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A second-order perturbation solution describing the radial transport of a reactive species and concurrent depo- 
sition on wafer surfaces is derived for use in optimizing CVD process conditions. The result is applicable to a 
variety of deposition reactions and accounts for both diffusive and advective transport, as well as both ordinary 
and Knudsen diffusion. Based on the first-order approximation, the deposition rate is maximized subject to 
a constraint on the radial uniformity of the deposition rate. For a fixed reactant mole fraction, the optimum 
pressure and optimum temperature are obtained using the method of Lagrange multipliers. This yields a weak 
one-sided maximum; deposition rates fall as pressures are reduced but remain nearly constant at all pressures 
above the optimum value. The deposition rate is also maximized subject to dual constraints on the uniformity 
and particle nucleation rate. In this case, the optimum pressure, optimum temperature and optimum reactant 
fraction are similarly obtained, and the resulting maximum deposition rate is well defined. These results are 
also applicable to CVI processes used in composites manufacturing. 
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. 
Introduction 

Chemical vapor deposition (CVD) is widely used 
in microelectronics manufacturing to deposit thin lay- 
ers of polycrystalline silicon, silicon dioxide and sili- 
con nitride on single-crystal wafers [1,2]. These depo- 
sition processes employ a variety of chemistries and 
are usually performed in multi-wafer batch furnaces, 
each holding up to 300 wafers in a single stack. In or- 
der to maximize batch size and minimize stack height, 
the conventional inter-wafer space within the stack is 
typically just a few millimeters. Large batches tend 
to maximize furnace throughput because process cy- 
cle times are often dominated by the k e d  overhead 
time associated with pushing and pulling the wafer 
boat, evacuating the furnace cavity, and ramping and 
stabilizing furnace temperatures. To further increase 
furnace throughput and to ensure high device yields, 
CVD process conditions for batch furnaces must be 
carefully optimized. 

Although large batches and small inter-wafer 
spaces tend to maximize furnace throughput, they 
also tend to produce both axial and radial depletion 
of reactive gases and so give rise to nonuniformity 
of the deposition rate. Axial nonuniformity may be 
reduced by injecting gases at multiple points along 
the furnace length, decreasing the axial distance reac- 

tive species must be transported [3,4]. Although this 
complicates furnace design, there is no direct penalty 
in furnace throughput associated with multi-point in- 
jection. Similarly, the axial temperature profile in a 
batch furnace may be “tilted” such that axial deple- 
tion of reactive gases is just offset by increased tem- 
peratures so as to give little or no axial variation in the 
deposition rate [5]. In contrast, radial nonuniformity 
can be reduced by increasing the inter-wafer space 
[4,6], but this necessarily reduces the batch size and 
so may reduce furnace throughput. Alternatively, the 
processing conditions may be altered, as by reducing 
the pressure or temperature, to reduce radial nonuni- 
formity [7,8]. This also reduces the deposition rate 
and so will also reduce furnace throughput. Because 
of these tradeoffs, any meaningful maximization of the 
deposition rate must be constrained by a requirement 
on the acceptable radial uniformity. 

In addition to this concern about radial unifor- 
mity, deposition reactions can also lead to the gas- 
phase nucleation of particles [9,10]. Such particles 
may become embedded in the deposited layer and 
subsequently result in device failure. For this reason, 
reactant concentrations and other process conditions 
must be adjusted carefully to avoid excessive parti- 
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cle formation Ill]. However, because those conditions 
giving low nucleation rates also yield low deposition 
rates, maximization of the deposition rate may also 
be constrained by an acceptable level of particle gen- 
eration in the volume between wafer pairs. 

Several other factors may also influence the opti- 
mum conditions for CVD processes. These include the 
morphology and electrical properties of the deposited 
layer [12], as well as conformity of the layer to device 
topography [13]. Here, however, we will address only 
the issues of deposition rate, radial deposition unifor- 
mity and particle nucleation. 

Due to the complexity of problems involving cou- 
pled reaction and transport, most previous analyses 
of CVD have employed numerical methods. This 
approach permits detailed process simulations, in- 
cluding three-dimensional furnace geometries, spa- 
tially nonuniform temperatures, multi-point injection, 
and deposition mechanisms involving several to even 
dozens of reactive and product species [14,15,16]. 
However, while numerical methods are very power- 
ful in treating complex problems in great detail, they 
are not particularly well suited to optimization due to 
relatively long execution times and to the very large 
number of solutions needed to optimize even two or 
three process conditions. In addition, constraints on 
the optimization pose a serious challenge for numer- 
ical methods since the process conditions satisfying 
those constraints are generally not known beforehand. 

In this study we employ analytical methods to 
perform constrained maximizations of the deposition 
rate. This approach cannot address the detailed 
chemistry and complex geometry of numerical meth- 
ods, but instead provides a more fundamental insight 
into the behavior of a somewhat simplified problem. 
Using a perturbation technique applicable to a range 
of deposition reactions, we first develop a fairly gen- 
era1 relation between the deposition uniformity and 
process conditions. Based on this result, two distinct 
optimizations are then presented. In the first, the 
deposition rate is maximized subject to a single con- 
straint on the radial deposition uniformity. In the sec- 
ond, the deposition rate is maximized subject to con- 
straints on both radial uniformity and the gas-phase 
particle nucleation rate. 

where r is the radial distance from the wafer center, 
p is the gas molar density, f is the reactive species 
mole fraction, D is the effective coefficient of binary 
diffusion for the reactive species, and u is the local 
molar-average fluid speed. The inter-wafer space, w, 
is the size of the open region between adjacent wafers. 
It is equivalent to the wafer pitch less the wafer thick- 
ness. Finally, S is the surface deposition rate; it may 
be any function of the pressure, temperature and re- 
actant fraction. Note that the factor of two on the 
right of Eq. (1) accounts for surface reactions on both 
the front and back wafer faces. 

Figure 1. Schematic of a pair of wafers from the 
wafer stack. Reactive species are transported radially 
in the wafer gap by diffusion and advection. Depletion 
of reactants leads to a nonuniform deposition profile. 

the space between these wafers and the accompanying 
reactant depletion due to deposition on wafer surfaces 
are described by continuity equations for each species, 
along with momentum and energy equations for the 
gas mixture. Here we consider one-dimensional trans- 
port in which species concentrations vary with radial 
position but are uniform in the axial direction across 
the inter-wafer space. Under this idealization, con- 
servation of mass of a single reactive species may be 
written as 

Again assuming one-dimensional transport, con- 
tinuity of the combined reactive and inert species can 
be expressed as 

Governing Equations 
To calculate radial nonuniformity in a wafer 

two adjacent wafers, as shown in Fig. 1. Even if ax- 
ial depletion and axial nonuniformity are large, such 
a unit cell can adequately represent local conditions 
along the stack. Diffusive and advective transport in 

(2) 
stack, we need only consider the region between any I d  S 

--(rpu) = 2 @ -  r dr W 

where the parameter $ is the net molar yield of 
gaseous products per mole of reactant; that is, the 

a 
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molar ratio of gaseous products less reactants to reac- 
tants. By this definition, values of the parameter are 
limited to 2 -1 since we are considering here only 
one reactive species. The limiting value of $ = -1 
corresponds to a simple single-species deposition re- 
action yielding solids but no gas-phase products. 

The coefficient of diffusion in Eq. (1) must ac- 
count for both ordinary and Knudsen diffusion. At 
high gas densities, collisions of the reactive species 
with gas molecules are much more common than are 
collisions with the wafer surfaces. In this limit, the 
diffusive flux of the reactive species is governed by or- 
dinary diffusion. At sufficiently low pressures or suf- 
ficiently high temperatures, however, the mean free 
path of the reactive species becomes large relative to 
the size of the inter-wafer space. In this limit, colli- 
sions of the reactive species with wafer surfaces are 
predominant, and the diffusive flux is controlled by 
Knudsen diffusion. To account for both of these con- 
ditions, the overall effective coefficient of binary diffu- 
sion for the reactive species can be approximated by 
the Bonsanquet interpolation formula [17], 

(3) 

where D, denotes the effective binary coefficient of 
ordinary diffusion for the reactive species in the gas 
mixture, and DKn denotes the coefficient of Knudsen 
diffusion for the reactive species in the wafer space. 
Based on simple molecular theory [18], Eq. (3) may 
be rewritten as 

(4) 

where Kn = X/w is the Knudsen number based on 
properties of the reactive species and the size of the 
inter-wafer space, and F is the mean molecular speed 
of the reactive species. 

(5) 

Here R is the ideal gas constant, T is the gas temper- 
ature, and m is the reactive species molecular weight. 
The effective mean free path for the reactive species 
alone is given by 

The parameter a in Eq. (4) is the ratio of the ef- 
fective binary coefficient of ordinary diffusion for the 
reactive species and the mixture of other furnace gases 
to the coefficient of ordinary self diffusion for the reac- 
tive species. As shown in Appendix A, this parameter 
depends only on the composition of the gas mixture 
and is independent of both the pressure and temper- 
ature for ideal gases. Thus for fixed gas composition, 
the parameter a is constant. 

The continuity equations (1) and (2) must be ac- 
companied by momentum and energy equations. In 
this analysis, we supplant the energy equations with 
an assumption that all gas species are at a uniform 
and constant temperature, T.  Likewise, the momen- 
tum equation is replaced with an assumption that the 
pressure is uniform over the volume bounded by any 
two neighboring wafers. Based on results of the fol- 
lowing analysis, it is fairly straightforward to show 
that this latter assumption remains valid whenever 
the deposition uniformity is high. 

The governing transport equations are closed us- 
ing an ideal gas equation of state, p = pRT. Because 
both the pressure and temperature are uniform and 
constant, this relation requires that the molar density 
is also uniform and constant. 

To complete the mathematical statement of the 
transport and deposition problem, boundary condi- 
tions must be specified for the reactive species fraction 
and fluid speed. The second-order equation governing 
the reactive species requires two conditions. One is 
imposed by symmetry, requiring that the radial gra- 
dient of the reactive species vanish at the origin. For 
the second we assume that the reactive species mole 
fraction is fixed at the position of the wafer edge. 

f = fa at T = a (7a,b) 

In addition, the first-order equation governing the 
fluid speed requires a single boundary condition. 
Again this is obtained from a symmetry condition at 
the position of the wafer center, 

u=O at r=O 

requiring no flow into or out of the origin. 
To normalize the governing equations, we intro- 

duce a dimensionless position, 3: = r /a ,  and two 
dimensionless dependent variables, f * = f /fa and 
u* = ua/D. Note that the normalized velocity u* is 
equivalent to a local Peclet number, indicating the rel- 
ative magnitudes of the advective and diffusive fluxes 

RT 
&rNa2p (6) 

where p is the total pressure, N is the Avogadro num- 
ber, and B is the molecular diameter of the reactive 
species. of the reactive species. 

A =  
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Applying these definitions to the transport equa- 
tions yields the dimensionless governing equations 

1 d df* 1 d ;z(.z) - --(xu*f*) xdx  

1 d D  df* 
D d f *  dz- +-- ( u*f*) (9) 

for the reactive species, and 

I d  u*dD df * 
x dx D df*dx 

+ --- = +*p 

for total species conservation. The function 
right of these equations is 

on the 

and the new parameter appearing in Eq. (10) is the 
normalized reaction yield, $* = $ fa. Boundary condi- 
tions for the normalized variables follow from Eqs. (7) 
and (8) in the obvious manner. 

One additional relation can be obtained from 
Eqs. (1) and (2) by integrating each equation once 
and combining the two results. In the normalized 
form this yields 

$* df* 
1 + $*f * da: u* = 

giving the normalized fluid speed in terms of the 
normalized reactant mole fraction and its derivative 
alone. This relation applies everywhere and so is use- 
ful in separating the coupled reactive species and to- 
tal conservation equations. Substituting Eq. (12) into 
Eq. (9) or (10) to eliminate u* gives 

..( “) 
xdx  l+$*f*dx 

(13) 

This species equation can now be solved without ex- 
plicit knowledge of the local fluid speed. Fluid speeds 
can be computed after the fact from Eq. (12). 

Equation (12) further provides useful insight into 
the relation between advective and diffusive fluxes of 
the reactive species. In dimensional form the advec- 
tive flux at any position is pu f ,  while the magnitude 
of the diffusive flux is p D d f / d r .  The local ratio of 
advective to diffusive fluxes is therefore given by 

6 

where the approximate equality on the right is due to 
the fact that f * M 1 when the deposition rate is nearly 
uniform over the wafer surface. Taking into account 
the signs for each flux, we see that the total flux of the 
reactive species differs from the diffusive flux by a fac- 
tor of 1/(1 +$*f*). This is also apparent in Eq. (13), 
where this term serves as an apparent diffusivity in 
what otherwise appears as a simple diffusion-reaction 
equation. When $* is positive, the total flux of the 
reactive species is therefore reduced by the flow of gas 
toward the wafer edge. When +* is negative, the total 
flux is increased by flow toward the wafer center. Note 
that the total flux is quite sensitive to the deposition 
chemistry. For a net production of only one mole of 
gas per mole of reactant, $ = 1, the advective trans- 
port reduces the net flux of reactive species toward 
the wafer center by up to a factor of two. This ad- 
vective inhibition of diffusion in the inter-wafer space 
therefore may significantly reduce deposition unifor- 
mity when the reactant fraction is large. 

Mathematical Method 
High uniformity of deposited layers is almost al- 

ways required in CVD wafer processing for microelec- 
tronics applications. We therefore seek perturbation 
solutions to the governing transport equations that 
are applicable only to this condition. Since the con- 
dition of high uniformity must correspond to a small 
value of the function p, we presume series solutions of 
the form 

for the normalized reactant fraction and for the nor- 
malized fluid speed. The perturbation parameter is 
the function P evaluated at the conditions at the wafer 
edge. 

Pa = P at f = fa (17) 

The usual interpretation of the parameter pa, referred 
to here as the surface deposition modulus, is that it 
is the square of the ratio of the characteristic time for 
diffusion to the characteristic time for surface depo- 
sition. In this view it is equivalent to the square of 
the Thiele modulus commonly appearing in analyses 
of porous-bed catalysis. Another useful interpretation 
of this parameter is that it is the ratio of two rates - 
the rate of deposition on both wafer surfaces, 2.rra2S, 
to the maximum rate of diffusive transport through 
the surface of a cylinder having a radius half that of 
the wafer and a height equal to the inter-wafer space, 
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7rwpDfu. Thus when pa is small, the actual rate of 
diffusive transport will be less than this maximum, 
and the mean gradient of the reactant fraction will be 
smaller than the maximum value of f a la .  

on the right of Eqs. (9) and (10) is in 
general a function of the reactive species fraction, this 
must also be expanded in terms of the perturbation 
parameter. Expanding Eq. (11) about f * = f$ yields 

Because 

where S' and D' are derivatives of the log of the depo- 
sition rate and diffusivity, taken at fixed pressure and 
temperature and evaluated at the condition f*  = f;. 

Note that the derivative of the log of the deposition 
rate is simply the order of the deposition reaction. 
Its value is unity for a irreversible first-order reac- 
tion, two for a second-order process, and the like. For 
more complex deposition reactions, having both for- 
ward and reverse rates or involving poisons, its value 
will generally depend on the pressure, temperature 
and reactive species fraction. The derivative of the 
diffusivity is, by analogy, the order of the diffusivity 
with respect to the reactant fraction. From Eq. (4) it 
is given by 

1 1 d o  1 d D  
D d f *  1 + a K n  o a f *  

-- -- = 

As discussed later, however, its value is near zero un- 
der a rather broad range of conditions. 

To satisfy the normalized boundary conditions 
for all pa and all $*, the zeroth-order contributions 
to each series must satisfy f; = 1 at x = 1, and 
df,'/dx = 0 and u;l = 0 at x = 0. All higher-order 
terms must satisfy 

- 0  at x = O  f: = 0 at x = 1 (21a, b) 
df? 
dx 
t- 

u:=O at x = O  (22) 

for the reactive species fraction and fluid speed at the 
wafer edge or center. 

By inspection of Eqs. (9) and (lo), the zeroth- 
order solutions are f; = 1 and u;l = 0. These of 
course are the trivial solutions for no surface depo- 
sition reaction, as appropriate for the limit pa -+ 0. 

Substituting the zeroth-order solutions into Eqs. (9) 
and (10) and grouping like terms yields 

x dx  
--(xu;) I d  = $* 
x dx 

for the first-order terms. Integrating twice and apply- 
ing the boundary conditions (21a,b) and (22) gives 

u; = - x  '* (25a,b) 
2 

for the first-order normalized reactive species frac- 
tion and fluid speed. Note that the latter result can 
be obtained either from Eq. (12) or from integrating 
Eq. (24). 

One interesting aspect of these first-order solu- 
tions is their dependence on the reaction chemistry. 
Both the parabolic profile of the reactant fraction and 
the linear profile of the fluid speed vary linearly with 
reaction yield, $*. Because the first-order correction 
to the deposition rate will be proportional to the first- 
order reactive species concentration, the deposition 
uniformity will also vary linearly with reaction yield. 
In the limit $* -+ -1, however, the fluid speed be- 
comes u; = -212, indicating flow toward the wafer 
center. For this case, in which the gas is purely the 
reactive species and the deposition reaction yields no 
gas-phase products, the first-order fraction of the re- 
active species vanishes, f: = 0, as does the first-order 
diffusive flux, dfT/dx. Species transport is due to ad- 
vection only, and the deposition profile remains per- 
fectly uniform even for finite deposition rates. 

Governing equations for the second-order species 
fraction and fluid speed are obtained by substituting 
the first-order solutions into Eqs. (9) and (10) and 
collecting those non-zero terms containing the square 
of pa. This gives 

+[$*+(1+$*)(S'-D')]f; (26) 

for the reactant fraction, and 

for the fluid speed. Note again that the derivatives 
of the deposition rate and diffusivity are evaluated at 
the condition f * = f; = 1 and are therefore constants 
in these equations. 
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Integrating Eq. (26) twice and applying the ap- 
propriate boundary conditions yields 

f; = 64 + $* I[$*- (1 + $*)D’] (z4 - 1) 

+ [ $*+ (1 + $*) (S I  - D’)] (z4 - 4z2 + 3)] (28) 

for the normalized reactant fraction. Similarly, the 
second-order solution for the radial fluid speed ob- 
tained from Eq. (27) is 

uf = -(1 $* + $*) [S’(z3 - 2 ~ )  - 2 D ’  (z3 - z)] (29) 
16 

Again these second-order terms satisfy Eq. (12) re- 
lating the fluid speed to the gradient of the reactive 
species mole fraction. 

Deposition Uniformity 
The deposition uniformity, U ,  is defined here as 

the ratio of the deposition rate at the wafer center to 
that at the wafer edge. Since the pressure and temper- 
ature do not vary with radial position, the variation 
in deposition rate depends only on the variation in re- 
actant fraction. The deposition uniformity can there- 
fore be obtained by expanding the deposition rate in 
a Taylor series about f * = 1 and dividing the result 
by the rate at the wafer edge. This gives 

u = 1 + S’(PUfi* + P,f; + .-) 
1 + 5 syp, fi* + ... ) 2  + .-. 

where the second derivative of the deposition rate with 
respect to the reactant fraction is 

Combining these expressions with the reactant frac- 
tion perturbation solution and evaluating the result 
at x = 0, the uniformity may be written as 

U = l - -  1 + 
4 

For the special case of a first-order deposition reac- 
tion, S’ = 1, and a diffusivity that is insensitive to 

the reactive species concentration, D’ = 0, Eq. (32) 
reduces to 

Note that the uniformity, as defined here, approaches 
unity as the reaction rate falls to zero. In practice, 
however, uniformity is often described as the frac- 
tional deviation from a perfectly uniform condition. 
This alternative definition is actually that of a nonuni- 
formity, given by the difference 1 - U .  

The expression obtained here for the deposition 
uniformity agrees to first order with a previous re- 
sult for which the deposition reaction is a first-order 
process and advective fluxes are neglected [7]. The 
result in that analysis is U = 1/(1 + ,&/4). Expand- 
ing this expression for small Pa yields U = 1 - Pa/4 ,  
which is identical to the first-order term of Eq. (33) for 
the special case of $* = 0. Recall that the condition 
$* = $fa = 0 corresponds to no net gain or loss of 
gas-phase species in the deposition process or to a pro- 
cess condition in which the reactant fraction is very 
small. In either case, no advective fluxes arise. Equa- 
tions (25a) and (32) also agree to first order with pre- 
vious analyses based on a collocation technique [8,19]. 
That analysis includes both advective and diffusive 
transport and is also applicable to a range of deposi- 
tion reactions. In that case, however, the results are 
obtained in an implicit form typical of the collocation 
method. 

Calculated uniformities are shown in Fig. 2 for 
the case of a first-order deposition reaction, S’ = 1, 
and no variation in the diffusivity with reactant frac- 
tion, D‘ = 0. Solutions are plotted for a range of val- 
ues of the normalized reaction yield, $*. Both the first 
and second-order perturbation solutions are shown in 
this figure as solid curves. The dashed curves are nu- 
merical solutions to Eqs. (9) and (10). These numer- 
ical results were obtained by solving Eq. (13) directly 
using a very accurate shooting technique. They are 
presented here only to help evaluate the accuracy and 
valid range of the perturbation solutions. 

Similarly, the normalized fluid speed at the wafer 
edge is shown in Fig. 3. Recall that the normalized 
speed is a local Peclet number. These results were 
obtained by evaluating Eqs. (25b) and (29) at 2 = 1 
to yield 

Note that fluid speeds at the perimeter and at the 
wafer center do not depend on the variation in diffu- 
sivity, but do exhibit such a dependence at interme- 
diate positions along the wafer radius. Also note that 
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Figure 2. Deposition uniformity. Dashed curves 
represent numerical solutions to Eq. (13); solid curves 
are the one and two-term perturbation results. In- 
creasing $* reduces uniformity due to outward flow. 
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Figure 3. Normalized fluid speeds at wafer edge. 

merical results. Speeds increase with increasing $I* 
due to increased generation of product gases. 

. Solid and dashed curves represent analytical and nu- 

the first-order contribution to the fluid speed does not 
depend on the order of the deposition reaction. 

Based on comparing the numerical and analytical 
results in Figs. 2 and 3, we find that the first-order 
correction to the deposition nonuniformity is accurate 
to within 14% for reaction yields in the range -1 5 
$* 5 4 and all uniformities greater than 0.9. The 
second-order perturbation solution for the deposition 
nonuniformity is accurate to about 2% for the same 
conditions. Similarly, the first-order fluid speed at the 
wafer edge is accurate to 6%, while the second-order 
solution is accurate to better than 1%. 

Optimum Conditions A t  Fixed Uniformity 
To identify optimum conditions for the CVD pro- 

cess we seek to maximize the deposition rate subject 
to the side condition of a minimum acceptable radial 
uniformity. In general, the deposition rate can aI- 
ways be increased by raising the pressure and temper- 
ature; thus, any unconstrained maximization of the 
deposition rate yields only the trivial solution of both 
pressure and temperature increasing without bound 
while the uniformity approaches zero. Because of this 
behavior, the constrained maximum deposition rate 
should occur when the uniformity constraint is just 
marginally satisfied. This permits replacing the in- 
equality constraint of a minimum uniformity by an 
equality constraint that is satisfied exactly. 

The constrained maximum deposition rate is de- 
fined by the requirement that the variation in rate 
with respect to all independent variables is zero along 
the direction of constant uniformity. To obtain this 
maximum we employ the method of Lagrange mul- 
tipliers [20]. This technique introduces one new un- 
known constant for each constraint and yields one ad- 
ditional equation for each independent variable. The 
two new equations are 

(35% b)  
a s  au aT - K F T  = 0 

as au 
aP aP K- = O  and - -- 

where K ,  the Lagrange multiplier, is the new unknown 
constant. Together with the original constraint on the 
deposition uniformity, Eq. (32), this pair of equations 
can be solved for the optimum pressure and temper- 
ature yielding the maximum deposition rate. 

Rearranging Eqs. (35a) and (35b) to eliminate K 
yields 

(36) 
m a u  - a s a u  - - _ - -  
a p  aT d T  ap 

Now using the first-order term from Eq. (32) describ- 
ing the general form of the deposition uniformity, and 
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recalling from Eq. (11) that the deposition modulus 
depends on the pressure and temperature through the 
deposition rate, diffusivity and density, Eq. (36) may 
be rewritten in the form 

p d T  D d T  = 
1dS 1 dS’ 1 d p  

(37) 

Note that one product of derivatives of the deposi- 
tion rate with respect to pressure and temperature 
has been canceled from each side of this expression. 

The pair of equations (32) and (37) provide a 
fairly general statement of the conditions at which 
the deposition rate is maximum for a specified mini- 
mum uniformity. No assumptions regarding the form 
of the deposition reaction are required to obtain these 
expressions. The only required conditions are that 
transport within the inter-wafer space and deposition 
on wafer surfaces are adequately described by Eqs. (1) 
and (2) and that the radial nonuniformity of the depo- 
sition rate is small. Because of this generality, these 
equations can be used in simple numerical schemes 
to identify optimum processing conditions, even when 
the deposition reaction is a complex function of the 
pressure, temperature and reactant fraction. 

Sample Calculations - Fixed Uniformity 
Equation (37) above and the uniformity con- 

straint can be solved in closed form for the optimum 
pressure and optimum temperature given a few sim- 
plifying assumptions. If the deposition process is a 
first order reaction having an Arrhenius temperature 
dependence, the surface reaction rate, S,  can be ex- 
pressed as the product of the surface impingement 
rate and a reaction probability, 4. In terms of the gas 
molecular density and reactant mole fraction, this is 

- 
2, 

S = Z p f 4  where #J = be-Ea/RT 

The mean molecular speed, 5, of the reactive species is 
given by Eq. (5). As before, p is the gas molar density, 
f is the reactive species mole fraction, R is the ideal 
gas constant, and T is the uniform gas temperature. 
The parameters b and Ea are the surface reaction 
pre-exponential constant and the apparent activation 
energy, respectively. 

For such a deposition process, the order of the 
reaction is constant at S’ = 1. From Eq. (4) describ- 
ing the diffusivity based on simple kinetic theory and 

the ideal gas equation of state, Eq. (37) can then be 
written as 

Now using Eq. (38) to evaluate the derivatives of the 
deposition rate with respect to the pressure and tem- 
perature gives 

Substituting these expressions into Eq. (39) yields one 
of the two equations for the optimum conditions in 
terms of the pressure and temperature alone. 

1 

The pair of Eqs. (32) and (41) thus uniquely deter- 
mine the optimum pressure and temperature. 

In general, Eqs. (32) and (41) must be solved as 
a coupled pair to obtain the optimum pressure and 
temperature. Surprisingly this is not the case here. 
Equation (41) alone can be simplified to yield a rela- 
tion between the optimum temperature and the opti- 
mum Knudsen number. 

1 ?rwNo2p 
RT 2aKn & a R T  

- -=-- Ea 

Eliminating the temperature from this result gives an 
explicit expression for the optimum pressure. 

(43) 

This is a remarkable result in that the optimum pres- 
sure does not depend on the process temperature, the 
prescribed uniformity, nor on the wafer size. It de- 
pends only on the activation energy for the deposition 
reaction, the composition of the gas mixture, species 
properties of the mixture gases, and the size of the 
inter-wafer space. 

To solve for the optimum temperature and to plot 
resulting deposition rates, it is useful to rewrite the 
uniformity condition, Eq. (32), in terms of normalized 
variables. For this purpose, the normalized pressure, 
temperature and density are defined as p* = p f p u ,  
T* = T/Tu, and p* = p / p R .  Similarly, the normalized 
deposition rate and molecular speed are S* = S/SR 
and B* = is/isR. The reference temperature, density 

. 
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and speed for this first-order deposition reaction are 
taken as 

We additionally require that the reference density, 
pressure and temperature satisfy the ideal gas equa- 
tion of state, p ,  = pRRTR. The normalized density 
and normalized molecular speed follow directly from 
these relations. 

Under this scaling the optimum pressure given by 
Eq. (43) is p* = 2a. 

Now taking S ,  = bijRpR/4 as the reference de- 
position rate, the normalized deposition rate may be 
written as 

Finally, for this first-order deposition reaction the de- 
position modulus, defined by Eqs. (11) and (17), may 
be written as 

(47% b) 

Substituting this expression into Eq. (32), setting the 
pressure to the optimum value p* = 2a:, and rear- 
ranging slightly gives the desired expression for the 
optimum temperature, 

where U* is referred to here as the normalized nonuni- 
formity. It is defined by Eq. (48a) such that the uni- 
formity is fixed whenever U* is fixed for a given wafer 
size and wafer spacing. 

The transcendental equation (48c) defining the 
optimum temperature can be solved easily by means 
of successive substitution. Beginning with the initial 

lo2 

10-l0 10" lob lo4 lo-z loo 
Normalized Nonuniformity - U* 

Figure 4. Normalized optimum conditions as a func- 
tion of normalized nonuniformity. Increasing nonuni- 
formity permits higher processing temperatures and 
higher deposition rates. 

approximation of 1/T* = - In U*, this procedure usu- 
ally converges in just a few cycles for all values of U* 
of practical importance. 

Sample calculations of the optimum normalized 
pressure, temperature and deposition rate, as well as 
the optimum Knudsen number, are shown in Fig. 4 
as a function of the normalized nonuniformity U*. 
As noted above the optimum pressure is independent 
of U* and is given by p' = 2a: = 4 for the sample 
conditions shown. Due to the Arrhenius tempera- 
ture dependence of the deposition rate, the optimum 
normalized temperature varies weakly with nonuni- 
formity. It increases by only a factor of six as the 
nonuniformity varies by 10 orders of magnitude. Be- 
cause the pressure is fixed, the Knudsen number at 
the optimum conditions shows a similarly weak de- 
pendence on the uniformity. Despite these weak vari- 
ations in the optimum conditions, the maximum nor- 
malized deposition rate exhibits a nearly linear in- 
crease with increasing nonuniformity. The reason 
for this is that the normalized temperature is small 
over the range of conditions shown. In this limit of 
T* -+ 0, the normalized deposition rate can be written 
as S* x a : ~ U * f a / ( l  + $fa). Thus the maximum 
deposition rate differs by less than a factor of three 
from a linear dependence on the nonuniformity as the 
nonuniformity varies from IO-'' to IO'. 
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Figure 5. Normalized deposition rates near the op- 
timum pressure. Deposition rates exhibit a weak one- 
sided maximum with the deposition rate falling very 
slowly at pressures above the optimum. 

Although Eqs. (43) and (48) define optimum con- 
ditions giving the maximum deposition rate at fixed 
uniformity, they provide no insight into the charac- 
ter of this maximum. To gain this insight, we need 
to  examine the variation of the deposition rate in the 
vicinity of the optimum conditions following a path of 
constant uniformity. This is depicted in Fig. 5. Here 
the normalized deposition rate is shown as a function 
of the normalized pressure, for fixed values of the nor- 
malized nonuniformity. At each pressure along each 
curve the corresponding temperature is computed us- 
ing Eq. (48b) and the specified nonuniformity. The 
normalized deposition rate is then computed from 
Eq. (46). Using this approach the uniformity con- 
straint is always satisfied, even though the pressure 
and temperature are not necessarily optimum. 

We see in Fig. 5 that the deposition rate exhibits 
a weak one-sided maximum; at all pressures above the 
optimum value, the deposition rate is nearly constant. 
It is very important to note that this behavior is not 
peculiar to the first-order deposition reaction given 
by Eq. (38). Any transport and deposition process 
adequately described by the general form of Eqs. (1) 
and (2), regardless of details of the deposition mech- 
anism, will give a deposition rate at fixed uniformity 
that is nearly constant at high pressure and that falls 
linearly with pressure as the pressure is reduced below 
the optimum value. 

Discussion of Low Pressure CVD 
As described above deposition rates at fixed uni- 

formity are insensitive to pressure at high pressures, 
but vary strongly with pressure when pressures are 
very low. The reason for this becomes apparent when 
Eqs. (11) and (32) are combined in their dimensional 
form. This combination yields 

Thus for fixed geometry, a fixed reactant mole frac- 
tion, any fixed order of the deposition reaction and 
fixed net reaction yield, the surface deposition rate 
is proportional to the triple product of the nonuni- 
formity, density and diffusivity. At high pressures, 
where ordinary diffusion is dominant, the product pD 
exhibits no first-order pressure dependence, so the de- 
position rate must remain nearly constant when the 
uniformity is fixed. At low pressures, where Knud- 
sen diffusion is dominant, the diffusivity exhibits no 
pressure dependence and so the product pD falls lin- 
early with pressure. In this case, the deposition rate 
must similarly fall in proportion to the pressure if the 
uniformity is to remain constant. As such, increased 
uniformity usually can be obtained only at the ex- 
pense of reduced surface deposition rate. The only 
exception to this is when the order of the deposition 
reaction falls with decreasing pressure, and such b e  
havior is unusual. In most cases, the order of a surface 
reaction falls with increasing pressure due to surface 
saturation and to the increasing importance of reverse 
reactions. Again, these conclusions do not depend in 
any way on details of the deposition reaction, but in- 
stead require only that the nonuniformity is small and 
that the transport and deposition process can be de- 
scribed by the form of Eqs. (1) and (2). 

These observations contradict the conventional 
view that low pressures lead to increased uniformity 
due to the increase in diffusivity. The origin of that 
view seems to lie in the misleading form of Eq. (47b), 
showing that the deposition modulus, and so the 
nonuniformity, is inversely proportional to the diffu- 
sivity. Indeed the diffusivity contains the only pres- 
sure dependence in this expression. However, from 
Eqs. (11) and (32) we see that in general U* 0: pa C( 
S/pD. Thus in the regime of ordinary diffusion, where 
the product pD is nearly constant, the uniformity will 
vary linearly with pressure for a first-order deposition 
reaction, but will vary as the square of the pressure for 
a second-order process. In general, for ordinary dif- 
fusion the pressure dependence of the uniformity will 
be the same as the pressure dependence of the deposi- 
tion rate. We therefore conclude that the variation of 
uniformity with pressure arises not from variation in 
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the diffusivity, but instead arises from variation in the 
deposition rate. Equations (47b) and (47c) are simply 
misleading because the linear pressure dependence of 
the first-order surface deposition reaction is confused 
with the linear pressure dependence of the diffusivity. 

The preceding conclusions leave little motivation 
for using low-pressure CVD processes. We have shown 
that high deposition rates and high uniformity can 
both be obtained at arbitrarily high pressures and 
that the only means to increase uniformity is to reduce 
the deposition rate. This can be accomplished either 
by reducing the pressure at a fixed temperature, as 
often practiced, or by reducing the temperature at a 
fixed pressure. These are equivalent in terms of reduc- 
ing the deposition rate and increasing the uniformity. 
However, because low temperatures are more easily 
obtained than are low pressures, some additional con- 
cern must underlie the widespread use and success of 
low-pressare CVD in batch furnaces. 

Optimum Conditions at Fixed Uniformity and 
Fixed Relative Nucleation Rate 

From the results so far we see that deposition uni- 
formity alone is not sufficient motivation to perform 
CVD processes at low pressures and that some addi- 
tion constraint must motivate this practice. In some 
cases the process temperature is fixed by a require- 
ment on the morphology of the deposited layer. In 
others, complex gas-phase chemistries may dictate a 
preferred operating condition. Here we will consider 
yet another requirement, that particle formation in 
the gas phase is not excessive. Such particles may be 
deposited on the wafer surfaces, leading to unaccept- 
able device performance. 

To address this concern, we first define the rela- 
tive nucleation rate as the ratio of the particle gener- 
ation rate in the volume between wafers to the total 
surface deposition rate on the two wafer faces. This 
can be written as 

W H  
2 s  

- -_  - 

where H is the homogeneous particle nucleation rate, 
and 5-2 is referred to as the relative nucleation rate. 

When deposition uniformity alone constrains the 
deposition rate, the deposition rate can be increased 
by increasing the reactant mole fraction. Since in- 
creasing the reactant fraction also encourages parti- 
cle nucleation, the constrained maximum deposition 
rate should occur when both the uniformity constraint 
and nucleation constraint are just marginally satis- 
fied. As before, this permits replacing the inequality 
constraint that the uniformity should be better than 

1 

some value by an equality constraint that is satisfied 
exactly. Likewise, the inequality constraint that the 
relative nucleation rate is smaller than some value can 
be replaced by a specification on the reiative nucle- 
ation rate. 

As in the case of fixed uniformity alone, we use 
the method of Lagrange multipliers to identify the op- 
timum conditions maximizing deposition rate when 
both the uniformity and the relative gas-phase nucle- 
ation rate are specified at acceptable levels. Again 
this approach yields one new unknown for each con- 
straint and one new equation for each independent 
variable. The three new equations are 

a s  a u  afi - IC1 - - K2- = 0 - aT m aT 
(53) 

a u  aa 
- 6 1 -  - K2- = 0 

a s  - afa afa afa 
and the two new unknown constants are the Lagrange 
multipliers 6 1  and K Z .  The three independent vari- 
ables in this case are the pressure, temperature and 
reactant mole fraction. 

Eliminating the Lagrange multipliers from these 
three equations gives 

) = O  (54) 
--( a0  a s a u  a s a u  

aT afaap ap afa 
Rearranging this expression to collect together those 
terms multiplied by derivatives of the uniformity, and 
expanding those derivatives using the first-order term 
of Eq. (32) yields 

Derivatives useful in obtaining this result are given in 
Appendix B. This relation, the uniformity constraint 
given by Eq. (32), and the nucleation constraint given 
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by Eq. (50) form a system of three nonlinear equa- 
tions that can be solved for the optimum process con- 
ditions. Again these equations are quite general, re- 
quiring only that the problem is well described by 
Eqs. (1) and (2) and that the deposition nonunifor- 
mity is small. 

Sample Calculations - Fixed Uniformity and 
Fixed Relative Nucleation Rate 

The supersaturation in CVD processes is often 
very large [1,21]. In this limit, the critical cluster size 
for stable particle formation is on the order of a single 
atom and classical theory of homogeneous nucleation 
does not apply [22]. Instead, the particle nucleation 
rate can be described in part by an irreversible second- 
order reaction [21,23], 

lr 
H = -IV~a~o(pf,)~4' 

v5 

where H is the homogeneous dimer nucleation rate, 
and the reaction probability for gas-phase collisions is 

(57) 

All other variables appearing above are the same as 
previously defined for the first-order surface deposi- 
tion reaction. 

We note that Eq. (56) describes only an initial 
step in particle formation. In order to form macro- 
scopic solids, clusters of a few atoms must subse- 
quently grow by continued deposition from the gas 
phase or by cluster coagulation. However, since we 
are interested here only in a qualitative indication of 
the tendency for particle formation, this initial step 
provides a satisfactory description of the nucleation 
process for purposes of constraining the optimization 
of deposition rate. 

Using the first-order surface deposition rate given 
by Eq. (38), the relative nucleation rate may be writ- 
ten as 

(58) 
0 = &lrwNNa2pfa- 4' 

d 

where, as before, 4 is the reaction probability for the 
surface reaction. Noting that the product & r N a 2 p  
is the inverse of the mean free path, Eq. (58) may be 
rewritten as 

14 

where again, Kn = X/w is the Knudsen number. The 
parameter 

(60) 
€ = - - - I  E; 

Ea # 

indicates the relative magnitude of the activation en- 
ergies for the nucleation and deposition reactions. 

Based on this first-order deposition reaction and 
second-order nucleation reaction, the deposition rate 
and relative nucleation rate each satisfy 

Dividing Eq. (55) by the product S O  and substituting 
the expressions above into the result gives 

) ]  = 0 (62) 
f a  

This equation yields two possible roots for the op- 
timum conditions. The leading term (in parenthe- 
ses) vanishes when the derivative of the log of the 
nucleation rate, H ,  is twice that of deposition rate, S. 
However, this root yields a local minimum of the de- 
position rate at the condition Ea/RT = 2 ( ~ -  l). The 
conditions yielding the maximum must therefore arise 
from a zero of the second term (in brackets). Taking 
this into account and using the diffusivity based on 
kinetic theory and the normalized ideal gas relation, 
Eq. (62) may be written as 

-- l+$fa +fa  - 1 f c r K n  1 (1 + 5%) (63) 

This result, the uniformity constraint given by 
Eq. (32), and the nucleation constraint given by 
Eq. (58) are the three equations defining the optimum 
pressure, temperature and reactant mole fraction. As 
before, these must be solved as a coupled system to 
obtain the optimum process conditions. 

Equation (63) can be simplified further by assum- 
ing that the derivative of the diffusivity with respect 
to the reactant mole fraction is negligible. For a sim- 
ple binary mixture of the reactant and a single diluent 
gas, d a / d  fa is exactly zero due to the reciprocity con- 
dition that binary diffusivities must satisfy. Further, 
the effective binary diffusivity of the reactant and a 
gas mixture also shows no dependence on the reactant 
fraction provided that the composition of the mix- 
ture does not vary with the reactant fraction. This 
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Figure 6. Optimum conditions for fixed unifor- 
mity and fixed relative nucleation rate. Dashed curves 
show regions of higher deposition rate at nucleation 
rates below the required value. 

assumption should therefore remain valid for many 
practical process conditions, and Eq. (63) yields 

1 
lofa = 

relating the optimum reactant fraction to the opti- 
mum Knudsen number. 

To plot optimum conditions for this sample prob- 
lem, it is again usefuI to normalize the dependent and 
independent variables using Eqs. (44) through (48). 
We also introduce one new parameter, 

referred to here as the normalized relative nucleation 
rate. Combining this definition with the normalized 
uniformity constraint given by Eq. (48a) ,and the op- 
timum given by Eq. (64) then yields 

For specified values of cy, and E ,  this pair of equa- 
tions can be solved for the optimum temperature and 
reactant mole fraction. The corresponding value of 
the optimum pressure can then be computed from 
Eq. (64). 
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Figure 7. Normalized deposition rates near the op- 
timum pressure for fixed uniformity and fixed normal- 
ized nucleation rate. Deposition rates exhibit a strong 
maximum. 

Sample calculations of the optimum conditions at 
fixed uniformity and fixed allowable nucleation rate 
are shown in Fig. 6. We see that the pressure and 
reactant fraction both increase roughly as the square- 
root of the normalized nucleation rate, while the op- 
timum temperature varies little as the nucleation rate 
increases from to lo4. Once the optimum re- 
actant fraction reaches its maximum value of unity, 
the optimum pressure increases about linearly with 
increasing nucleation rate while the reactant fraction 
remains constant. 

At sufficiently high values, the relative nucleation 
rate no longer constrains the optimum conditions, 
and higher deposition rates can be obtained at less 
than the maximum allowable nucleation rate. This is 
shown in Fig. 6 by dashed curves. These are com- 
puted using the optimum conditions for a constraint 
on uniformity only. At each point along these dashed 
curves, the deposition rate exceeds that of the doubly 
constrained maximum (though only slightly) and the 
normalized relative nucleation rate is smaller than the 
value indicated on the axis of the plot. 

As in the previous sample calculations, these op- 
timum conditions provide no information concerning 
the character of the maximum. We therefore need to 
examine again the variation of the deposition rate in 
the vicinity of the optimum conditions, following in 
this case a path of both constant uniformity and con- 
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stant relative nucleation rate. This is illustrated in 
Fig. 7, where the normalized deposition rate is shown 
as a function of pressure for a single value of the nor- 
malized nonuniformity and a range of values of the 
relative nucleation rate. The curves in this figure are 
computed by specifying the pressure and then solving 
Eqs. (48a) and (65) together to obtain the temper- 
ature and reactant mole fraction. By this method 
both constraints are satisfied along each curve, even 
though the conditions are not necessarily optimum. 
The dashed curve in Fig. 7 is the deposition rate con- 
strained only by a uniformity condition. This previ- 
ously appeared in Fig. 5.  Note that the additional 
constraint on the nucleation rate always reduces the 
optimum pressure. 

In Fig. 7 we see that dual constraints on the 
uniformity and relative nucleation rate yield a strong 
maximum in the normalized deposition rate. In con- 
trast with Fig. 5, the deposition rate here falls about 
linearly both above and below the optimum pres- 
sure. As the nucleation constraint becomes increas- 
ingly stringent, 52* 4 0, a plateau develops about 
the maximum, but outside this plateau the deposi- 
tion rate still falls sharply. From this we see that 
low-pressure CVD offers a distinct advantage over am- 
bient pressure processing when both uniformity and 
gas-phase particle nucleation are considered. 

Finally, the system of equations (64), (66) 
and (67) can be solved in closed form for the spe- 
cial case of fa << 1. In this limit, corresponding to 
a very stringent requirement on the nucleation rate, 
the optimum reactant mole fraction and normalized 
temperature are 

The optimum pressure for this special case then fol- 
lows directly from Eq. (64), 

and by Eq. (46) the normalized deposition rate at the 
optimum conditions is 

Thus the deposition rate at the optimum conditions 
is proportional to the relative particle nucleation rate, 
and increasingly stringent requirements on particle 
nucleation rates must be paid for with decreased de- 
position rate and increased processing time. 

Application to CVI 
Chemical vapor infiltration (CVI), used to coat 

and densify porous preforms for manufacturing high- 
performance composites, is completely analogous to 
the CVD process. As such, the results obtained here 
can be applied to that problem by making a few simple 
substitutions: (1) any appearance of the inter-wafer 
space, w, by itself is replaced by the characteristic 
pore size, d; (2) the group u2/w is replaced by s,a2/2, 
where s, is the specific surface area of the porous ma- 
terial; and the group ( u / w ) ~  is replaced by s,a2/2d. 
Additionally, the diffusivity ratio, a, is replaced ev- 
erywhere by the product OD*, where D* is the di- 
mensionless effective diffusivity of the preform. Using 
these substitutions, the optimum pressure, tempera- 
ture and reactant mole fraction can be computed for 
CVI processes performed on cylindrical preforms. All 
results based on the first-order perturbation solution 
may also be applied to rectangular geometries simply 
by dividing the diffusivity ratio, cy, by two. 

Summary 
Deposition rates for CVD processes performed in 

multi-wafer batch furnaces are generally limited by 
the requirement of high radial uniformity of the de- 
posited layer and by stringent requirements on gas- 
phase particle generation. To obtain high deposi- 
tion rate and corresponding high furnace throughput, 
CVD process recipes must be carefully optimized. 

To help optimize CVD process conditions, we 
have derived an analytical expression relating depo- 
sition uniformity to the surface deposition rate. This 
expression is based on a perturbation solution describ- 
ing the radial advective and diffusive transport and 
surface deposition of a single reactive species. The 
analysis accounts for both ordinary and Knudsen dif- 
fusion and is applicable to any deposition reaction, 
provided that the deposition nonuniformity is small. 

Based on the first-order perturbation solution, 
the deposition rate is first maximized subject to a 
constraint on the radial uniformity of the deposition 
rate. Both optimum pressure and optimum tempera- 
ture are determined by the method of Lagrange mul- 
tipliers. Sample calculations for the special case of a 
first-order deposition reaction show that the optimum 
pressure depends on the activation energy for the de- 
position reaction, the size of the inter-wafer space, the 
composition of the gas mixture, and on properties of 
all species in the mixture. Surprisingly, it does not 
depend on the prescribed uniformity or on the wafer 
diameter. In contrast, the optimum temperature de- 
pends on the prescribed uniformity, pre-exponential 
constant and the activation energy, as well as the net 

. 
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molar yield of the deposition reaction and the ratio of 
the inter-wafer space to the wafer radius. The opti- 
mum temperature does not depend on the composi- 
tion of the furnace gas or on properties of the mixture 
species. 

The optimum conditions for a given uniformity 
yield a weak one-sided maximum of the deposition 
rate. The deposition rate falls sharply at pressures 
below the optimum value, but remains nearly con- 
stant at all pressures above. The reason for this latter 
behavior is that the nonuniformity is proportional to 
the ratio of the deposition rate and the product of the 
gas density and diffusivity, Because the product of the 
density and diffusivity exhibits no first-order pressure 
dependence when Knudsen diffusion is unimportant, 
the deposition rate must be nearly constant whenever 
the uniformity is fixed. Further, the pressure depen- 
dence of the uniformity and of the deposition rate are 
the same for any deposition reaction of fixed order in 
the reactant fraction. 

Contrary to the conventional view, uniformity 
does not increase with decreasing pressure because of 
the increase in diffusivity. Although diffusivities do 

in diffusivity is just offset by a decrease in gas density 
such that diffusive fluxes are independent of pressure 
when ordinary diffusion is dominant. Rather, unifor- 
mity increases with decreasing pressure only if the de- 
position rate falls as the pressure is reduced. Because 
most deposition reactions exhibit at least some pres- 
sure dependence, uniformity does generally increase 
at reduced pressures, but only at the expense of de- 
position rate. 

At sufficiently low pressures, where Knudsen dif- 
fusion is dominant, deposition uniformity no longer 
varies in proportion to the deposition rate. In this 
limit, the diffusivity is independent of pressure, and 
drsTusive fluxes are therefore proportional to the pres- 
sure. Here the pressure dependence of the deposition 
rate must exceed a linear dependence if the uniformity 
is to increase as the pressure is further reduced. 

Since high deposition rates and high uniformity 
can both be obtained at high pressures, some ad- 
ditional constraint must motivate the use of low- 
pressure processes. Although several concerns may 
provide this motivation, we have examined here only 
the issue of gas-phase particle nucleation. The 
method of Lagrange multipliers is again employed to 
maximize the deposition rate, subject in this case to 
constraints on both radial uniformity and a relative 
rate of gas-phase nucleation. Sample calculations for 

cleation process indicate that both the optimum pres- 
sure and the optimum reactant fraction should be 

indeed increase with decreasing pressure, this increase 

u 

L a first-order deposition reaction and second-order nu- 

roughly proportional to the square root of the rela- 
tive nucleation rate. In this case, the deposition rate 
exhibits a strong maximum, with rates falling steeply 
both above and below the optimum pressure. Re- 
duced pressures may therefore permit large increases 
in the deposition rate for deposition reactions prone 
to gas-phase particle generation. 

Nomenclature 
a wafer radius 
b reaction pre-exponential constant 
D effective binary diffusivity 
D, effective ordinary binary diffusivity 
D Kn reactant Knudsen diffusivity (D Kn = ?7w/3) 
D' 
E a  
f 
G 
H 
Kn 
m 
N 
P 
r 
R 
S 
S' 
T 

U 
U 

- 
21 

W 
5 

Q 

Pa 
x 

P 
K. 

ff 

4 
?c, 
52 

. I  

order of diffusivity in reactant fraction 
reaction activation energy 
reactive species mole fraction 
uniformity function 
homogeneous nucleation rate 
Knudsen number (Kn = X/w) 
reactive species molecular weight 
Avogadro number 
total gas pressure 
radial position 
ideal gas constant 
surface deposition rate 
order of deposition reaction in reactant fraction 
temperature 
radial fluid speed 
deposition uniformity 
reactant mean molecular speed 
inter-wafer space 
normalized radial position 
ratio of self to mixture diffusivities 
surface deposition modulus 
reactant mean free path 
Lagrange multiplier 
total molar density 
reactive species molecular diameter 
reaction probability 
net molar yield of deposition reaction 
relative homogeneous nucleation rate 

(x = ~ / a )  

Subscripts and Superscripts 
a at wafer edge 
i order of perturbation solution 
R reference value for normalization 
f 

* asterisk denotes normalized variable 
prime denotes homogeneous nucleation reaction 

17 



Acknowledgment 
The authors wish to thank Dr. R. S. Lar- 

son for his very careful review of this paper and 
Dr. R. W. Foote for sharing with us his broad ex- 
perience in wafer processing. This work was funded 
in part by a Sandia National Laboratories Coopera- 
tive Research and Development Agreement (CRADA) 
with SEMATECH, in part by the Advanced Research 
Projects Agency (ARPA) High Temperature Struc- 
tural Materials Program, and in part by the US De- 
partment of Energy Office of Industrial Technologies, 
Advanced Industrial Materials Program. 

References 
1. D. W. Hess and K. F. Jensen, Microelec- 

tronics Processing, p. 1, Advances in Chemistry, 
Series 221, American Chemical Society, Washington, 
DC (1989). 

2. A. Sherman, Chemical Vapor Deposition 
For Microelectronics, p. 1, Noyes Publications, 
Park Ridge, NJ (1987). 

3. T. A. Badgwell, T. F. Edgar and I. Trachten- 
berg, “Modeling and Scale-up of Multiwafer LPCVD 
Reactors,” AIChE J., 38, 926 (1992). 

4. L. M. Zambov, “Optimum Design of LPCVD 
Reactors,” J. de Physique IV, Colloque C, 5 ,  269 
(1995). 

5. S. Wolf and R. N. Tauber, Silicon Process- 
ing for the VLSI Era, p. 170, Lattice Press, Sunset 
Beach, CA (1986). 

6 .  G. B. Raupp, D. A. Levedakis and T. S. Cale, 
“Predicting Interwafer Film Thickness Uniformity in 
an Ultralow Pressure Chemical Vapor Deposition Re- 
actor,” J. Vac. Sci. Technol., A l l ,  3053 (1993). 

7. C. Galewski and W. G. Oldham, “Modeling 
of a High Throughput Hot-Wall Reactor for Selec- 
tive Epitaxial Growth of Silicon,” IEEE Trans. Semi- 
cond. Manufact., 5 ,  169 (1992). 

8. K. F. Jensen and D. B. Graves, “Modeling and 
Analysis of Low Pressure CVD Reactors,” J. Elec- 
trochem. SOC.: Solid-State Sci. and Technol., 130, 
1950 (1983). 

9. Z. M. Qian, H. Michiel, A. Van Ammel, J. 
Nijs and R. Mertens, “Homogeneous Gas Phase Nu- 
cleation of Silane in Low Pressure Chemical Vapor 
Deposition (LPCVD) ,” J. Electrochem. SOC.: Solid- 
State Sci. and Technol., 135, 2378 (1988). 

10. I(. Okuyama, D. D. Huang, J. H. Seinfeld, N. 
Tani and I. Matsui, “Gas-Phase Nucleation in GaAs 

Thin Film Preparation by Metal Organic Chemical 
Vapor Deposition,” Jpn. J. Appl. Phys., 31, Part 1, 
1 (1992). 

11. M. Adachi, K. Okuyama, N. Tohge, M. Shi- 
mada, J. Satoh and M. Muroyama, “Gas-Phase Nu- 
cleation in an Atmospheric Pressure Chemical Vapor 
Deposition Process for SI02 Films Using Tetraethy- 
lorthosilicate (TEOS),” Jpn. J. Appl. Phys., 31, 
Part 2, 1439 (1992). 

12. W. A. Brown and T. I. Kamis, “An Analysis 
of LPCVD System Parameters for Polysilicon, Silicon 
Nitride and Silicon Dioxide Deposition,” Solid State 
Technology, July 1979. 

13. B. Gelernt, “Selecting an Organosilicon 
Source for LPCVD Oxide,” Semiconductor Interna- 
tional, March 1990. 

14. W. G. Houf, J. F. Grcar and W. G. Breiland, 
“A Model for Low Pressure Chemical Vapor Deposi- 
tion in a Hot-Wall Tubular Reactor,” Mater. Sci. and 
Eng., B17, 163 (1993). 

15. M. E. Coltrin, R. J. Kee and J. A. Miller, “A 
Mathematical Model of Silicon Chemical Vapor De- 
position,” J.  Electrochem. SOC.: Solid-state Sci. and 
Technol., 133, 1206 (1986). 

16. G. D. Papasouliotis and S. V. Sotirchos, 
“On the Homogeneous Chemistry of the Thermal 
Decomposition of Methyltrichlorosilane,” J. Elec- 
trochem. SOC.: Solid-State Sci. and Technol., 141, 
1599 (1994). 

17. C. Bonsanquet, British T. A. Report, BR 507 
(1944). See also W. G. Pollard and R. D. Present, 
Phys. Rev., 73, 762 (1948). 

18. J. 0. Hirschfelder, C. F. Curtiss and R. B. 
Bird, Molecular Theory of Gases and Liquids, 
p. 13, John Wiley & Sons, New York, NY (1954). 

19. W. E. Stewart and J. V. Villadsen, “Graphical 
Calculation of Multiple Steady States and Effective- 
ness Factors for Porous Catalysts,” AIChE J., 15, 28 
(1969). 

20. W. Kaplan, Advanced Calculus, p. 184, 
Addison-Wesley, Reading, MS (1973). 

21. K. Okuyama, D. Huang, 3. H. Seinfeld, N. 
Tani and Y. Kousaka, “Aerosol Formation by Rapid 
Nucleation During the Preparation of Si02 Thin 
Films from Sic14 and 0 2  Gases by CVD Processes,” 
Chem. Eng. Sci., 46, 1545 (1991). 

22. G. S. Springer, “Homogeneous Nucleation,” 
Advances in Heat Transfer, 14, 281 (1978). 

23. F. Wilkinson, Chemical Kinetics and Re- 
action Mechanisms, p. 105, Van Nostrand Reinhold 
Company, New York, NY (1980). 

24. R. B. Bird, W. E. Stewart and E. M. Light- 
foot, Transport Phenomena, p. 571, John Wiley & 
Sons, New York, NY (1960). 

18 



Appendix A 
The parameter Q is the ratio of the effective binary 

coefficient of ordinary diffusion for the reactive species 
and the mixture of other furnace gases to the coeffi- 
cient of ordinary self diffusion for the reactive species. 
Denoting the coefficient for the mixture as D1, and 
the coefficient for the reactive species only as Dll, this 
may be written 

. 
Dl772 
Dll 

a = -  

The values of the terms on the right of Eq. (Al)  may 
be computed by any number of methods, ranging from 
the very simple to very complete. Here we consider a 
very simple method based on kinetic theory and the 
rigid sphere approximation. 

The effective binary coefficient of ordinary diffu- 
sion for the reactive species in a gas mixture may be 
expressed as [24] 

where xj are the mole fractions of each species, and 
D1j is the binary coefficient of ordinary diffusion for 
the reactive species paired with species j .  In this case 
the subscript j = 1 refers to the species of interest, 
while j = 2 and above refer to all other species in 
the mixture. Combining Eqs. (Al)  and (A2) yields 
an expression for Q in terms of the binary coefficients 
of diffusion only. 

Now assuming the hard sphere molecular behavior, 
the ratio Dll/Dlj may be written as 

where aj and mj are the atomic diameter and molec- 
ular weight of the j th mixture species. Note that nei- 
ther the pressure nor temperature appear in this re- 
lation because Dll and D1j always share the same 
functional dependence on both. Finally, combining 
Eqs. (A3) and (A4) gives the desired expression for 
a. 

1/2 -=+&J. (&(m:~; j )  1 01 + Uj  

Q 1 - x 1 .  
J =2 

A - (A51 
We now see that the rigid sphere molecular model 
gives a value for Q that depends only the mixture 

composition and the molecular diameter and weight 
of all the mixture species. However, a more rigorous 
treatment based on Chapman-Enskog theory would 
yield a slight pressure and temperature dependence 
for the ratio D11/Dlj. The value of Q in that case 
would also show a weak dependence on the process 
conditions for a fixed mixture composition. 

We need also keep in mind that the process con- 
ditions may directly influence the composition of the 
furnace gas mixture, so in this sense the diffusivity 
ratio Q will vary with pressure and temperature due 
to variations in xj, whether or not the ratios D11/Dlj 
are constant. In this case, the present analysis may 
be combined with a simple zero or one-dimensional 
auxiliary model of reactant injection and transport in 
the annular region outside the wafer stack. Using the 
specified injection rate and assumed trial values for 
the optimum pressure and temperature, the results 
presented here can be used with the auxiliary model 
to compute the composition of the gas mixture out- 
side the wafer stack. From this estimate of the com- 
position, a value for Q and new candidate values for 
the optimum pressure and temperature can then be 
calculated. This computational procedure can then 
be repeated, each time using the final estimates of 
the optimum conditions as initial guesses for the next 
iteration. This method should converge quickly be- 
cause the value of CY is a fairly weak function of the 
composition. 

Appendix B 
The following derivatives of parameters and vari- 

ables are useful in deriving optimum processing con- 
ditions. 

Density: 

Diffusivity: 

(B3) 
1 d D  1 1 
D a p  p 1 + a K n  
-- - _ - -  

--=- aD ( - +I) (B4) 
D 8 T  T l + a K n  2 
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Uniformity: 

Deposition rate: 

Relative nucleation rate: 

1 a0 1 1 as2 -- = - 
S l a p  p S1aT-T RT -- - 1 (6"- - 1) (B12a7 b) 

1 a0 1 
f 

-- = - 

Derivatives of the density and diffusivity follow di- 
rectly from the ideal gas equation of state and kinetic 
theory, respectively. Those of the uniformity are gen- 
eral and apply to all forms of the deposition reaction 
and diffusivity. Derivatives of the deposition rate are 
specific to a first-order reaction having an Arrhenius 
temperature dependence. Derivatives of the relative 
nucleation rate apply only to a first-order deposition 
reaction and second-order nucleation reaction, each 
having an Arrhenius temperature dependence. Note 
that D', S' and Sf' defined in the text are derivatives 
with respect to f*, not f and are evaluated at f * = 1. 
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