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An orbit correction algorithm is developed to achieve the 
following goals for the CEBAF accelerator at Jefferson 
Lab.: 1). Re-processing of orbit input to account for esti- 
mated misalignment and monitor errors. 2). Automatic 
elimination of blind spots caused by response matrix 
degeneracy. 3). Transparency of exception handling to 
interchangeable generic steering engines. 4). CEBAF-spe- 
cific demands on control of injection angle, path length, 
orbit effects on optics, simultaneous multiple pass steer- 
ing, and orbit control at un-monitored locations. All of the 
above can be accomplished by the introduction of virtual 
monitors into the processed input orbit, whose theoretical 
basis is to be discussed in this report. Implementation of 
all or part of these features and operational experience dur- 
ing the CEBAF variable energy runs will also be dis- 
cussed. 

1 INTRODUCTION 

At Jefferson ,Lab the particular optics configuration and 
operation constraints impose unique demands on the orbit 
correction program as elaborated in the abstract. These 
demands can be met with a universal orbit processing 
algorithm before specific steering engine is called and ide- 
ally the need for human intervention on exception han- 
&ng is minimized. The algorithm interprets the 
mddying orbit from monitor and correction element data 
while performing estimates on misalignment and monitor 
mors by a well defined procedure. The resulting underly- 
ing orbit, including position, angle, path length and other 
orbit-dependent information, becomes source of steering 
constraints not only at locations of existing monitors, but 
at any location deemed necessary to have the orbit con- 
strained or corrected, either due to need of blind spot elim- 
ination or due to explicit constraints on angle, path length 
etc. This enhanced set of orbit constraints, or virtual m n -  
itors, is fed into any generic steering engine with no a pri- 
ori knowledge of either the specifics of the orbit control 
goals or the need of exception handling. In the following 
report this program is outlined and its theoretical basis dis- 
cussed. Application at CEBAF is also described. 

2 ORBIT CORRECTION ISSUES 

2.1 The generic linear orbit Correction problem 
All linear orbit correction problems, regardless of the con- 
straints, can be represented conceptually as 

(1) 

where X, is orbit error at the i-th BPM, Cj the strength of 
the j-th corrector, and Mg the linear response linking X, 

Xi = E M M i j  Cj 
j 
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and Cj. The core of any steering &hhm amounts to 
inverting or pseudo-inverting M such that the corrector 
changes ACj can be found to canFel the orbit error Xi, 

( 2 )  

with different algorithms having different emphases on the 
weighting scheme, response matrix near-singularity, cor- 
rector strength constraints, etc. 

ACj = z M t j i * X i  ,. i 

2.2 The more generalized orbit correction problem 
For the most general orbit correction problem we general- 
ize Xi to any of the coordinate errors including position, 
angle, path length, etc., as well as quantities derivable 
from orbit errors such as spurious dispersion caused by 
angle error at non-zero chromaticity. We can also general- 
ize Cj to any orbit correction devices, as well as energy 
and devices having different effects on different beam 
passes. The response matrix elements Mij therefore can be 
any of the linear transfer matrix elements or linearized sec- 
ond order transfer elements, possibly relating a single cor- 
rector to multiple pass beam coordinates. The generalized 
orbit errors need to be realized by quantities not directly 
observable by the BPMs. They serve as virtual BPM's 
when included in Eqn (1) with proper weighting. 

2.3 Response matrix singularity 
When the response matrix is near singular so that some 
linear combination of the correctors has almost undetect- 
able response at all the monitors but large response else- 
where, naive correction schemes fail by producing 
excessive corrector strengths and undetected orbit bumps. 
Corrector reduction or strength constraint can solve this 
problem [l], as is done by many algorithms. It is not the 
optimal solution since usually a combination of correctors, 
not a single one, causes the problem. Indiscriminately 
limiting or eliminating correctors kills not only the offend- 
ing combination, but also the useful ones, especially those 
needed for injection fixes. If however we impose a con- 
straint on the orbit at a strategically chosen location which 
couples only to the offending combination, we would con- 
strain the offending combination while allowing the useful 
ones to function. Such orbit constraints at arbitrary loca- 
tions constitute another instance of the virtual monitors. A 
well defined algorithm to determine where these virtual 
monitors should be placed will be described later [ 11. 

2.4 Transparency of singularity handling and other gener- 
alized constraints to generic steering algorithms 

In light of the above discussion, the goal of the proposed 
algorithm is thus to construct the input generalized orbit 
error Xi, generalized corrector strength Cj, and general- 
ized response matrix Mu which, through the introduction 
of virtual monitors, take into account all the steering con- 
straints described in section 2.2 and automatically remove 
singularities described in section 2.3. The input data for 



subsequent steering algorithm contain both virtual and real 
orbit and response matrix, indistinguishable under the for- 
mat of Eqn (1). They can be given to different steering 
algorithms with any level of singularity handling and a 
consistent singularity-free outcome conforming to all 
additional constraints should be expected. 

2.5 Errors in input data 
A major problem affecting orbit correction is the inherent 
errors in the input data. Without an effective filtering 
mechanism, such errors can distort the underlying physical 
picture and compromise the correction. In the current con- 
text such filtering mechanism is also critical for constraints 
on the virtual monitors since the latter can inherit errors 
from the physical data. The success of using virtual moni- 
tors thus depends on the ability to screen out errors in 
interpreted orbit data, to be discussed in the next section. 

3 INTERPRETING THE UNDERLYING ORBIT 
AND ERRORS 

We have to answer the following question: Given a set of 
physically monitored orbit errors, how does one derive the 
generalized orbit errprs for the virtual monitors? A com- 
plete set of orbit information of all beam coordinates at 
any location can be known given the following: corrector 
strengths, monitor readings, monitor errors, field and 
alignment errors, and injection errors. The last 3 errors, 
being unobservable, have to be estimated from the first 2 
and the model. The distinction between the injection and 
all the other misalignment type errors is artificial, depend- 
ing on choice of starting point. We therefore focus on two 
types of errors: monitor error and alignment type error. 
The effect of all alignment type error on the orbit XI at the 
pth monitors is 

(3 1 
where SX; is the misalignment induced error in the i-th 
coordinate at location indexed a. MY; is the transfer matrix 
element linking such error to the p-th monitor. 
The effect a monitor error has on the apparent orbit at the 
p-th monitor is simply its offset at that monitor 

Although not part of the real orbit, this error will be 
included as input to any orbit correction algorithm. 
It can be shown that with all the above errors included, the 
best orbit correction that can be achieved by any algorithm 
represented by E@ (1) is limited by the residual error E 

KP = SXy= CCMYY SX: 
a 1  

A’ = SX; (4) 

\\ I 
nMcM = I - nMcM 

where MCM is the response matrix linking all correctors to 
all monitors, l?- and ll\\ are projection operators mapping 
any vector into components outside and inside the sub- 
space spanned by the column vectors of McM, and K and 
A are the error vectors of Eqns (3) and (4). Eqn (5) is intu- 
itively obvious since no corrector system can eliminate an 
orbit error pattern which is outside the corrector’s reach, 

while only the part of a “fake” orbit error pattern due to 
monitor offsets that is correctable will lead to real but 
unobserved residual orbit errors after correction. An 
important task for any intelligent orbit correction algo- 
rithm is to distinguish the signature of these two very dif- 
ferent sources of errors before applying correction. This 
can not be achieved exactly since the problem is usually 
underconstrained. An algorithm developed to obtain con- 
sistent estimates however proveid successful in a wide 
range of cases. This is described in the following sections. 

3.1 Alignment biased solution 
We start with the extreme assumption that any discrepancy 
between observed orbit, corrector strennth, and model 

.. 

1 
is predominantly attributable to monitor errors. We then 
perform singular value decomposition (SVD) on the 
response matrix M a  from a wide range of alignment 
error locations and coordinates to all monitors 

MA, = U T * W * V  
The matrix V consists of orthonormal combinations of 
alignment errors which have decoupled effects in the mon- 
itor space represented by U. These effects Vi are then 
compared to Yi of Eqn (6) in turn to identify the error 
combination responsible for Yi. This is iterated to build a 
matrix N of combined error effects to account for Yi 

N.. = UJ 
?I I 

Nt = N (NT N,’ 

Sj = CN*,i  Yi 
i 

Yi -+ Y i - x N i j  Si 
j 

It was indicated that the orbit discrepancy Yi is reduced at 
each iteration as more alignment errors are included, and 
thus will represent progressively more contribution due to 
monitor errors. Yi is also used to update the weighting of 
monitors at every iteration to speed up the distinction of 
major monitor errors above noise level. The iteration is 
terminated when the algorithm detects an un-natural jump 
in the alignment error magnitude S .  in Eqn (7), signaling a 
monitor error being mis-interpreted as alignment-induced. 

3.2 BPM biased solutiora 
We start with the extreme assumption that the orbit dis- 
crepancy of Eqn (6) is predominantly attributable to align- 
ment type errors. We perform the same iteration process as 
described in the last section. The only difference is that the 
monitor weightings are not updated, and since the monitor 
errors are assumed to be more reliable, the iteration termi- 
nates when the orbit discrepancy is below a specified limit. 

3.3 Interpolation between the biases 
An entire spectrum of orbit interpretations can be interpo- 
lated between these two extremes. Such interpolation also 
represents a compromise between globally and locally-ori- 
ented interpretations of the data, since the more alignment 
error one introduces to account for the discrepancy, the 
more emphasis is given to satisfying the short range obser- 
vation at the expense of global consistency. This algorithm 
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allows user defined criteria for choosing a desired interpo- 
lation, for example, the one with minimal combined RMS 
of alignment and monitor errors. 
The introduction of alignment errors amounts to enhanc- 
ing the fitting parameters in a rigid injection fit, with only 
responses from injection to monitors. We can represent 
this enhanced response with a matrix U, which contains at 
least the injection responses, and maybe any number of 
responses to alignment errors. The final residual correction 
error becomes, with input of the interpreted orbit: 

where the projection operators J3' and IT'' are as defined 
in Eqn (5). Depending on the predominance of alignment 
or monitor error, changing the content of Uo, amounting to 
interpolation between the two biases, can help offset the 
effects of K or A and reduce the overall residual error. 

4 IMPLEMENTING VIRTUAL MONITORS 

Once the interpretation of the underlying orbit is decided, 
we have the complete information of beam coordinate at 
any location. The virtual monitors described below use 
this information as input to the steering algorithms. 

4. I Generalized steering constraints realized as virtual 

Very often not only the orbit at the monitors are targeted 
for correction, but also injection angle at the end of the 
line, orbit at un-monitored locations, or even overall path- 
length need to be constrained simultaneously. Knowing 
the interpreted beam coordinate everywhere, one can eas- 
ily include these as orbit errors at virtual monitors, and 
feed this together with the relevant response matrix ele- 
ments and weighting to a generic steering algorithm. The 
latter has no need to know a priori that the input contains 
more than pure position data at the real monitors. 
Another type of steering constraint happens with orbit 
dependent optics. When the orbit is changed, the higher 
order optical elements pick up extra contributions. We are 
especially interested in the effects of chromaticity-like ele- 
ments Ti.6, the orbit effect of which on the linearized ele- 
ments 46 between points a and b can be expressed as 

monitors 

6 ~ : :  = cc2 T:k Mi: 6xE 
jt6 k c 

+ EX2 T$ ax; (9) 
j c  

where we sum over all the locations c with appreciable 
coordinate change andor Ti,& The second term in the sum 
of Eqn (9) becomes dominant with large chromaticity-like 
optical elements and a steering constraint on the overall 
Mi6 can be realized again through virtual monitors which 
simply have as response matrix elements the product of 
these Tus's and the ordinary Mij's. 

4.2 Virtual monitors created for singularity control 

To combat the problem of excessive correction due to 
response matrix singularities, an algorithm is developed 
which automatically places extra constraints in the form of 

virtual monitors coupling strongly to the singular corrector 
combinations. It is outlined in the following. 
1. Determine cutoff numbers R and S, R measures the 
evenness in corrector effect distribution among monitors 
reflected in SVD condition number. S with 0 < S < 1 mea- 
sures orthogonality of the corrector effects. 
2. Form a set C, of locations densely covering the beam 
line of interest, not necessarily' tied to any physical ele- 
ments. Form the response matrix MCA from all correctors 
to these locations. 
3. Perform SVD on the corrector-to-monitor response 
matrix MCM, if the condition number NE&, i. e., the ratio 
between the largest and the smallest singular values, is 
greater than R, or the normalized Gram determi- 
nant GMcM [ 11 is less than S to the power of the number of 
correctors, continue. 
4. Identify the row v of V with the smallest singular value. 
5.  Apply the matrix McA to the vector v. Identify its larg- 
est component with index j. 
6. Place a virtual monitor at the j-th location in the set CA. 
7. Iterate steps 3-6 until N:& and G M ~ ~  satisfy the con- 
ditions specified in step 3. 
Once all the virtual monitors are identified, the interpreted 
orbit at these locations are added to the input orbit for the 
steering algorithm. The steering result should be automati- 
cally free of singularity. 

5 STATUS OF APPLICATION 

The algorithm described in this report has been prototyped 
in Mathematica and tested on a wide range of CEBAF 
machine data. From these tests the error analysis algorithm 
of Section 3 performed satisfactorily. It was used to iden- 
tify BPM offsets and misalignments in various areas. Sin- 
gularity-induced excessive correction has been observed in 
the lower arcs at CEBAF and verified by simulation. The 
algorithm of Section 4 for eliminating such problems 
using virtual monitors has been tested against simulation 
and found to perform extremely well. Inclusion of general- 
ized steering constraints such as angle and path length has 
been tested in simulation. Inclusion of higher order optical 
effects has not been tested. Application to simultaneous 
multiple pass steering has been tested separately. 
Implementation under the on-line control system [2] is 
being carried out. With the degree of versatility and 
robustness to be built into the production version, it is 
expected to meet the unique demands for global orbit con- 
trol at CEBAF. 
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