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Annual Report on DOE Grant DE-FG05-88ER25068/AO04 

Mathematical background for homotopy algorithms. 

The nonlinear systems of equations arising in circuit simulation, structural optimization, 
closed loop optimal control, chemical engineering of distillation systems, combustion chemistry, 
CAD/CAM modelling, robotics, computer vision, and orbital mechanics have several properties 
that  make them especially amenable to  homotopy methods. Even so, the homotopy zero curves are 
not trivial t o  track, and sophisticated curve tracking techniques are sometimes required. The size 
of typical engineering problems also presents some interesting numerical linear algebra challenges, 
and the supported work has been geared toward developing parallel sparse matrix techniques 
specifically tailored to  the sparsity structures corresponding to  the mentioned problem areas, in 
the context of homotopy algorithms. 

The original mathematical model, after some sort of discretization, approximation, or reduc- 
tion, ultimately leads to  a nonlinear system of equations 

F ( x )  = 0, 

where F : E" + E" is assumed to  be a C2 map. Suppose there exists a C2 map 

p : E" x [ O , l )  x E" + E" 

such that 
1) the n x (m + 1 + n) Jacobian matrix Dp(a,  A,  x) has rank n on the set 

p- l (O)  = {(a,X,x) I u E Em,O 5 X < 1,s E E",p(a ,X ,x)  = 0 } ,  

and for any fixed a E E", letting p a ( &  x) = p ( a ,  A,  x), 
2) p,(O, x) = 0 has a unique solution 20 ,  

4) p i 1 ( 0 )  is bounded. 
3) P d L  4 = F ( x ) ,  

Then the supporting theory says that for almost all a E E" there exists a zero curve y of p a ,  along 
which the Jacobian matrix Dp, has rank n, emanating from (0, xo) and reaching a zero 5 of F at 
X = 1. y does not intersect itself and is disjoint from any other zeros of p a .  The globally convergent 
algorithm is t o  pick a E E" (which uniquely determines xo), and then track the homotopy zero 
curve y. 

There are many different algorithms for tracking the zero curve y; the previous proposal 
discussed three such algorithms: ordinary differential equation based, normal flow, and augmented 
Jacobian matrix. The descriptions of these algorithms are now in the literature for the software 
package HOMPACK, so will not be repeated here. The development of sparse homotopy algorithms 
within HOMPACK specifically tailored for various parallel machines (e.g., distributed memory, 
shared memory, and vector) and problem areas (e.g., circuit simulation, structural optimization, 
optimal control, and combustion chemistry) was the central theme of this research. 
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Accomplishments under DOE Grant DE-FG05-88ER25068. 
The most recent annual report, DOE/ER/25068-4, for this project summarized the accom- 

plishments through February, 1995, and provided a historical perspective on progress on the various 
project tasks. At that  point in time, DOE support had contributed to  over 60 theses, refereed con- 
ference papers, and refereed journal papers. Rather than recapitulate that  annual report, this  
section will simply list publications since the beginning of the current funding period, March 1, 
1995. These are: 
Y. Mainguy, J .  B. Birch, and L. T. Watson, (‘A robust variable order facet model for image data”,  

Machine Vision Appl., 8 (1995) 141-162. 
Y. Ge, E. G. Collins, Jr., and L. T. Watson, “A comparison of homotopies for alternative formu- 

lations of the L2 optimal model order reduction problem”, J .  Comput. Appl. Math., 69 
(1996) 215-241. 

Y. Ge, L. T. Watson, E. G. Collins, Jr., and D. S. Bernstein, “Globally convergent homotopy algo- 
rithms for the combined H 2 / H w  model reduction problem”, J .  Math. Systems, Estimation, 
Control, 7 (1997) 129-155. 

Y. Chen and L. T. Watson, “Optimal trajectory planning for a space robot docking with a moving 
target via homotopy algorithms”, J .  Robotic Sys., 12 (1995) 531-540. 

Y. Ge, L. T. Watson, E. G. Collins, Jr., and D. S. Bernstein, “Probability-one homotopy algorithms 
for full and reduced order H2/H” controller synthesis”, Optimal Control Appl. Methods, 
17 (1996) 187-208. 

B. B. Lowekamp, L. T. Watson, and M. S. Cramer, “The cellular automata paradigm for the 

S. Nagendra, D. Jestin, Z. Giirdal, R. T. Haftka, and L. T. Watson, “Improved genetic algorithms 

W. I. Thacker, C. Y. Wang, and L. T. Watson, “Global stability of a thick solid supported by 

M. C. Cowgill, R. J. Harvey, and L. T. Watson, “The genetic/hill-climbing hybrid: a new algorith- 

M. S. Cramer, B. B. Lowekamp, and L. T. Watson, “Nonlinear thermal waves: part 11-analytical 

parallel solution of heat transfer problems”, Parallel Algorithms Appl., 9 (1996) 119-130. 

for the design of stiffened composite panels”, Comput. & Structures, 58 (1996) 543-555. 

elastica columns”, J .  Engrg. Mech., 123 (1997) 287-289. 

mic approach t o  cluster analysis”, Multivariate Behavioral Res., submitted. 

solutions for pulses”, Internat. J .  Heat Mass Transfer, submitted. 
M. Sosonkina, L. T. Watson, and D. E. Stewart, “Note on the end game in homotopy zero curve 

tracking”, ACM Trans. Math. Software, 22 (1996) 281-287. 
S. Burgee, A. A. Giunta, V. Balabanov, B. Grossman, W. H. Mason, R. Narducci, R. T. Haftka, and 

L. T. Watson, “A coarse grained parallel variable-complexity multidisciplinary optimization 
paradigm”, Internat. J .  Supercomputer Appl. High Performance Comput., 10 (1996) 269- 
299. 

Y. Ge, L. T. Watson, and E. G. Collins, Jr., “Cost-effective parallel processing for H 2 / H ”  con- 
troller synthesis”, Internat. J .  Systems Sci., to  appear. 

M. S. Cramer, S. H. Park, and L. T. Watson, “Numerical verification of scaling laws for shock- 
boundary layer interactions in arbitrary gases”, J .  Fluids Engrg., 119 (1997) 67-73. 

A. P. Morgan, L. T. Watson, and R. A. Young, “A Gaussian derivative based version of JPEG for 
image compression and decompression”, IEEE Trans. Image Processing, submitted. 
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J. F. Monaco, M. S. Cramer, and L. T. Watson, “Supersonic flows of dense gases in cascade 
configurations”, J. Fluid Mech., 330 (1997) 31-59. 

E. G. Collins, Jr., W. M. Haddad, L. T. Watson, and D. Sadhukhan, “Probability-one homotopy 
algorithms for robust controller synthesis with fixed-structure multipliers” , Internat. J .  
Robust Nonlinear Control, 7 (1997) 165-185. 

S. Nagendra, R. T. Haftka, Z. Giirdal, and L. T. Watson, “Derivative based approximation for 
predicting the effect of changes in laminate stacking sequence”, Structural Optim., 11 (1996) 

M. Kaufman, V. Balabanov, S. L. Burgee, A. A. Giunta, B. Grossman, R. T. Haftka, W. H. 
Mason, and L. T. Watson, “Variable-complexity response surface approximations for wing 
structural weight in HSCT design”, Comput. Mech., 18 (1996) 112-126. 

gramming”, Math. Comput. Appl., submitted. 

high accuracy”, Numer. Linear Algebra Appl., submitted. 

for model order reduction”, Automatica, submitted. 

235-243. 

Y. Ge, L. T. Watson, and E. G. Collins, Jr., “An object-oriented approach to semidefinite pro- 

M. Sosonkina, L. T. Watson, and R. K. Kapania, “A new adaptive GMRES algorithm for achieving 

Y. Wang, D. S. Bernstein, and L. T. Watson, “Convergence theory of probability-one homotopies 

L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan, and H. F. Walker, “HOMPACKSO: A 
suite of FORTRAN 90 codes for globally convergent homotopy algorithms”, ACM Trans. 
Math. Software, to appear. 

D. Haim, A. A. Giunta, M. M. Holzwarth, W. H. Mason, L. T. Watson, and R. T. Haftka, “Suit- 
ability of optimization packages for an MDO environment” , Engrg. Comput., submitted. 

G. Soremekun, Z. Giirdal, R. T. Haftka, and L. T. Watson, “Improving genetic algorithm efficiency 
and reliability in the design and optimization of composite structures”, Compu t. Methods 
Appl. Mech. Engrg., submitted. 

S .  Suherman, R. H. Plaut, L. T. Watson, and S. Thompson, “Effect of human response time on 
rocking instability of a two-wheeled suitcase” , J. Sound Vibration, to appear. 

A. A. Giunta, V. Balabanov, D. Haim, B. Grossman, W. H. Mason, L. T. Watson, and R. T. 
Haftka, “Aircraft multidisciplinary design optimisation using design of experiments theory 
and response surface modelling”, Aero. J . ,  to appear. 

J. F. Rodriguez, J. E. Renaud, and L. T. Watson, “Trust region augmented Lagrangian methods 
for sequential response surface approximation and optimization”, ASME J. Mech. Design, 
submitted. 

V. Balabanov, A. A. Giunta, 0. Golovidov, B. Grossman, W. H. Mason, L. T. Watson, and R. T. 
Haftka, “A reasonable design space approach to response surface approximation” , AIAA J., 
to appear. 

R. H. Plaut, S. Suherman, D. A. Dillard, B. E. Williams, and L. T. Watson, “Deflections and 
buckling of a bent elastica in contact with a flat surface”, Internat. J .  Solids Structures, 
submitted. 

Y. Ge, L. T. Watson, and E. G. Collins, Jr., “Distributed homotopy algorithms for H 2 / H ”  
controller synthesis”, in Parallel Processing for Scientific Computing, D. H. Bailey, P. E. 

3 



BjGrstad, J. R. Gilbert, M. V. Mascagni, R. S. Schreiber, H. D. Simon, V. J. Torczon, and 
L. T. Watson (eds.), SIAM, Philadelphia, PA, 1995, 84-89. 

S. Burgee, A. A. Giunta, R. Narducci, L. T. Watson, B. Grossman, and R. T. Haftka, “A coarse 
grained variable-complexity approach to  MDO for HSCT design”, in Parallel Processing for 
Scientific Computing, D. H. Bailey, P. E. Bjprrstad, J. R. Gilbert, M. V. Mascagni, R. S. 
Schreiber, H. D. Simon, V. J. Torczon, and L. T. Watson (eds.), SIAM, Philadelphia, PA, 

A. A. Giunta, V. Balabanov, S. Burgee, B. Grossman, W. Mason, L. T. Watson, and R. T. Haftka, 
“Parallel variable-complexity response surface strategies for HSCT design”, in Computa- 
tional Aerosciences Workshop ’95 Proc., W. J. Feiereisen and A. K. Lacer (eds.), NASA CD 
Conf. Pub. 20010, NASA Ames Research Center, Moffett Field, CA, 1996, 86-89. 

1995, 96-101. 

A. A. Giunta, V. Balabanov, S. Burgee, M. D. Kaufman, B. Grossman, W. Mason, L. T. Watson, 
and R. T. Haftka, “Aerodynamic and structural optimization of a high speed civil trans- 
port on parallel computers”, in Proc. First World Congress Structural Multidisciplinary 
Optimization, WCSMO-1, Goslar, Germany, 1995, 765-769. 

A. A. Giunta, R. Narducci, S. Burgee, B. Grossman, W. H. Mason, L. T. Watson, and R. T. 
Haftka, “Variable-complexity response surface aerodynamic design of an HSCT wing”, in 
Proc. 13th AIAA Applied Aerodynamics C o n f ,  San Diego, CA, 1995, 994-1002. 

M. S. Cramer, S. Park, and L. T. Watson, “Suppression of shock-induced separation in dense 
gases”, in Shock Waves, Vol. 1, B. Sturtevant, J. Shepherd, and H. Hornung (eds.), World 
Scientific Pub. Co., Singapore, 1997, 783-788. 

A. A. Giunta, V. Balabanov, S. Burgee, B. Grossman, R. T. Haftka, W. H. Mason, and L. T. Wat- 
son, “Variable-complexity multidisciplinary design optimization using parallel computers”, 
in Computational Mechanics ’95-Theory and Applications, S .  N. Alturi, G. Yagawa, T. A. 
Cruse (eds.) , Springer-Verlag, Berlin, 1995, 489-494. 

M. Kaufman, V. Balabanov, S. L. Burgee, A. A. Giunta, B. Grossman, W. H. Mason, L. T. Watson, 
and R. T. Haftka, “Variable-complexity response surface approximations for wing structural 
weight in HSCT design”, AIAA Paper 96-0089, 1996, 1-18. 

V. Balabanov, M. Kaufman, A. A. Giunta, R. T. Haftka, B. Grossman, W. H. Mason, and L. 
T. Watson, “Developing customized wing weight function by structural optimization on 
parallel computers”, in Proc. AIAA/ASME/ASCE/AHS/ASC 37th Structures, Structural 
Dynamics, and Materials C o n f ,  Salt Lake City, UT, AIAA Paper 96-1336, 1996, 113-125. 

M. Kaufman, V. Balabanov, B. Grossman, W. H. Mason, L. T. Watson, and R. T. Haftka, “Mul- 
tidisciplinary optimization via response surface techniques”, in Proc. 36th Israel Conf. on 
Aerospace Sciences, Tel Aviv, Israel, 1996, A-57-A-67. 

A. A. Giunta, B. Grossman, W. H. Mason, L. T. Watson, and R. T. Haftka, “Multidisciplinary 
design optimization of an HSCT wing using a response surface methodology”, Proc. First 
Internat. Conf. on Nonlinear Problems in Aviation and Aerospace, S. Sivasundaram (ed.), 
Embry-Riddle Aeronautical Univ. Press, Daytona Beach, FL, 1996, 209-214. 

E. G. Collins, Jr., W. M. Haddad, and L. T. Watson, “Fixed-architecture, robust control design 
using fixed-structure multipliers”, in Proc. 13th World Congress o f  Internat. Federation of 
Automatic Control, Vol. C ,  San Francisco, CA, 1996, 73-78. 
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A. A. Giunta, V. Balabanov, D. Haim, B. Grossman, W. H. Mason, L. T. Watson, and R. T.  Haftka, 
“Wing design for a high-speed civil transport using a design of experiments methodology”, 
AIAA Paper 96-4001, in Proc. 6th AIAA/NASA/ISSMO Symp. on Multidisciplinary 
Analysis and Optimization, Bellevue, WA, 1996, 168-183. 

G. Soremekun, Z. Giirdal, R. T. Haftka, and L. T. Watson, “Improving genetic algorithm effi- 
ciency and reliability in the design and optimization of composite structures”, AIAA Paper 
96-4024, in Proc. 6th AIAA/NASA/ISSMO Symp. on Multidisciplinary Analysis and 
Optimization, Bellevue, WA, 1996, 372-383. 

V. Balabanov, M. Kaufman, D. L. Knill, D. Haim, 0. Golovidov, A. A. Giunta, R. T. Haftka, B. 
Grossman, W. H. Mason, and L. T. Watson, “Dependence of optimal structural weight on 
aerodynamic shape for a high speed civil transport”, AIAA Paper 96-4046, in Proc. 6th 
AIAA/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization, Bellevue, 
WA, 1996, 599-612. 

P. J. Crisafulli, M. Kaufman, A. A. Giunta, W. H. Mason, B. Grossman, L. T. Watson, and R. 
T. Haftka, “Response surface approximations for pitching moment, including pitch-up, in 
the MDO design of an HSCT”, AIAA Paper 96-4136, in Proc. 6th AIAA/NASA/ISSMO 
Symp. on Multidisciplinary Analysis and Optimization, Bellevue, WA, 1996, 1308-1322. 

Y. Ge, L. T. Watson, and E. G. Collins, Jr., “A distributed algorithm for H 2 / H ”  controller 
synthesis”, in Proc. 35th Conf. on Decision and Control, Kobe, Japan, 1996, 1317-1318. 

A. A. Giunta, V. Balabanov, M. Kaufman, S. Burgee, B. Grossman, R. T. Haftka, W. H. Mason, 
and L. T. Watson, “Variable-complexity response surface design of an HSCT configuration”, 
in Multidisciplinary Design Optimization, N. M. Alexandrov and M. Y. Hussaini (eds.), 
SIAM, Philadelphia, PA, 1997, 348-367. 

A. A. Giunta, 0. Golividov, D. L. Knill, B. Grossman, W. H. Mason, L. T.  Watson, and R. 
T. Haftka, “Multidisciplinary design optimization of advanced aircraft configurations”, in 
Lecture Notes in Physics, Springer-Verlag, Berlin, to  appear. 

M. S. Driver, D. C. S. Allison, and L. T. Watson, “Scalability of adaptive GMRES algorithm”, in 
Proc. 8th SIAM Conf on Parallel Processing for Scientific Computing, CD-ROM, SIAM, 
Philadelphia, PA, 1997, 7 pages. 

E. G. Collins, Jr., D. Sadhukhan, and L. T. Watson, “Robust controller synthesis via nonlinear 
matrix inequalities”, in Proc. American Control C o d ,  Albuquerque, NM, 1997, 67-71. 

J. F. Rodriguez, J. E. Renaud, and L. T.  Watson, “Trust region augmented Lagrangian methods for 
sequential response surface approximation and optimization”, in Proc. 1997 ASME Design 
Engineering Technical Conf , ASME Paper 97-DETC/DAC-3773, CD-ROM, Sacramento, 
CA, 1997, 12 pages. 

J .  F. Rodriguez, J. E. Renaud, and L. T. Watson, “Convergence of trust region augmented La- 
grangian methods using variable fidelity data”,  in Proc. Second World Congress on Struc- 
tural and Multidisciplinary Optimization, Zakopane, Poland, 1997, to appear. 
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Conversion of HOMPACK to FORTRAN 90. 
The entire HOMPACK package has been redone in FORTRAN 90, taking full advantage of 

high level array operations, automatic arrays, pointers, and dynamic memory allocation. Along 
with this conversion, various improvements t o  the  HOMPACK algorithms were incorporated. For 
example, a new end game (see the ACM TOMS paper by Sosonkina cited above) has been added, 
and new, more general, data  structures and preconditioners are being employed in the sparse 
codes. This conversion t o  FORTRAN 90 was a major undertaking, requiring several years, but the 
improvement in readability, portability, and ease of use was spectacular. 

Some users of HOMPACK have suggested that HOMPACK be redone using the  reverse call 
protocol. Many users of mathematical software are unfamiliar with reverse call, nor is it the 
consensus preference of computer scientists. Therefore, the FORTRAN 90 version of HOMPACK 
still uses forward calling (FORTRAN 90 modules obviate most of the advantages of reverse calling, 
anyway), but several “expert” routines using reverse call were added. STEPNX is a reverse call 
stepping subroutine, designed t o  be used in lieu of any of the six stepping routines STEPDF, 
STEPNF, STEPQF, STEPDS, STEPNS, or STEPQS. STEPNX returns t o  the caller for all linear 
algebra, all function and derivative values, and can deal gracefully with situations such as the 
function being undefined at the requested steplength. 

The ODEbased (D), normal flow (N), and quasi-Newton augmented Jacobian matrix (Q) 
routines provide complete algorithmic “coverage,” but the D and Q routines are rarely used in 
practice, because the N routines are usually (but not always!) more efficient. Whether the Jacobian 
matrix is sparse or dense is the expert user’s problem-hence only one expert reverse call routine, 
STEPNX, is needed. 

ROOTNX provides an expert reverse call end game routine. ROOTNX has the same protocol 
as STEPNX, and generalizes the ROOT* routines by finding a point on the zero curve where 
g(X,z) = 0, as opposed t o  just the point where X = 1. Thus ROOTNX can find turning points, 
bifurcation points, and other “special” points along the zero curve. The combination of STEPNX 
and ROOTNX will provide considerable flexibility for an expert user. 

Nonlinear systems with large, sparse Jacobian matrices. 
Among all the Krylov subspace methods for solving a linear system Az  = b with a nonsymmet- 

ric invertible coefficient matrix A,  the generalized minimal residual algorithm (GMRES) and the 
quasi-minimal residual algorithm (QMR) are considered the most robust. Similar t o  the classical 
conjugate gradient method, GMRES produces approximate solutions zk which are characterized 
by a minimization property over the Krylov subspaces span(r0, ATO, A2q-,, . . ., A(”’)ro}, where 
T O  = Ilb - Azo11 and k is the iteration number. However, unlike the conjugate gradient algorithm, 
the work and memory required by GMRES grow proportionately to  the iteration number. In prac- 
tice, the restarted version GMRES(k) is used, where the algorithm is restarted every k iterations 
until the residual norm is small enough. The restarted version may stagnate and never reach the 
solution. 

QMR reduces the computational effort by employing a short-term recursion for building the 
Lanczos basis. An implementation of QMR based on the look-ahead Lanczos process avoids break- 
downs associated with Lanczos-type algorithms. However, a QMR iterate is a relaxed version of a 
minimal residual iterate, which results in more iterations than GMRES(k) (that may or may not 
take more time than GMRES(k)). The QMR algorithm may also behave erratically. 

The essence of the adaptive GMRES strategy in HOMPACKSO is t o  adapt the parameter 
k t o  the problem, similar in spirit to  how a variable order ODE algorithm tunes the order k. 
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With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the 
variable storage requirements implied by varying k is not too difficult. IC can be both increased 
and decreased-an increase-only strategy is described below. 

Though GMRES(k) cannot break down, it can stagnate. A test of stagnation developed 
by H. Walker detects an insufficient residual norm reduction in the restart number ( k )  of steps. 
Precisely, GMRES(k) is declared t o  have stagnated and the iteration is aborted if at the rate of 
progress over the last restart cycle of steps, the residual norm tolerance cannot be met in some 
large multiple (bgw) of the remaining number of steps allowed (itmax is a bound on the number of 
steps permitted). Slow progress of GMRES(k), which indicates an increase in the restart value k 
is needed, may be detected with a similar test. The near-stagnation test uses a different, smaller 
multiple (smw) of the remaining allowed number of steps. If near-stagnation occurs, the restart 
value k is incremented by some value m and the same restart cycle continues. Restarting would 
mean repeating the nonproductive iterations that previously resulted in stagnation, at least in the 
case of complete stagnation (no residual reduction at all). Such incrementing is used whenever 
needed if the restart value k is less than some maximum value kmax. When the maximum value 
for k is reached, adaptive GMRES(k) proceeds as GMRES(kmax). 

Pseudo code for an adaptive GMRES(k) is: 
choose x ,  tol, i tmax ,  kmax,  m; 
r := b - A x ;  
while llrll > tol do 

itno := 0;  

A: 
j := 0; 

i tno := i tno + 1; 
for i = 1 step 1 until j do h;,j := (Avj,vi); 

i=l  

h j + l , j  := l l~ j+ l l l ;  

Vj+l := Gj+l / hj+l , j ;  
Update Ilrll; 
if llrll S tol then goto B 
if j < k then goto A 
test := IC x log[tol/llrlll/ log [IIrII/((1.0+ E ) I I ~ ~ ' ~ I I ) ]  ; 
if k S kmax - m and test 2 smw x ( i tmax - itno) then 
begin 

IC:=IC+m; 
goto A 

end 
elseif k 2 kmax and test 2 bgv x ( i tmax - itno) then 

Abort 
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B: 

end 

end if 
el := (I, 0 , .  . ., o ) ~ ;  
Solve min I /  llrllel - Hjyll for yj; 

vj := [ V I , .  . . , wuj]; 

Y 

2 := 2 + y y j ;  r : = b - A x  

In practice, the modified Gram-Schmidt process is used for the construction of an orthogonal 
basis of the Krylov subspace. Some numerical experience has been obtained on sequences of linear 
systems arising from the application of homotopy algorithms to  circuit design and simulation 
problems. The sparse matrices involved in circuit problems are nonsymmetric, indefinite, and 
unstructured. Following the conclusions of the PIS’ earlier work, ILU (0) (right) preconditioning is 
used, the initial vector 2 is zero, and i tmax = 5n. 

For five circuit problems from McQuain, Melville, Ribbens, and Watson (cited above), the 
table shows the minimum, maximum, and average number of iterations along the homotopy zero 
curve, and the CPU time in seconds for the algorithms. The notation for the algorithms is: 
AGILU-adaptive GMRES(k) preconditioned with ILU(0) (for AGILU the table also shows the 
largest k reached) ; GILU-GMRES(k) preconditioned with ILU(0) ; FGILU-flexible GMRES ( k ) ,  
each iteration of which is preconditioned with one restart cycle of GMRES(k)/ILU(O); QMR- 
three-term recursion QMR. An asterisk indicates failure to  converge. 

72 
14.58 
0.23 

6 

Problem I rlil3b, n = 31 I upsola, n = 59 I bgatt, n = 125 
AGILU minl 11 61 32 
m = 2  max 245 

avg 104.14 
time 0.66 

max k 9 
AGILU min 1 6 32 
m = 4  max 50 55 124 

avg 11.75 20.48 82.00 
time 0.19 0.14 0.53 

max k 61 6 9 
AGILU min 11 6 32 
m = 6  max 50 55 120 

avg 10.6 17.76 74.50 
time 0.17 0.12 0.48 

rnax k 6 6 11 
GILU min * * * 

* * * 
* * * max 

avg 

130 
35.56 

0.22 
6 

time I * * * 
FGILU minl 35 * * 

124 
max/ avg 85.29 * time I * 1.95 

QMR minl 11 81 24 
max 12 15 27 
avg 7.08 10.48 25.14 

time 1.21 0.84 2.12 

is7a, n = 468 is%, n = 1854 
178 1178 

1004 5656 
355 3643 

3.14 161.61 
15 48 

178 704 
1004 3383 
355 2497.80 

3.17 111.73 
15 I 48 

178 I 558 
1004 4344 
355 2732.20 

3.13 124.05 
15 50 

178 

355 
3.15 

* 
1004 * 

* 
* 

86 66 
205 126 

113.40 95.6 
3.60 I 209.38 

70 1 * 
76.20 
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The values of k (2, 2, 5, 15, 20, respectively) for the problems are chosen to compare AGILU 
with GILU when: (1) GMRES(k) does not exhibit near stagnation behavior (is7a); (2) near stag- 
nation is detected for some matrices (rlil3b) upsola, bgatt); (3) near stagnation causes an increase 
in k for all the  matrices (is7b). In the first case, AGILU and GILU perform the same. In the 
second case, GILU stagnates on the matrices where AGILU increases the restart value and then 
converges. No final solution is reached by GILU in the third case. 

The optimal choice of increment values is an open question. The table shows that  even a 
small increment in the restart value may lead to  the convergence. However, if an increment is 
too small, an increase occurs more than once, the cost of which is, often, one extra restart cycle 
executed. If m is too large, for large problems (is7b), the cost of the last few added iterations 
becomes significant and may degrade the performance. 

It is clear from the data  presented that AGILU outperforms both FGILU and QMR. Con- 
tributors to the poor performance of the QMR algorithm are a significant overhead, and two 
matrix-vector products per iteration as opposed to  one in AGILU. The failure of the QMR algo- 
rithm on problem is7b is due to  the sensitivity of the QMR algorithm to  starting points; for some 
starting vectors, QMR converges. Whenever FGILU converges, it requires more work per itera- 
tion than AGILU, since a new GMRES(k)/ILU(O) preconditioner is computed in each iteration of 
GMRES(k). Other variations of FGILU also appear very expensive in the context of homotopy 
algorithms. 
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