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Abstract 

The understanding of crystalline beams has advanced to 
the point where one can now, with reasonable confidence, 
undertake an analysis of the luminosity of colliding crys- 
talline beams. Such a study is reported here. It is necessary 
to observe the criteria, previously stated, for the creation 
and stability of crystalline beams. This requires, firstly, 
the proper design of a lattice. Secondly, a crystal must 
be formed, and this can usually be done at various den- 
sities. Thirdly, the crystals in a colliding-beam machine 
are brought into collision. We study all of these processes 
using the mo€ecular dynamics (MD) method. The work 
parallels what was done previously, but the new part is to 
study the crystalcrystal interaction in collision. We ini- 
tially study the zero-temperature situation. If the beam- 
beam force (or equivalent tune shift) is too large then over- 
lapping crystals can not be created (rather two spatially 
separated crystals are formed). However, if the beam-beam 
force is less than but comparable to that of the space-charge 
forces between the particles, we find that overlapping crys- 
tals can be fomed and the beam-beam tune shift can be of 
the order of unity. Operating at low but non-zero tempera- 
ture can increase the luminosity by several orders of mag- 
nitude over that of a usual collider. The construction of 
an appropriate lattice, and the development of adequately 
strong cooling, although theoretically achievable, is a chal- 
lenge in practice. 

1 INTRODUCTION 

For the last decade there has been interest in, and experi- 
mental effort to achieve crystalline beams. The interest, be- 
sides being intrinsic for this new state of matter, is primar- 
ily due to the possibility of studying the physics of com- 
pletely space-charge dominated beams, the possibility of 
studying Wigner crystal, and the possibility of using crys- 
talline beams to obtain very high luminosity colliders. It is 
the later possibility that we study in this work. 

The ground state of a crystalline beam was proposed 
by Dikanskii and Pestrikov[I] based on an experimental 
anomaly observed on an electron-cooled proton beam at 
NAP-M, and was first studied using the MD method by 
Schiffer and co-workers[2]. At the same time, experimen- 
tal efforts have succeeded in achieving very low beam tem- 
peratures, but not yet a crystalline state[3]. 
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2 THE GROUND STATE 
Particle motion can be described by a Hamiltonian[4]-[7 
in the rest frame (z, y, z,  t) of a circulating reference par- 
ticle in which the orientation of the axes is rotating so that 
the axes are constantly aligned to the radial (z), vertical 
(y), and tangential (2) direction. Consider a system of 
ions with electric charge Zoe and atomic mass A40 un- 
der Coulomb interaction and external fields. Measure di- 
mensions in units of the characteristic distance to with 
E: = rop2/P2y2, time in units of p/&, and energy in 
unitsofP2y2Z;e2/<’, where PO = Zie2/Moc2 istheclas- 
sical radius, Pc and yM0c2 are the velocity and energy of 
the reference particle, and p is the radius of curvature in 
bending regions of magnetic field Bo. In a bending region 
with pure dipole magnetic field, the Hamiltonian is 

1 1 
2 2 Hi = - (Pz” + Py” + P,”) + -2 - yzP* + vci (1) 

where&; = xj[(zj-z)2+(yj -y)2+(zj-z)2]-1/2is 
the Coulomb potential, Pz,y,t are the canonical momenta, 
and the summation, j, is over all the other particles and 
their image charges[4] in the same beam. In a non-bending 
region with longitudinal electric field and nondipole mag- 
netic fields, the Hamiltonian is 

Hi = +z”+Py”+P;)-T(z2-y) nl 2 

2 (2) n2Eo 3 -n1,zy - -(z - 3zy2) + vci + us, 6 
where the normal quadrupole, skew quadrupole, and sex- 
t up le  strengths are represented by n1 = - & +, n19 = 
-P%, Bo a~ 122 = -&%, respectively. us can be ex- 
pressed in terms of electric field E, measured in the labo- 
ratory frame, 2 = - 

We have done both analytic and numerical calculations 
using the equations derived from these Hamiltonians and 
the molecular dynamics (MD) methods. The details of the 
numerical methods have been provided in Ref.[4]. 

We start with a study of the ground state, as previously 
reported in Ref. [SI. It has been shown that there are two 
necessary conditions for the formation and maintenance of 
a crystalline beam. They are as follows: 

1. The storage ring must be alternating-gradient (AG) fo- 
cusing and the energy of the beam must be less than 
the transition energy of the ring; Le., y < y ~ .  

2. The ring lattice periodicity is at least 2 4  as high as 
the maximum betatron tune. 

Condition (1) arises from the criterion of stable kinematic 
motion under Coulomb interaction when particles are sub- 
ject to bending in a storage ring. Condition (2) arises from 
the criterion that there is no linear resonance between the 
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phonon modes of the crystalline structure and the machine 
lattice periodicity. 

Existing storage rings upon which attempts have been 
made to obtain crystalline beams do not satisfy the con- 
ditions just stated, although with minor modifications they 
would. The requisite cooling in order to obtain a crystalline 
state is delineated in Ref. [7]. What is myired is reason- 
ably pow& and preferably "tapered" cooling; i.e., cool- 
ing to the same average angular velocity. These require- 
ments on a cooling system would seem to be achievable in 
practice. 

3 BEAM-BEAM MODELLING 
Our numerical study of colliding crystals is done using the 
MD code SOLID.[4] The newly add& element is that now 
there are two interacting crystals moving in opposite direc- 
tions. The interaction occurs once a period in a very short 
time, so it is treated as a lumped kick in momentum. The 
kick on particle i can be represented by a Hamiltonian 

(3) Hi=c (1 + P2)rt0 
j ~4- 

where b;j = (q - ~ j ) ~  + (yi - yj)2 is the square of the 
transverse separation and bmin = (1 + P2)ro/(4P2r250) 
is the minimum separation in the beam rest frame, and the 
summation, j, is over all the particles in the opposite beam. 
We find that if the kick is large comparing with that of the 
crystalline space charge, then the ground state is two crys- 
tals separated in space at the crossing point; i.e. there are 
no overlapping (Fig.1d). If, however, the beam-beam ef- 
fect is not too large then the two crystals do overlap and 
beam-beam nuclear interactions can occur. 

A convenient measure of both the beam-beam and the 
space-charge forces is given by assuming a uniform charge 
distribution within the beam. "his is, of course, an under- 
estimate of the actual space-charge and beam-beam forces 
when the beam is crystallized, since the crystalline beam 
has ordered smctures (e.g. for Fig. la the actual space- 
charge force is under-estimated by this tune-shift formula 
by about a factor of 4). Let R be the radius of the machine, 
P&, be the /? values at the crossing point, NB be the number 
of crossing per revolution, NO be the number of ions per 
bunch, A0 be the peak number of ions per unit length, and 
a be the full transverse radius of the bunch, we have: 

-AoRToPzy -NBNO(l+ P2)p0& 

4nP2 ya2 Avsc = , A Y b b  = 
P273 a2 

with these expressions, the ratio of beam-- force(i2 
space-charge force is independent of the transverse beam 
size (or temperature) as the beams are cooled down. 

It is necessary, in order to have significant beam-beam 
nuclear interactions, to form crystals with many shells. 
Unfortunately, crystals with many shells (beyond three or 
four) requires excessive computer time. We have, there- 
fore, modelled a crystal by representing NMP ions by a 
macro particle of charge N M P  20 and mass NMP A40 . Thus 
we replace (0 by < = N$:(o. That is, of course, not the 

same as a many shell crystal with N M P  = 1 but it does 
replicate some of the phenomena. Numerical studies, al- 
beit only with a few shells, indicates minimal sensitivity of 
our results to shell number. 

4 RESULTS 
We first study the formation of crystals with different val- 
ues of the beam-beam force in comparison with the space- 
charge force. The results are shown in Fig 1. Beam and 
machine parameters are listed in Table 1 (60 = 0.68 pm). It 
can be seen that crystalline ground states (zero-temperature 
state) can be found with any value of beam-beam force. At 
the ground states, particles of the two intersecting beams 
do not collide at the crossing point. Collision only occurs 
at non-zero temperature when the amplitude of the parti- 
cle transverse thermal motion is larger than the minimum 
transverse separation of the particles of the opposite beam. 

We then study the heating rates of the crystals as func- 
tions of crystal temperature. The study is done in the ab- 
sence of external cooling an& therefore, tells us the amount 
of cooling required to fom and maintain the crystal. The 
normalized crystal temperature T = T, + Ty + T ,  is de- 
fined with Tz,y,, the deviation of P,, Py and P, from their 
ground-state values, squared and averaged over particles. 
T is related to the conventional beam temperature TB at 
high temperature by 

with kB the Boltzmann constant. Starting with finite- 
temperature states and evaluating the rate at which the 
beams absorb energy from the lattice, we present in Fig. 2 
the relative increase of temperature per lattice period for 
the four cases displayed in Fig. 1. Comparing with the 
case of no beam-beam collision (long dash line), cases with 
A u b b  = 0.08 and 0.27 have similar heating rate down to 
normalized temperature of about 0.0 1. 

finally, in Fig 3, we Show the values Of Av,, and h V b b  

as a function of beam temperature for the last three cases. 
These curves show that as the temperature is reduced the 

Table 1: Beam and machine parameters. 
Quantity Value 
Ion species proton 
Ring circumference, 2nR 
Number of lattice periods per turn 

Horizontal & vertical tunes, v,, vy 
Transition energy, - y ~  29.4 

MVLimum P x  ,y 4.1 [m] 
Minimum Px,y 0.6 [m] 
Average 2.4 m 

25 1.3 [m] 
100 

30.99,30.89 
Energy (Y) 22 

Dipole bending radius, p 10 [ml 

FW voltage, V per period 
RF harmonic number, h 105 

1 [MY 
Svnchrotron tune. Y, 0.26 



beam becomes smaller and hence there is an increase in 
both of these quantities. Most important, however, is the 
increase in Aubb which shows that a larger value of the 
beam-beam effect can be tolerated at low temperatures than 
at high temperatures. Of course, in order to have nuclear 
luminosity, ions in the two beams must overlap on a scale 
much smaller than that which is shown in the figure. Such 
overlap does not occur when T = 0, but will occur at suf- 
ficiently high temperature as indicated by the solid lines in 
Fig. 3. Operating at temperatures just above these values 
increase the luminosity by about two orders of magnitude 
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above that allowed in normal colliders! Normalized temperature 

The ‘‘bottom line’’, then, is that Our work suggests (only 
“suggests” a Of ~ s s i b l Y  important Phenomena 

Figme 2: The h&ng rate for the crystals shown in Fig. 1. 
crystal has lo() macro particles and Aubb = 0, 0.08, 

are only studied by extrapolation) that combining cooling 
with colliding beams is a useful thing to do. Perhaps the 

0.27, and 2.7. 
gain in beam-beam collision rate, while maintaining beam 
stability, can be as much as two orders of magnitude. Fur- 
ther study, and especially experimental study, would appear 
to be called upon, 

The simulation program SOLID was developed by X.-F! 
Li and J. Wei. We thank M. F m a n  for many discussions. 
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Figure 3: The beam-beam tune shift Aubb and the space- 
charge tune shift Au,, as functions of temperature. The 
solid lines indicate regions where particles of opposite 
beams will overlap so that IAUbbi is a Proper measure of 
luminosity- Su=uctures of cases (b), (c), and (d) of Fig. 1 
correspond to the respective curves at about T M 
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Normalized temperature Figure 1: A series of figures showing the formation of 
crystalline ground states with IO00 macro particles in each 
beam. In each case the space charge tune shift Ausc = 
-3.8 and the beam-beam tune shift Aubb = 0, 0.08,0.27, 
and 2.7 (NMp=I ,  1, 40, and 40, OOO). The CTOSS~S cor- 
respond to one beam while the circles correspond to the 
other. 4 is the polar angle. The actual temperature is near 
T M 10-6. 


