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Abstract 
. 

A theoretical two-phase-flow analysis is developed to describe the quasi-steady propagation, 
across a pressure jump, of a multi-phase deflagration in confined porous energetic materials. The 
difference, or overpressure, between the upstream (unburned) and downstream (burned) gas pres- 
sure leads to a more complex structure than that which is obtained for an unconfined deflagration 
in which the pressure across the multi-phase flame region is approximately constant. In particular, 
the structure of such a wave is shown by asymptotic methods to consist of a thin boundary layer 
characterized by gas permeation into the unburned solid, followed by a liquid/gas flame region, 
common to both types of problems, in which the melted material is preheated further and ulti- 
mately converted to gaseous products. The effect of gas flow relative to the condensed material is 
shown to be significant, both in the porous unburned solid as well as in the exothermic liquid/gas 
melt layer, and is, in turn, strongly affected by the overpressure. Indeed, all quantities of interest, 
including the burned temperature, gas velocity and the propagation speed, depend on this pressure 
difference, leading to a significant enhancement of the burning rate with increasing overpressure. 
In the limit that the overpressure becomes small, the pressure gradient is insufficient to drive gas 
produced in the reaction zone in the upstream direction, and all gas flow relative to the condensed 
material is directed in the downstream direction, as in the case of an unconfined deflagration. 
The present analysis is particularly applicable to those types of porous energetic solids, such as 
degraded nitramine propellants, that can experience significant gas flow in the solid preheat region 
and which are characterized by the presence of exothermic reactions in a bubbling melt layer at 
their surfaces. 

3/4 



INFLUENCE OF PRESSURE-DRIVEN GAS PERMEATION ON THE 
QUASI-STEADY BURNING OF POROUS ENERGETIC MATERIALS 

1. Introduction 

The combustion behavior of porous energetic materials is of increasing interest due to the 

realization that even supposedly nonporous materials may develop significant porosities over time 

due either to aging or to other types of degradation that may arise from exposure to abnormal 

environments. In such materials, two-phase-flow effects are especially significant due to the presence 

of gas flow relative to the condensed material both within the unburned porous solid as well as in the 

exothermic liquid/gas layers that typically form on the surfaces of many types propellants (e.g., 

nitramines). In the presence of confinement, the significance of the convective transport effects 

due to two-phase flow are enhanced, leading, through gas permeation into the unburned solid, to 
a preheating of the solid and, consequently, to a strong enhancement of the burning rate relative 
to the unconfined case. Indeed, this type of preheating associated with gas permeation into the 

-, unburned solid is generally associated with the onset of specially identified modes of combustion, 
such as convective burning (cf. [l] and the references therein). 

In the present work, we analyze, by means of asymptotic methods, certain effects of confine- 

ment on the deflagration structure and burning rate. In particular, we identify a quasi-steady 

propagation regime that is characterized by a leading boundary layer in the solid/gas region in 
which there is a rapid rise in pressure, followed by a liquid/gas region in which additional preheating 

and chemical reaction occur (Fig. 1). The pressure gradient in the boundary layer, in turn, drives 
gas produced in the reaction zone in the direction of the unburned solid, and thus one fundamental 
difference between the confined and unconfined cases is the direction of the gas flow in the solid/gas 

portion of the multi-phase flame structure. For this reason, this type of propagation mode that 

we seek to describe has been described in other types of flame-sheet analyses as a “gas-permeation 
boundary-layer” regime [2] by virtue of the fact that in sufficiently confined geometries, burning is 
enhanced by burned-gas permeation ahead of the reaction zone into the solid/gas preheat region. 

The model used to investigate the wave structure described above is a modification of that 

derived previously [3], which, in turn, is essentially a simplified version of more general mod- 

els of two-phase reacting flow (cf. [4]). In particular, the continuity and energy equations for 
each coexisting phase remain the same as in our previous study [3], as is the expression used for 
the liquid-phase velocity that, in turn, was motivated by liquid-phase momentum considerations 

[5] e However, the approximation of constant gas pressure, although appropriate under certain 
conditions for unconfined deflagrations, is clearly inadequate for the confined problem, which is 
characterized by a gas-phase pressure gradient in the solid/gas portion the multi-phase flame, and 



a subsequent drag on the gas-phase velocity in the gas-permeation boundary layer. Accordingly, we 

phenomenologically relate the gas velocity to the pressure gradient in this layer by adopting Darcy’s 

law for flow in a porous medium. As an additional simplification, however, we shall assume good 

thermal contact between coexisting phases and adopt the single-temperature approximation that 

the temperature at a given spatial location is the same for each phase. In keeping with our goal of 

focusing on two-phase-flow effects, we shall also deliberately simplify the chemistry by postulating 

the overall process R(s)  - R(1) - P(g), where the first step denotes the melting (assumed to 

be slightly endothermic) of the solid material, and the second represents a one-step exothermic 

process in which liquid-phase reactants are directly converted to burned gaseous products. For 
the present, we confine our attention to the case of a one-dimensional quasi-steady deflagration, 
leaving consideration of instability and other nonsteady and/or multidimensional effects for future 

work. 

2. Formulation 

A sketch of the physical problem is shown in Fig. 1. The unburned porous solid lies generally 
to the left, and the burned gas products lie to the right. The two are separated by a deflagration 

wave that moves from right to left, converting the former into the latter. These regions (unburned 
and burned) in turn are bounded on the left and right, respectively, but these boundaries are 
assumed to be sufficiently far away (relative to the width of the flame region) that the primary 

effect of confinement on the combustion wave itself is on the difference that develops between 

the upstream and downstream values of the pressure. In particular, the pressure becomes greater 

in the burned region (due to the production of gas via chemical reaction) than in the unburned 

solid, where, unlike the liquid/gas region, the drag on the gas flow associated with Darcy’s law 

implies that the pressure sufficiently far upstream approaches its ambient value. The structure of 
the combustion wave thus consists of a solid/gas preheat region that contains a gas-permeation 
boundary layer in which the pressure rises from its ambient value to its larger (possibly much larger) 

value in the liquid/gas region, the melting surface that marks the left boundary of a liquid/gas 
preheat region (and the right boundary of the gas-permeation layer), the liquid/gas preheat zone, a 

relatively thin exothermic reaction layer in which chemical reaction occurs, and the burned region 
that extends to the right boundary. In the present work, we shall restrict attention to one spatial 

dimension (Z), and use the subscripts s, 1 and g to denote solid, liquid and gas-phase quantities, 
respectively. Upstream conditions in the unburned porous solid are denoted by the subscript u, 

while downstream conditions in the product gases are identified by the subscript b. The appearance 
of a tilde over a symbol (e.g., 2)  denotes a dimensional quantity. 

The governing system of equations are as follows. Denoting the melting surface that separates 
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the solid/gas and liquid/gas regions by 5 = I,, and the gas-phase volume fraction by a, continuity 

in the region iE > iEm is expressed separately for the liquid and gas phases, where the latter may 

be replaced by an overall continuity equation for the two-phase medium. Consequently, we have 

7 ?>Zm, (1) - [(I - a>pl] + - [(I - a)?liil] = - A P ~ ( I -  a> exp ( -B~/R"T) 

(2) 

d d 
at aa: 

d a 
dI [(l - a)pl + a F g ]  + - [(l - a)p& + CYpgG9] = 0, a: > Zm. 

where p ,  ii , f and t denote density, velocity, the single temperature and time, respectively. For 
simplicity, we will assume a constant value for j51, but not for fig. In the reaction rate expression, 

El is the overall activation energy, &' is the universal gas constant, and A is the exponential 

reciprocal-time prefactor which, for simplicity, will be assumed constant. For this type of global 
kinetic modeling, however, it may be reasonable to assign a pressure, as well as a temperature, 

dependency to A. In the solid/gas region 5 < 2,) we assume for the solid phase a constant density 

,ijS and zero velocity (6, = 0), with a a, also constant in this region. Gas-phase continuity for 
2 < Zm is thus independent of the solid phase and is given by 

c 

a& a - -  - + (pgug) = 0 ,  2 < a:,. af (3) 

Conservation of energy for each phase in the liquid/gas and solid /gas regions is similarly 

given by separate equations for each coexisting phase, which, as before, may be summed to give an 
overall energy equation in each region. In the single-temperature limit, however, only the overall 

energy equations remain (cf. [3]) and these are given by 

a d 
at - [ P l ( l  - CY)(Q + El?) + pgzgaT] + [P l i i l ( l  - a)(Q + EL?) + jjgE,iigaT] 

where Eq. (1) has been used to eliminate the reaction-rate term in Eq. (4). Here, E ,  and @ denote 
heat capacity (at constant volume for the liquid, and at constant pressure for the gas, both assumed 
constant), thermal conductivity and pressure, respectively, and Q is the heat release for the global 

reaction at temperature f. We remark that because of the small Mach number and the small 
ratio of gas-to-condensed phase densities in the problems to be considered, no terms involving the 
pressures in the condensed phases appear in these equations, where the terms involving @, arises 
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from the contribution to the rate of change of the internal energy of the gas from the sum of the 

rate of surface work -6’(a6g@g)/6’Z and the rate of volume work -@,aa/& performed by the gas. 

Although analogous equations may be written for momentum conservation, we avoid intro- 
ducing them explicitly by adopting certain simplifying approximations which are often used in 

these types of problems. In particular, in place of gas-phase momentum, we adopt Darcy’s law 
in the solid/gas region, and assume, based on the small Mach number assumption, that the gas 

pressure is homogeneous in the liquid/gas region. If it is further assumed that the gas pressure in 
the burned region varies on a longer time scale than that associated with the flame structure itself 
(i.e., provided the confining boundary is sufficiently remote with respect to the flame), then the 

upstream and downstream pressures may be regarded as constant in the quasi-static sense. This 
argument is supported by the numerical calculations in [2], which led the authors of that study, 

which was based on a flame-sheet assumption, to delineate this quasi-steady regime as the “gas- 
permeation boundary-layer solution,” so named because of the gas permeation in the solid/gas 
region, described later in the paper, that arises from the difference, or overpressure, between the 
upstream and downstream values of the gas pressure. Thus, in place of gas-phase momentum, we 
adopt the conditions 

where K. is the permeability of the solid/gas region and fig is the gas-phase viscosity. The gas itself 
is assumed to be ideal, and thus fig is coupled to the other field variables through the gas-phase 
equation of state, 

13, = pgPT/Wg, (7) 

where is the molecular weight of the product gas. Consideration of condensed-phase momen- 
tum, on the other hand, leads in principle to an equation for the liquid-phase velocity 61. Based 

on the analysis in [5] ,  a reasonable first approximation is to set the condensed velocity equal the 
condensed mass burning rate divided by the condensed-phase density. In the present context, this 
implies that, since ii, = 0, 

d t  
where dFm/d f  < 0 is the (unknown) propagation velocity of the melting surface. A modification 
to this expression that introduces a linear dependence of 61 on the gas-phase volume fraction Q 

that qualitatively takes into account viscous and surface-tension-gradient (Marangoni) effects in 

the liquid/gas region was also proposed [5] ,  but in the present work we shall adopt the simpler 
result given by Eq. (8). 

The above equations now constitute a closed set for the variables a, Gg, p, pg and Fg. The 
problem is thus completely determined once initial and boundary conditions (including interface 

8 



relations at 5 = ICm) are specified. As in our previous study of the constant-pressure (unconfined) 
problem [3], we will not be concerned with the initial-value problem, but only the long-time solu- 
tion corresponding to a (quasi-) steadily propagating deflagration. Thus, the required boundary 

conditions are given by 

f 

a = a s  for I C < < ~ ;  i i , - t o ,  T-+T,, j ig+$;  as z+---oo, (9) 

$,=$ for < > z m ;  a - 1 ,  f ig+ i i i ,  T+Tb as IC++oo, (10) 

where the burned temperature i?b and burned gas velocity 6: are to be determined, and the 
unburned and burned values 6: and 6; of the gas density follow from the equation of state. We 
remark that the upstream boundary condition on the gas velocity is in fact merely a consistency 

condition in the present formulation, since it is implied by the corresponding upstream condition 
on pressure and the first of Eqs. (6). Finally, denoting by f superscripts quantities evaluated at 
IC = IC$ ,  the continuity and jump conditions across the melting surface are 

and, from conservation of enthalpy flux across IC = ICm,  

where Ts is the heat of melting of the solid at temperature ? = 0 (rs being negative when melting 
is endothermic). 

3. Nondimensionalizations and the Quasi-Steady Problem 

In the present work, we confine our attention to the case of a quasi-steady deflagration that 
propagates with the (unknown) speed 0 = -diEm/df, which is a convenient characteristic velocity 
for the problem. Assuming constant values for heat capacities and thermal conductivities, we then 
introduce the nondimensional variables 

where 6; = $:l?l,/~"f" denotes the gas density at the unburned temperature Tu. In addition, the 
nondimensional parameters 
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are defined, where y is the ratio of specific heats for the gas. It may be remarked that A is the 

appropriate burning-rate eigenvalue, the determination of which will provide the propagation speed 

0. 
In nondimensional units, the propagation speed is minus unity. Hence, transforming to the 

moving coordinate 5 = 2 + t whose origin is defined to be 2,) and introducing the above nondi- 

mensionalizations, steadily propagating deflagrations for the problem formulated in the previous 

section will be determined as solutions of the steady eigenvalue problem 

d 
- b g b g  + 1>1 = 0 > E < 0 > 
d l  

- [r(1- a)(ul + 1) + fapg(ug + l)] = 0 ) 
dE 
d 

> 0 ) 

d - [(l - a)(ul+ l )]  = -A( l  - a)exp 
4 

d T  A d 
(1 - a s ) -  +?bas- [(ug + l)pgT] = - 

dE dE 
d d d T  

[ ~ ( l  - a ) ( u ~  + l)(Q + bz) + ?&ug + l)pgT] = - { [1(1- a )  + i"] -} 
d5 dE 

P& = P g  > 

1 
211 = ;(1- r )  ) 

subject to the boundary and melting-surface conditions 

Q = a,, ug = --- K ( Q s ) d ~ g ,  for < < o ;  T - + 1 ,  p g + l  as 5-t 
Qs dE -* 9 

= (1 - QS) [-^IS + ( b  - l)Tm] . (25) 
(=O- 

Thus, the final model for quasi-steady, planar deflagration that has been derived is given by Eqs. 

(15) - (25). We observe that pg and ILL are readily eliminated from the problem by substituting 

Eqs. (20) and (21) into Eqs. (15) - (19), giving a simplified equation set for a, ps ,  ug and T as 

d 
- [(l - cy) + Pa%(ug + l)] = 0 )  > 0 dE T 

10 
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r 

d - ( l - a ) = - r h ( 1 - a ) e x p  
d< 

where the alternate expression for the coefficient ii indicated in Eq. (14) has been used in the last 

term of Eq. (29). 

4. Determination of T b ,  uk and ug(0) 

A partial solution in the region E < 0, where chemical activity is absent, as well as expressions 
for T b ,  ut and ug(0) = uglt=o, are obtained as follows. From Eqs. (26) and the boundary conditions 
(22), we have 

P&g + 1) = T ,  E < 0 ,  (31) 

and hence 

We observe from Eq. (31) that since T 2 1, the gas velocity ug > -1 in the gas/solid region < < 0. 
That is, consistent with a quasi-steady mode of burning, the speed of gas permeation into the 
solid must be less than the propagation speed of the deflagration. Equation (27) and the surface 
conditions (24) and (32) then imply 

(34) 

which, upon evaluation at = 00, determines ui in terms of Tb as 

b (2)  -1. 
l - a , + ? a ,  

u =  
i 9 

Turning attention to the energy equations (29) and (30), we may readily perform a single integration 
and use the above relationships to obtain 

dT 
dE 

[b(l- a)  + 6(a - a, 4- 'fa,)] T = [1(1- a)  +fa] - - ( l -a )Q+6(1-as+~~, )Tb,  < > 0 .  (36) 

Thus, subtracting Eq. (35) evaluated at 5 = 0- from Eq. (36) evaluated at < = 0' and using the 
jump condition (25), we obtain an expression for Tb given by 
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which, from Eq. (34), determines u: as 

We note that in the limit p i  --f 1, Eqs. (37) and (38) collapse to the previous results for unconfined 

burning, where in place of Darcy's law in the solid/gas region, the approximation p ,  = 1 was used 

throughout. It is clear from these results that, since 0 < x = 1 - l /y  < 1, T b  increases linearly 

with the overpressure p i  - 1, as shown in Fig. 2. It is readily seen that for small overpressures T b  

decreases with increasing values of the porosity a,, whereas at higher overpressures, the opposite 

trend is observed. Indeed, denoting the burned temperature at zero porosity by 2'; = (Q+l+ys)/6, 

which is independent of p:, we obtain from Eq. (37) that for a, > 0, Tb = 2'; at the critical value 

of overpressure given by p: - 1 = (T: - l)/x. For overpressures greater than this critical value, 

the preheating effect due to gas permeation is sufficient to overcome that due to a decrease in the 
amount of solid material, resulting in an increase in burned temperature above Tt .  It is clear from 

Fig. 2 that the magnitude of the difference Tb - Tt at a given value of the overpressure is an 

increasing function of as. In connection with this result, we observe from Eq. (38) and Fig. 3 that 
the burned gas velocity u: is a monotonically decreasing function of the overpressure. In fact, for 

sufficiently large overpressures that satisfy the condition 

a 

which depends on as, we find that ui is negative, implying a gas flow in the upstream direction 

throughout the multi-phase flame. This is clearly illustrated in Fig. 3, which shows the curves for 

ui as a function of p: - 1 crossing the horizontal axis at the above critical value of the overpressure. 
Also shown in Fig. 3 is the value of the gas velocity us( [ )  at the solid/liquid interface [ = 0, which 
is only positive for relatively small values of the overpressure. In particular, from Eq. (32), uJ0) 

crosses the horizontal axis at the critical value p l  - 1 = T, - 1, beyond which gas flow is directed into 
the solid/gas region, resulting in the preheating effect due to gas permeation as described above. 

Further solution of the problem in the liquid/gas region, which is necessary for the determination 

of the burning-rate eigenvalue, is considered in the following section. 

Before proceeding with an analysis of the liquid/gas reaction reaction region, we observe that 

the problem in the solid/gas region can be reduced to a scalar problem for the gas pressure p g .  In 
particular, from Eq. (31) and the Darcy formula for ug in Eq. (22), T and thus u, are given in 
terms of p ,  by 

(40) 
T 
P9 

T = P g  (I-;%), ug=-- 1, < < O .  
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Substituting these results into Eq. (35) thus yields a second-order equation for pg in the region 

< < 0 given by 

[ ( a", 2) - 11 = (l-a,+Za,)- * [Pg (1 - E%)] +&ta,(~,-l), (41) 
dJ 

(l-a,+.i.ia,) p, 1 - -- 

subject to the boundary conditions 

where the second condition follows from the Darcy formula and Eq. (32) for ug evaluated at < = 0. 
We note that the last condition, aside from being consistent with the first of Eqs. (40), is already 

built into Eq. (41) by virtue of the fact that Eq. (41) is really a first integral of Eq. (29). Had 

the above expression for T been substituted directly into the latter, a third-order equation for pg 

would have been obtained, permitting the specification of the three boundary conditions (42). The 

problem (41) - (42), the solution of which will determine T and ug according to Eqs. (40), will be 

treated in the section following the determination of the burning-rate eigenvalue. 

5.  The Burning-Rate Eigenvalue 

In order to determine the burning-rate eigenvalue, we must complete our analysis of the 

liquid/gas region < > 0. In this regard, Eqs. (28) and (36) constitute two equations for T and 

a in this region, with ug then determined by Eq. (33) and the eigenvalue A determined by the 

boundary conditions. In order to handle the Arrhenius nonlinearity, we exploit the largeness of 

the nondimensional activation energy N and analyze the problem in the asymptotic limit N >> 1. 
Since pg = p: in the liquid/gas region, the analysis below follows closely that given in [3] for the 

unconfined problem. 

In the limit N t 00, all chemical activity is concentrated in a very thin region where T is 

within 0(1/N) of T b .  Denoting the location of this thin zone by JT > 0, we see that the semi- 
infinite liquid/gas region is comprised of a preheat zone (0 < < < &) where chemical activity is 

exponentially small, the thin reaction zone where the chemical reaction goes to completion, and a 

burned region < > &.. Thus, we conclude from Eq. (28) that 

and from Eqs. (33) and (34), 
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Since T is within 0(1/N) of T b  in the reaction zone, the analysis of this thin region requires the 

use of a stretched coordinate (see below). As a result, T is continuous with respect to the 0 ( 1 )  
outer variable J at J = Jr, and thus the gas velocity jumps across < = <y by the amount 

= -(1 1 - i)( l  - a,)- T b  
Pi ’ (45) 

which is positive assuming the unburned gas density is less than that of the solid (i.e., i < 1). 
Finally, using Eq. (43)) Eq. (36) may be integrated a second time to completely determine the 

outer temperature profile in the liquid/gas region as 

where 

B r  (1 - + 7s) + ?bas [I + X(PE - l)] 
b ( l  - a,) + d a ,  (47) 

We note that T ( J )  for [ < 0 is still to be determined from Eq. (40) and the solution of the 

pressure problem (41) - (42) ,  as described in the next section; however, it is not required for the 
determination of the burning-rate eigenvalue A. The location tr of the reaction zone, which appears 
as a sheet on the scale of the outer variable <, is thus determined by Eqs. (46) from continuity of 
T as 

The determination of the burning-rate eigenvalue A, as well as the spatial evolution of the 
variables a and ug (which are discontinuous on the scale of the outer variable <), requires an 

analysis of the thin reaction-zone region in the vicinity of Jr. We thus introduce a stretched inner 
variable 7 and a normalized temperature variable 0 defined by 

where /3 is the Zel’dovich number, and seek solutions in the form of the expansions 

Q N CY0 +p-la1 +p-2az + * * , ug - uo +/3-1u1 +p-2u2 + . - .  ) 
@ ~ 1 + / 3 - ~ @ l + P - ~ 8 2 + . . *  , A N P(Ao + P-’ A1 + ,f3-2A2 + ) . 

The coefficients in the expansion of ug are readily determined from Eq. (33) in terms of the ai 
and &, which themselves are obtained from solving the sequence of inner problems that arise from 
substituting the above expansions into Eqs. (28) and (36) and matching with the outer solutions 
for < < <r and < > <,.. In particular, at leading order the inner problem is given by 

- da0  = rAo(1-  LYO) e el , 
dq 
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subject to the matching conditions 

Here, D and E are defined as 

D ( b  - b)Tb + Q ,  (55) 

where the latter is calculated from Eq. (46). 
The problem (51) - (54) is identical in form to that obtained for the corresponding unconfined 

problem [3], and is readily solved by employing a0 as the independent variable. Thus, using Eq. 
(51), Eq. (52) may be written as 

which is readily integrated from as (at 7 = -m) to any a0 5 1 to give 

Evaluating the latter at a0 = 1 (at which O1 = 0) thus determines the leading-order coefficient A0 
in the expansion of the burning-rate eigenvalue as 

and using this result in Eq. (57) for arbitrary a0 then determines 81(ao) as 

In [I + (i - ~)ao]  - In [1+ (i - z)aS] 

l n i -  In [Z + (i- ~)a ,]  el(a0) = (59) 

The determination of ao(q), and hence &(q) ,  then follows directly from Eq. (51). 
From Eq. (58) and the definition of A [see the last of Eqs. (14) and (50)],  the leading-order 

expression for the dimensional propagation speed 0 is given by 
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where Nu = El/k'T;, = NTb is independent of Tb and the last factor, which contains the complete 

dependence of the burning rate on the thermal conductivities, is given by 

c - 4 9 x, = 51. 

The expression (60) for the burning rate, though identical in form to that obtained for the case of 

constant pressure [3] , nonetheless differs implicitly from that result through the linear dependence 

of Tb on the overpressure p i  - I. 
In order to analyze the dependence of the burning rate on the overpressure, it is convenient 

to define the normalized burning rate U* = l?(p:)/o(l), where the argument denotes the value of 

p:. Consequently, from Eq. (60)) we obtain U* = Un[A(p:)/A(l)]1/2, where the coefficient U, is 
given by 

( b  - & ) % ( I )  f Q 
( b  - 6)Tbb;) f Q 

and where Tb as a function of p: is given by Eq.(37). In this form, it is readily seen, since Tb is 
a linearly increasing function of overpressure and the nondimensional activation-energy parameter 

Nu is typically very large (note the definition of Nu is in terms of the unburned temperature 
Tu), that U, is exponentially sensitive to Tb and hence p i  as the overpressure p i  - 1 increases 

from zero. Thus, as the overpressure increases, the burning rate increases exponentially (Fig. 
4), reflecting the sensitivity to the corresponding increase in the rate of gas permeation into the 

solid/gas region given by Eq. (32). We remark that this result cannot be predicted with the type 
of constant-pressure model appropriate for unconfined deflagrations [3], since in that case, the gas 

flow is always in the downstream direction (if one imposes the upstream boundary condition that 
ug vanish) and an increase in pressure serves to decrease Tb due to the increase in the gas density 
(+ increases) that absorbs more of the heat of reaction. In the present context, the upstream gas 
density + remains constant, and an increase in overpressure serves to preheat the unburned solid 
through enhanced permeation of the burned gas into the solid/gas region. In the limit of large 

overpressures, Ti1 becomes small and the exponential factor in Eq. (62) approaches a constant 
value. Consequently, in the range of large overpressures, the dependence of U, on p: becomes 
algebraic. This is also illustrated in Fig. 4, in which case (since b = 8) the saturated dependence 
of U, on p i  is linear. We note that this feature (exponential transition to an algebraic pressure- 
dependent burning rate) is qualitatively consistent with most experiments in Crawford-type (large 
volume) bombs that indicate a rapid increase in the burning rate frequently associated with the 
onset of convective burning (cf. [2],[6]), followed by a less dramatic pressure dependence that is 
typically represented in the form Apn. 
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6. Analysis of the Gas-Permeation Layer 

Although the calculation of the burning-rate eigenvalue in the previous section did not require 
a detailed knowledge of the actual solution profiles in the solid/gas region [due to the fact that it 

was sufficient to determine the results (31) - (32) for tig], it is nonetheless of interest to compute 

those solutions to better understand the effect of an overpressure on gas permeation into the 

unburned porous solid. It is thus convenient to define the overpressure p = p ,  - 1, in terms of 

which the pressure problem (41)  - (42) can be written as 

d t  
(1 - a, + ?6a,) + I)*] + & a s p ,  (63) 

subject to 

Since our goal is a qualitative understanding of gas-permeation effects, it suffices to obtain approx- 

imate solutions using asymptotic methods. In particular, we introduce a bookkeeping parameter 

E << 1 and consider the realistic parameter regime in which i ,  i, a,, and ~ / a ,  are all O ( E ) ,  where 

we note that the permeability K is usually proportional to some power of a, that is greater than 
unity (cf. [4,7]). That is, we scale these small quantities as 

, 
A n  a,=a;E, I E = K E ,  * 2  i= i *€ ,  l = l * E ,  

in terms of which Eqs. ((63) and (64) become 

We now proceed to obtain asymptotic solutions for two primary cases of interest. 

For 0(1) overpressures, the second condition in Eq. (67) suggests that there is an O(E) 
boundary layer in the vicinity of E = 0. Accordingly, we introduce the stretched coordinate 
q = < / E  and seek the boundary-layer, or inner, solution in the form p = pi - po + . - . In terms of 
these variables, the leading-order version of Eqs. (66) and (67) in the boundary layer is thus given 

bY 

17 



where only the first two conditions in Eq. (67) apply to the boundary-layer solution. Integrating 

Eq. (68) twice and applying the above conditions at q = 0, we obtain an implicit solution for po as 

Denoting this solution by po(q), we note that since po ---f Tm - 1 > 0 as q + -a, the inner solution 

cannot satisfy the last boundary condition in Eq. (67). Thus it is necessary to construct an outer 

solution p = po - 40 + on the scale of the outer variable <. From Eq. (66), the equation for qo 

is given by 
dqo 

qo = Z' 
or qo = c1 ec, This clearly satisfies the outer boundary condition at < = -03, whereas the require- 

ment that it match with the inner solution (70) as 6 + 0 determines that the integration constant 

~1 = lirnV+-- qo(q)  = Tm - 1. Thus, 

40 = (Tm - 1)e' 7 

and a leading-order, uniformly-valid composite solution is given by 

(73) 0 p =po  + p i  - limp N PO(</€) + (Tm - l)(eE - l ) ,  

where the leading-order inner solution po has been functionally expressed in terms of the outer 

E--0 

variable [. The above inner, outer and composite solutions are illustrated in Fig. 5. From Eq. 

(73) and the first integral of Eq. (68), the gas velocity in the solid/gas region is, in turn, given by 

which, being the derivative of a leading-order approximation, is correct to 0(1), with an O(E)  error 
at < = 0 [see Eq. (32)]. We observe that PO((/E) --f Tm - 1 as < approaches O(1) negative values, 

and thus, as indicated in Fig. 5 ,  it is clear that gas permeation for 0(1) overpressures is only 

significant in the thin boundary layer adjacent to the solid/liquid interface, assuming pb > Tm - 1. 
Although this last qualification is by far the typical case (since Tm - 1 = Tm/Tu - 1 is not likely 
to be larger than unity), it is nonetheless of interest to point out that the structure of the solution 

will change as Pb approaches the value Tm - 1 due to the fact that the gradient of pressure at = 0, 
which has been scaled as O(e-l) in Eq. (67), will cease to be large in that limit. Indeed, for small 

overpressures (0 < pb < Tm - l), the pressure gradient becomes negative at < = 0, indicating, 

- -  
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according to Eqs. (22) and (32), a gas flow out of the solid in the downstream direction, as in the 

case of an unconfined deflagration analyzed previously under the constant-pressure approximation 

[31. 

The other primary case of interest in many applications is the limit in which the overpressure 

itself becomes large. In that case, it is useful to rescale p in Eqs. (66)  and (67) by defining the 
scaled overpressure P = ep. In terms of P ,  Eqs. (66)  and (67) become 

Since there is now no reason to suspect a boundary layer near 5 = 0, we seek a straightforward 

perturbation solution on the 5 - scale as P = Po N PO + . From Eq. (75), the leading-order 

problem for PO is thus given by 

A single integration of Eq. (77) gives 

where the boundary conditions (78) at 5 = 0 require that the integration constant c1 = 0. In that 

case, Eq. (79) implies two possible solutions, namely 

where the first solution satisfies the boundary condition at < = --oo and the second satisfies the 

conditions at E = 0 provided we choose c2 = Pb. Since negative values of pressure are unphysical, 

a continuous solution is given by 

which is valid everywhere except at E = -50 where the derivative is discontinuous. This kink in the 
solution thus suggests the existence of a thin corner layer in that vicinity. Hence, we interpret Eq. 
(81) as the leading-order outer solution, and proceed to construct an inner solution in a thin region 
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centered about = - t o .  In particular, we now define the inner variable 7 = E - ~ ( C  + to) and seek 

a solution of the form P = Pi N EO (PO + - - - ), where the latter scaling reflects the expectation that 
P is small in the corner layer, with 6 > 0 and c > 0 to be determined. Substituting these inner 

variables into Eq. (75), we determine that the ability to match the inner solution with the outer 

solution on either side of the corner layer requires that 6 = B = 1. In that case, the leading-order 

equation for po is given by 

""OI dv 
- [Po - -(Po a* + 1)- = 0 ,  
d K* 

dv 
the general solution of which is given by 

(83) 4 -7 + c2 = Po + (c1 + 1) q p o  - el) , 
E* 

where c1 and e2 are constants of integration. It is clear that po 4 e1 as q = -00, thereby requiring 
the choice c1 = 0 in order that this solution match with the outer solution (81) for 5 < -6. On 

the other hand, the one-term outer expansion of the inner solution (83)) written in terms of the 

outer variables, is given by P = (a : /~* ) (<  + io), which is identical to the outer solution (81) for 

< > -to.  Thus, the leading-order composite solution is, in fact, the inner solution (83)) which, 
when written in the outer variables, becomes 

where c2 is still undetermined. Although Eq. (84) is a valid leading-order approximation, we 
observe that the error at t = 0 is O(e In E ) ,  since the exact boundary condition is P = pb at < = 0. 
Consequently, it is clear that higher-order approximations would involve terms of this magnitude 
so as to satisfy this boundary condition. Examining Eq. (84)) we may anticipate this development 

by setting c2 = ln(Pb/E), giving rise an enhanced approximation of the form 

The outer and composite solutions (81) and (85) for the scaled overpressure P are illustrated in Fig. 
6. It is clear that in this case, gas permeation extends an 0(1) distance into the gas/solid region, 

although, as in the previous case of 0(1) overpressures, the extent of gas permeation remains, 

due to the relative smallness of the permeability K ,  an order of magnitude less than that of the 
overpressure itself. 

7. Conclusion 

Identifying a quasi-steady burning regime applicable to the deflagration of confined porous 
energetic materials, it was demonstrated that the existence of an overpressure in the burned gas 
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region has a significant effect on the burned temperature, gas-velocity profile, and the burning 

rate of the material. In particular, it was shown, by an analysis of an appropriate model incorpo- 

rating the primary aspects of two-phase flow in a porous material, that the burned temperature 

increases linearly, and hence the burning rate initially increases exponentially, with increases in 

the overpressure, followed by a more modest algebraic pressure dependence suggestive of Apn - 
type laws. This rapid increase in the burning rate, an explicit formula for which was derived, is in 

qualitative agreement with most experimental results on confined materials, which tend to show a 

sudden and rapid increase in the deflagration speed that is generally associated with the onset of 

convective burning. The present results lend further support to the concept that this transition is 

accompanied by gas permeation into the unburned material, the depth of which is generally less 

in magnitude than that of the overpressure itself. Thus, in contrast to the case of an unconfined 

deflagration, for which the gas flow relative to the condensed material is always in the downstream 
direction, the flow of gas in the unburned solid is, except in the limit of small overpressures, always 

directed in the upstream direction, providing an important mechanism for preheating the unburned 

material that results in an exponential increase in the burning rate. 
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Figure Captions 

c 
Fig. 1. Schematic illustration of deflagration in porous energetic material with two-phase flow in both 

the solid/gas and liquid/gas regions, with combustion occurring in the latter. An overpressure 

between the upstream (burned) and downstream (unburned) values of the gas pressure drives 

a permeation of the burned gases into the pores of the unburned solid. 

Fig. 2. Final burned temperature Tb as a function of the overpressure p i  - 1. As the overpressure 
increases past a critical value, Tb changes from a decreasing to an increasing function of the 

porosity a,. 

Fig. 3. Burned gas velocity u: as a function of the overpressure p i  - 1. Also shown is gas velocity 

ug(0) at the solid/liquid interface. Negative values indicate gas flow in the upstream direction, 

toward the unburned solid. 

Fig. 4. Normalized burning-rate coefficient U, as a function of the overpressure p: - 1. 

' Fig. 5. Pressure profile p(J) in the gas-permeation region for 0(1) overpressures. Also shown is the 

velocity profile ug (J). 

Fig. 6. Scaled pressure profile P(<) in the gas-permeation region for large overpressures. 
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