cannot be said of methods f o r  two-dimensional 
hyperbolic problems. 

One of the simplest techniques for solving a problem in two space 

variables is dimensional splitting whereby the system is reduced to a series 

of one-dimensional problems. This approach conveniently enables us to make 

use of the Riemann solver codes which we have already developed and tested 

on a fluidized bed model in one space variable. There is much debate, 

however, about the effectiveness of dimensional splitting and its ability to 

deal correctly with multi-dimensional shocks which are not aligned parallel 

to the coordinate axes. Roe (1986, 1991) warns against its use and Shu and 

&her (1989) find that it is not satisfactory for their problem. On the 

other hand, many authors use or suggest splitting; for example @her and 

Solomon (19821, Yee (19871, and Sod (1985). Colella (1990) describes a 

non-split method and shows that the results compare favourably with those 

obtained by a split method when calculating shock reflections from an 
oblique surface. Yee (1987) writes ' I . .  . truly two-dimensional schemes are 
still in the research stage. The available theory is too complicated for 

practical applications." Most authors solve the two-dimensional Euler 
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equations as a test for the numerical methods. Our multi-phase flow problem 

presents a more severe test for the numerical methods due to the physical 

instabilities which are present. As a result, techniques which perform well 

on the Euler equations may have difficulties here. 

We must also take into account a source term. We remark that, in our 

work in one space dimension, splitting was used without any apparent 

difficulties to deal with the source term (Christie, Ganser, and Sanz-Serna 

1991, Christie and Palencia 1991). Other research has also concluded that 

splitting with respect to non-homogeneity is reasonable (LeVeque and Yee 

1990, Sod 1977). 

The hyperbolic system (2.11, (2.71, (2.8) can be written in the general 

form 

t X 

where w=(a,av ,av T , and f(w), 
PX PZ 

g ( w ) ,  b(w,#) are nonlinear functions 

defined by 

f (w)= 

av 
PX 

av v 
P X  PZ 

and 

g ( w ) =  

0 

av 
PZ 

av v 
PX PZ 

For the moment we assume that # is a known function. Later we shall discuss 
the numerical solution of the stream function equation (2.9). 

We have two reliable and accurate computer codes for a one-dimensional 

fluidized bed model. One of them is based on Roe’s (1981) approximate 
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Jacobian method and avoids non-physical shocks by means of the Harten and 

Hyman (1983) "entropy fix". Second order accuracy of the method is achieved 

by means of the flux limiting techniques described by Sweby (1984) (see the 

attached paper by Christie, Ganser, and Sanz-Serna 1991). The other code, 

derived from the exact solution of the Riemann problem, enables the method 

of Godunov (1959) to be used. We obtained second order accuracy in space by 

extending the method of Davis (1988) and applying it to the Codunov 

procedure (see the paper by Christie and Palencia 1991). The computer codes 

based on these two techniques are able to resolve shocks correctly and 

reproduce the slugging phenomenon. The two codes, based on different 

methods, give very similar solutions in numerical experiments conducted over 

several thousands of time steps (see Christie and Palencia 1991). This 

produces confidence in the results obtained. 

We now describe the splitting technique. Denote the numerical solution 

of (4.1) at time level t by w". The Strang (1968) splitting computes the 
solution w"" after a time step At from the following algorithm: 

n 

start with the known values w" and a known stream function @ 

solve w = b with step At/2 
solve w + f = 0 with step At12 
solve w + g = 0 with step At 
repeat step (iii) 

repeat step (ii) to give pi and then compute a new 9. 

t 

t X 

t z 

This procedure, which is formally second order accurate in time, reduces the 

two-dimensional system (4.1) to a series of homogeneous problems in one 

space variable and ordinary differential equations in time. Other types of 

splitting (see Mitchell and Griffiths 1980) are not expected to give 

substantially different results and will not be considered. 

The initial value of 9 is found by solving (2 .9 )  using the initial 

conditions for the concentration and velocities. The solution at each of the 
steps (ii)-(vi) uses the solution at the previous step as the initial value. 

Steps (ii) and (vi) require the solution of ODES. If the linear drag law is 
used for the function B(a) appearing in b(w,$) then these ODE steps can be 

integrated in closed form. Otherwise, a straightforward second order 

numerical procedure can be applied. 
Steps (iii)-(v) require the solution of homogeneous systems of 
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conservation laws in one space variable and present the most challenging 

aspects of the method. We propose to apply a second order Roe method to each 

one-dimensional system. 

Differentiation of (4.1) gives 

(4.2) ut + J(w)wx + K(w)w z = B 

where J and K are the Jacobian matrices 

J =  

0 1 0 

-A A A +A 0 + -  + -  

-AP P A 

and K =  

0 1 1 

-hP P h 

whose eigenvalues are A=v A+=V 2 F  and p=v p,=vPz+F respectively. 

The Roe approximate Jacobians are expressed in a similar manner in terms of 

= v  f c , p = v  , and p+= v +c’ where their averaged eigenvalues = v 
the Roe averaged velocities are given by 

px’ - px PZ’ 

- e - - -  - - - 
px’ A, px P Z  - PZ 

G v  + c v  
R ptR L pzL 

G V  4 - v  
and = R pxR L pxL - 

v =  
px c+&- 

R L 
pz & + K  

R L 

The subscripts L and R respectively denote the left and right constant 

states in adjacent computational cells which are assumed by the method. The 

averaged speed of sound is given by 

-2 c = (FR - FL)/(aR - aL) 
with a suitable modification to account for near equal concentrations over 

two adjacent cells. The construction of the matrices 

‘0 

P =  0 

1 
L 

and Q =  

1 

x 

1 

- 
A 
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whose columns are the eigenvectors of 3 and respectively then easily 

allows the systems appearing in steps (iii)-(v) of the algorithm to be 

uncoupled. This is seen by premultiplying the equation in steps (iii) and 

(VI by P-' and in step (iv) by Q-' and using P-'sP = diag(h, A , h 1 and 
Q-%Q = diag(p, p , p+). The uncoupled equations are then discretized by the 
second order procedure described in Christie, Ganser, and Sanz-Serna 1991 1. 

To complete the algorithm, # must also be calculated. The stream 

- +  

function equation (2.9) can be written in the form 

(4.31 e + c  * + c  e+c 4 3 + c s  az = o  
az2 C 2 ax 3 ' ax2 

where the c terms (i=1 to 5) are defined in an obvious manner from (2.9). 

Due to the coupling of # in the system (4.11, (4.31, either an iterative 
procedure must be used to determine or else # must be assigned the known 
values found in each cell from the previous time step to allow b(w,#) to be 
constructed. In the splitting algorithm described earlier, the latter 

technique will be adopted. 

i 

To compute new values of 9 a splitting procedure is also possible via 
the inclusion of an artificial time derivative. Therefore, we can seek 
steady state solutions of 

(4 .4 )  

Note that c and c are always negative so that the minus sign must appear 

on the right hand side of ( 4 . 4 ) .  Equation ( 4 . 4 )  can be solved as the split 

scheme 

1 3 

where each equation is solved in turn over a A d 2  step by fully implicit 
finite differences. Several discretization methods will be considered for 

both the JI derivatives and the derivatives contained in the coefficients. 
The need for upwind finite differencing or upwind finite elements will 
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r 

. depend on the relative sizes of the coefficients of the first and second 

derivatives of # (see Christie, Griffiths, Mitchell, and Zienkiewicz 1976). 

Convergence to the steady state solution is assumed when the maximum norm of 

the difference between solutions at successive time levels is less than a 

prescribed tolerance. Preliminary indications are that this technique gives 

rapid convergence with the steady-state being achieved in one or two steps. 

It is also possible to extend to two space dimensions the modification 

of the Davis (1988) method described by Christie and Palencia (1991). The 

method is centered in space and possesses second order accuracy in space and 

in time. For the homogeneous version of equation (4.1) the method has the 
form 

(4.5) w"+1/2 = w" - ;(frqJ+s 1 - f(qJ-siJ)) 
I J  i J  i J  

where S T are flux limiters, ?, 2 are numerical fluxes, and h=Ax/At, 
p=Az/At are the mesh ratios. Davis (1988) suggests a form for S and, in 

the one-dimensional case, this choice led to small oscillations around 

shocks. In Christie and Palencia (1991) this problem was resolved by 

replacing the Davis flux limiter by the minmod limiter. The numerical fluxes 

can be substituted by the true flux when the exact solution of the Riemann 

problem is used. 

15'  i f  

i J  
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