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DYNAMIC STABILITY OF ELECTRODYNAMIC MAGLEV 

SYSTEMS 

Y. Cai, S. S. Chen, T. M. Mulcahy, and D. M. Rote 

Argonne National Laboratory 

Argonne, IL 60439 

ABSTRACT 

Because dynamic instabilities are not acceptable in any commercial maglev 

system, it is important to consider dynamic instability in the development of all 

maglev systems. This study considers the stability of maglev systems based on 

mathematical models and experimental data. Divergence and flutter are obtained 

for coupled vibration of a three-degree-of-freedom maglev vehicle on a 

guideway consisting of double L-shaped aluminum segments. The theory and 

analysis for motion-dependent magnetic-force-induced instability developed in 

this study provides basic stability characteristics and identifies future research 

needs for maglev systems. 

INTRODUCTION 

For safety, maglev systems should be stable. The repulsive levitation 

system, or the so-called electrodynamic system (EDS), is often thought to be 

inherently stable. However, its response to perturbations is frequently unstable 

and susceptible to catastrophic oscillations, particularly in rectangular-trough 

configurations (Chen et al., 1992; Cai et al., 1995). So far, only a few analytical 

and experimental studies have been performed to gain an understanding of the 

stability characteristics of EDS-type maglev systems (Davis and Wilkie, 1971; 
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Ohno et al., 1973; Moon, 1974 and 1977; Chu and Moon, 1983; Yabuno et al., 

1989; Cai and Chen, 1993 and 1995). 

Motion-dependent magnetic forces are the controlling elements in the 

stability of maglev systems in which vehicles travel at high speed. At this time, 

very limited studies have been published and many stability issues remain 

unresolved. Therefore, the theory of motion-dependent magnetic-force-induced 

instability which consists of both quasistatic motion and unsteady motion theories 

(Chen, 1987) is developed for application to maglev systems in this paper. This 

integrated analytical/experimental study presents a systematic method on the 

stability of maglev systems and answers a series of questions on maglev stability. 

Simplified vehicle models were considered in order to gain an 

understanding of stability characteristics for maglev systems. Divergence and 

flutter are obtained from analytical solutions for coupled vibration of a three-

degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped 

aluminum segments, and compared with results of both numerical simulation and 

experimental data. 

MOTION-DEPENDENT MAGNETIC FORCES 

Motion-Dependent Magnetic-Force Coefficients 

Magnetic forces are needed for any vehicle dynamics analysis, guideway 

structural design, design of fastenings, and prediction of ride quality. These 

force components are considered from the standpoint of vehicle stability. 
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As an example, consider a rigid body vehicle with six degrees of freedom, 

three translations, ux, uy, uz and three rotation, cox, coy, coz, as shown in Fig. 1. 

Let U be the vector consisting of the six motion components; i.e., 
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The motion-dependent magnetic forces can be written 

6 
fi = X(mijtiJ + cij*J + kiJuj)-

j=l (2) 

where my, cy, and ky are magnetic mass, damping, and stiffness coefficients. 

These coefficients can be obtained analytically, numerically, or experimentally, 

and are functions of the system parameters (Cai et al., 1992). 

Experimental Methods to Measure Motion-Dependent Magnetic-Force 

Coefficients 

Quasistatic Motion Theory. The magnetic forces acting on an oscillating vehicle 

are equal, at any instant in time, to those of the same vehicle moving with a 

constant velocity with specific clearances equal to the actual instantaneous values. 

The magnetic forces depend on the deviation from a reference state of speed and 

clearance; i.e., the motion-dependent magnetic forces depend only on Uj, but not 

in and Uj, so that 
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fi = Zkijui- ( 3> 
j=l 

In this case, the magnetic forces are determined uniquely by the vehicle position. 

All elements of magnetic stiffness ky can be obtained. To determine ky, the 

magnetic force component f, is measured as a function of Uj. The stiffness, ky, is 

given by 

k « aUj-
 (4) 

In general, ky is a function of U. 

Unsteady Motion Theory. The magnetic forces acting on an oscillating vehicle 

will depend on U, U, and 0. The magnetic force based on the unsteady motion 

theory can be obtained by measuring the magnetic force acting on the vehicle 

oscillating in the magnetic field. For example, if the displacement component Uj 

is excited, its displacement is given by 

u j = u j exp(V-l cot). (5) 

The linearized motion-dependent magnetic force of the component fi acting on 

the vehicle is given by 

fi = [ay cos(\|/y) + V-l ay sin( vy )]u j exp( V ^ cot), (6) 
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where ay is the magnetic force amplitude and \|/y is the phase angle between the 

magnetic force and the vehicle displacement Uj. These values are measured 

experimentally. 

Using Eqs. (2) and (4), we can also write the motion-dependent magnetic 

force component as 

fi = (-myco2 + yf-L co cy + ky )u j expfV^ cot). (7) 

Comparing Eqs. (6) and (7) yields 

cy = aysin(\Ky)/co, mij=[ky-aijcos(\|/y)]/co2. (8) 

Based on Eqs. (4) and (8), all motion-dependent magnetic-force matrices can be 

determined from two experiments: quasistatic motion and unsteady motion. 

If my and cy are of no concern, the experiment using quasisteady motion is 

sufficient to determine ky. 

Quasistatic Motion-Dependent Magnetic-Force Coefficients of Maglev System with 

L-Shaped Guideway 

An experiment, recently conducted at Argonne National Laboratory, 

investigated the hft, drag, and guidance magnetic forces on an NdFeB permanent 

magnet moving over an aluminum (6061-T6) L-shaped ring mounted on the top 

surface of a 1.2-m-diameter rotating wheel (Cai et al., 1992 and 1995). 



6 

Based on the magnetic force data obtained from experiments we can 

calculate the quasistatic motion-dependent magnetic-force coefficients with 

Eq. (4). The curve fit to both magnetic forces and stiffnesses were derived using 

polynomial expressions and input into a computer code to simulate coupled 

vibrations of maglev vehicle (Cai et al., 1992). 

STABILITY OF MAGLEV SYSTEMS 

Without motion-dependent magnetic forces, the equation of motion for the 

vehicle consisting of N degrees of freedom can be written 

[Mv]{u} + [CV]{U} + [KV]{U} = {Q}, (9) 

where Mv is the vehicle mass matrix, Cv is vehicle damping matrix, Kv is vehicle 

stiffness matrix, and Q is generalized excitation force. 

The motion-dependent magnetic forces are given in Eq. (2). With motion-

dependent magnetic forces, Eq. (9) becomes 

[Mv + Mm]{0} + [Cv + Cm]{TJ} + [Kv + Km]{U} = {Q}, (10) 

where Mm is the magnetic mass matrix, Cm is magnetic damping matrix, and Km 

is magnetic stiffness; their elements are my, cy, and ky. 

Once the magnetic-force coefficients are known, analysis of vehicle 

stability is straightforward. Equation (10) may be written as 

[M]{U} + [C]{U} + [K]{U} = {Q}. (11) 
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In general, M, C, and K are functions of U, U, and 0; therefore, a complete 

solution is difficult to obtain. In many practical situations, in which the threshold 

parameters associated with dynamic instability are of primary interest, one can 

ignore all nonlinear terms, such that M, C, and K are independent of vehicle 

motion. 

By premultiplying by {U}T and forming the symmetric and antisymmetric 

components of the matrices 

[MJ = |([M] + [M]T), [M2] = -|([M] - [M]T), 

[CJ = |([C] + [C]T), [C2] = |([C] - [C]T), (12) 

[KJ = |([K] + [K]T), [K2] = |([K] - [K]T), 

we can separate the terms, giving 

{uflM^Uj+^ICalfuJ + fuflKxHU} 

= -({U}T[M2]{U} + {u}T[Cd{u} + {U}T[K2]{U}) + {U}T
{Q}. (13) 

Equation (13) equates rates of work. The terms on the right-hand side of the 

equation produce a net work resultant when integrated over a closed path through 

the space {U}, the magnitude depending on the path taken. The forces 

corresponding to the matrices M2, Ci, and K2, appearing on the right-hand side, 

are thus by definition the nonconservative parts of the forces represented by M, 

C, and K. The terms on the left-hand side similarly can be shown to give rise to 
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a zero work-resultant over any closed path, and therefore together are the sum of 

the rates of work from the potential forces and the rate of change of kinetic 

energy. Different types of instabiUty can be classified according to the dominant 

terms in Eq. (13) (Chen, 1987 and Cai et al., 1992). 

• Magnetic Damping Controlled Instability (single mode flutter): The dominant 

terms are associated with the symmetric damping matrix [C\]. Flutter arises 

because the magnetic damping forces create "negative damping," that is, a 

magnetic force that acts in phase with vehicle velocity. 

• Magnetic Stiffness Controlled InstabiUty (coupled mode flutter): The 

dominant terms are associated with the antisymmetric stiffness matrix [K2L It 

is called coupled mode flutter because at least two modes are required to 

produce it. 

In practical cases, two or more mechanisms may interact with one another, and 

Eq. (11) is applicable for general cases. 

It is noted that maglev systems are subjected to several groups of forces, 

including magnetic forces, aerodynamic forces, and forces due to guideway 

perturbation. The theory presented in this paper is applicable to maglev systems 

when they are subjected to other types of forces. In particular, the aerodynamic 

effects can be described exactly the same way as those given in Eqs. (1)-(13) and 

the dynamic response characteristics to aerodynamic forces are similar to 

magnetic forces (Chen, 1987 and Cai et al., 1992). 
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SIMPLIFIED VEHICLE MODELS FOR DYNAMIC INSTABILITY 

Different vehicles are considered, in order to gain an understanding of 

stability characteristics. However, only the three-degree-of-freedom vehicle with 

the double L-shaped sheet guideway is described in this paper. 

Figure 2 shows the cross section of a vehicle and guideway. Assume that 

the vehicle is traveling at a constant velocity along x direction. Two permanent 

magnets are attached to the bottom of vehicle and provide lift and guidance force 

FLP FL2 , FGI and FG2 (see Fig. 2). Assuming at the initial state that fy = h2 = ho 

and gi = g2 = go> w e c a n express the geometries of vehicle and guideway as 

Li = L2 = S = 76.2 (mm), W = 152.4 + S - 2g0 (mm), H = 0.9 W (mm) 

a = 0.5H (mm), b = 0.5(W-25.4) (mm) 

Equations of motion for this three-degree-of-freedom maglev system can 

be written as 

mz + Cz = FL l + FL2 - mg 

19 + E6 = (FGl + FG2 )a + (FLl + FLz )b ( M ) 

my + Dy = F G l + F G 2 

where m is the mass of the vehicle, C and D are damping ratios; I is the moment 

of inertia about the center of mass inertia moment of the vehicle [I = 

(m/12)(H2+W2)]. FL15 FL2, FG l , and FG2 are hft and guidance forces and are 
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functions of y and z. At equilibrium position, they are FLl0(yo,zo), FL20(yo,zo), 

FGlo(yo,z0), and FG20(yo,Zo). Applying them to Eqs. (14), 

FL 1 0 = FL20» F L l 0 + FL2 0 = mg, FG IO = -FG2O; (15) 

therefore, 

m _ F L 1 0 + F L 2 0 _ 2 F L ( h o ) ( 1 6 ) 

g S 

Let 

z = o ( u i + u 2 ) » y = u 3 . e = (u 1 -u 2 ) /2b . 
*• (17) 

Equations (14) can be rewritten as 

m ( t i 1 + ii2) + c(u1 + u2) = 2(FL l+FL 2 -mg) 

I ( u 1 - u 2 ) + | ( u 1 - u 2 ) = 2a(FG l +FG 2) + 2b(FL l-FL 2) ^ 

mu3+Du3 = F G l + F G 2 . 

Note the reduced dependence of the forces on the new displacements of Eq. (17): 

FLI = FLl(ui,u3), FL2 = FL2(U2 ,U3), F G l = FGl(ui,u3), FG 2 = FG2(U2,U3). (19) 

Let 
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Ui = Uio + VJ i = l , 2 . (20) 

The hnear approximation of lift and guidance forces can be expressed as 

FL =FL + ^k V l + ^M 
L i Lio dvx x av3

 3 

F L 2 =F L 2 0 + ^v 2 + ff v 3 
(21) 

F G = F G + ^ L V l + ^ S i V 3 
GI °io avx 1 9v3

 3 

Fo,=FGM+^v2+^a 
dv2 av3 

V3-

Using Eqs. (15) and (21), we can rewrite Eq. (18) as 

.. .. C . C . 2 dFL 2 3FL 1 
v i + v 2 + — V ! + — v 2 ^ - ^ v l ^—~v2 

m m m dvi m dv2 m 
dv 3 3v 3 

v 3 = 0 

.. .. E . E . f2abdFGi 2b2 ^ L i 
-Vi + V 2 - — V ! + — V 2 + — r—^ + — — A 

\ 

I dvi I dvi 
Vl 

V2 
'2ab^FG2 2b 2^L 2" 
^ I 3v2 I 9v2; 

2abpFGl [ 3FG2 ̂j | 2b
2pF L l 9FL2 

I [ dv3 dv3 J I [ dv3 dv3 , 
v 3 = 0 

(22) 

V3 
D . i a F 3 i lSF G 2 j (3FGl 3FG2 \ 

+ —V 3 TT^V! T - ^ V 2 — 1 " + - r - i V 3 = 0 . 
m m &vi m dvo m dv* dv* dv3 dv3 J 

With magnetic forces and stiffnesses measured by the experiments, the 

eigenvalues and eigenvectors of a maglev vehicle on a double L-shaped guideway 
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were calculated with the theoretical model developed in this section. Some very 

interesting results were obtained from those calculations. 

Figure 3 shows that eigenvalues of vehicle motion versus levitation height 

vary when guidance gaps are fixed (g! = g2 = 12.7 mm). The first mode coi 

shows an uncoupled heave motion; the imaginary part of its eigenvalue is zero. 

The second and third modes are coupled roll-slip motions. Within a range of 

height h of 19.0 to 35 mm, the imaginary parts of eigenvalues appear not to be 

zero. This indicates that within this range flutter does exist for these coupled 

roll-slip vibrations. 

Figure 4 shows eigenvalues of vehicle motion versus lateral location of 

vehicle when gj = g2 = go = 25 mm, and levitation height h = 7 mm, 

respectively. We notice that for the third mode, which presents the transversal 

motion of vehicle, the real part is zero and the imaginary part is not zero within a 

certain region. This indicates that the divergence is subjected to the lateral 

motion of vehicle with those vehicle and guideway parameters. Figure 5 shows 

the real part of third mode versus lateral location of the vehicle when parameter-

equilibrium guidance gap varies as gi = g2 = go = 10 m, 15 mm, 20 mm, and 

25 mm. We found that the divergence only appears with the case of go = 25 mm. 

The flutter (Fig. 3) and divergence (Figs. 4 and 5) instabilities have been 

verified by numerical simulations with a computer code, which has been 

developed by the authors at Argonne and able to simulate the nonlinear dynamic 

response of maglev systems with six DOF when the user inputs vehicle and 

guideway configurations (Cai and Chen, 1995). Figs. 6 and 7 show the time 

histories of vehicle motions with the vehicle configuration shown in Fig. 2. In 
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Fig. 6, the slip and roll motions are apparently stable with h0 = 10 mm, but 

unstable with ho = 10 mm, which indicates that coupled roll-slip flutter indeed 

occurs. In Fig. 7, divergence of slip and roll motions occurs when g0 = 25 mm. 

This is not only indicates that the divergence is subjected to lateral vehicle motion 

but also reflects the coupling effects between two motions. 

Furthermore, the flutter and divergence instabilities were observed from 

maglev dynamic stabiUty investigation (Cai et al., 1995). It presented a good 

agreement with the analytical and numerical solutions shown in Figs. 3 to 7, 

respectively. 

CONCLUSIONS 

Motion-dependent magnetic forces are the key elements in modeling and 

understanding the dynamic instabilities of maglev systems. At this time, it 

appears that very Umited data are available for motion-dependent magnetic 

forces. 

Various options can be used to stabilize a maglev system: passive 

electrodynamic primary suspension damping, active electrodynamic primary 

suspension damping, passive mechanical secondary suspension, and active 

mechanical secondary suspension. With a better understanding of vehicle stabiUty 

characteristics, a better control law can be adopted to ensure a high level of ride 

comfort and safety. 

Computer programs are needed for screening new system concepts, 

evaluating various designs, and predicting of vehicle response. It appears that the 

stabiUty characteristics of maglev vehicles under different conditions have not 
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been studied in detail in existing computer codes. When information on motion-

dependent magnetic forces becomes available, the existing computer codes can be 

significantly improved. 

Instabilities of maglev system models have been observed at Argonne 

National Laboratory and other organizations. An integrated 

experimental/analytical study of stabiUty characteristics is an important part of 

any research activities concerning maglev systems. 
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Figure Captions 

Fig. 1. Displacement components of a maglev system 

Fig. 2. Maglev system with a vehicle on a double L-shaped aluminum sheet 

guideway 

Fig. 3. Eigenvalues of maglev system vs. vehicle levitation height with Y* = 

12.7 mm 

Fig. 4. Eigenvalues of maglev system vs. lateral location of vehicle with h = 

7 mm and g0 = 25 mm 

Fig. 5. Real part of eigenvalues of maglev system vs. lateral location of vehicle 

with h = 7 mm and g0 = 10, 15, 20, and 25 mm 

Fig. 6. Time histories of vehicle motions with various vertical air gaps h0 when 

go = 12.7 mm 

Fig. 7. Time histories of vehicle motions with various lateral air gaps go when 

h0 = 7 mm 
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guideway 



20 30 
Height, mm 

10 20 30 
Height, mm 

40 50 

40 50 

Fig. 3. Eigenvalues of maglev system vs. vehicle levitation height with Y* 

12.7 mm 
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