
ORNL/CP-95147

A New Method for Modeling and Solving
the Protein Fold Recognition Problem*

Ying Xu, Dong Xu, and Edward C. Uberbacher

Computational Biosciences Section
Life Sciences Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6480

"The submitted manuscript has been
authorized by a contractor of the U.S.
Government under contract No. DE-

ACO5-96OR22464. Accordingly, the U.S.
Government retains a nonexclusive,

royalty-free license to publish or reproduce
the published form of this conmbution, or
allow others to do so, for U.S. Government

purposes."

To be published at The Second Annual International Conference on Computational Molecular Biology,
New York, NY, March 22 - 25, 1998.

*Research was supported by the Office of Health and Environmental Research, U.S.
Department of Energy under contract No. DE-AC05-960R22464 with Lockheed Martin Energy
Research Corporation.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or d u l n e s s of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

b

A New Method for Modeling and Solving
the Protein Fold Recognition Problem

(Extended Abstract)

Ying Xu, Dong Xu, and Edward C. Uberbacher
Computational Biosciences Section, Life Sciences Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6480, USA
Email: {xyn, xud, ube}@ornl.gov

Abstract

Computational recognition of native-like folds from a protein fold database is considered to
be a promising alternative approach to the ab initio fold prediction. We present a new and
effective method for protein fold recognition through optimally aligning (threading) an amino
acid sequence and a protein fold (template). A protein fold, in our database, is represented
as a series of core secondary structures, and the alignment quality is determined by three fac-
tors. They are (1) the fitness between each amino acid and the environment of its assigned
(aligned) template position; (2) pairwise interaction preferences between amino acids that are
spatially close; and (3) alignment gap penalties. Our threading algorithm constructs an opti-
mum alignment between an amino acid sequence of size n and a protein fold template of size
rn in O((rn + n1+0.5CM l0g(n))nc+’) time and O(nrn + nC+’) space, where A4 is the number
of core secondary structures in the fold, and C is a (small) nonnegative integer, determined by
a mathematical property of the pairwise interactions in the fold. C is less than or equal to 3
for about 90% of the 296 unique folds in our database, when pairwise interactions are restricted
to amino acids 5 6A apart (measured between their beta carbon atoms). An approximation
scheme is developed for fold templates with C > 3, when threading requires too much memory
and time to be practical on a typical workstation.

1 Introduction
Protein fold recognition concerns recognizing the native-like folds (3D structures) of an amino acid
sequence, from a protein fold database. It is considered to be a promising approach to predicting
the folded structure of a protein from its sequence, based on the general belief that there is only
a small number of “domain core” folds in nature, and some averaged preference to particular
structural/solvent environments over the entire sequence is sufficient for recognition of its native-
like folds [l].

Typically, fold recognition is achieved through optimally aligning an amino acid sequence with
each of the protein folds (protein threading) in the database. Folds with alignment scores are
recognized as native-like folds of the sequence. The quality of such a sequence-structure alignment
is determined by (1) the fitness of each individual assignment of an amino acid to a template
position, (2) gap penalties for the unaligned amino acids and template positions, and (3) interaction
preferences among aligned amino acids that are spatially close.

1

mailto:ube}@ornl.gov

4

In formulating the protein threading problem, we follow a few basic assumptions widely used
by the protein threading community. We assume that (i) each protein fold is represented as a series
of core secondary structures (a-helices and P-sheets) with the connecting loops being removed; (ii)
when aligning an amino acid sequence with a fold template, successive positions of each core c m
only be occupied by adjacent amino acids in the sequence, and alignment gaps are confined to
the connecting loop regions or the ends of a core; (iii) only pairwise interactions are considered;
and (iv) all terms measuring the fitness of individual assignments, interaction preferences, and gap
penalties are additive.

The protein threading problem, under these basic assumptions, is generally considered to be
computationally intractable. While this belief is strongly supported by the proof on the NP-
hardness of the threading problem under a particular mathematical formulation [2], it also makes
people shy away from seeking a more direct solution to the threading problem. Currently the
most commonly used strategies for solving the threading problem include (1) nondeterministic
approaches such as Monte Carlo method [3] and Gibbs Sampling [4]; (2) implicitly exhaustive
search like branch-and-bound method [5]; (3) local search methods using the so-called “frozen
approximation” [SI. While the strength and weakness of these strategies may vary, they do not
generally guarantee finding an optimum threading, for practical purposes (it may require too much
time, or the result is statistical in nature).

We have developed an algorithm which guarantees finding an optimum alignment between
an amino acid sequence and a fold template. As pointed out by Lathrop 121, allowing variable-
length gaps and pairwise interactions simultaneously is the reason for the computational difficulty
of the threading problem. We have structured our threading algorithm in such a way that its
computational complexity can be explicitly represented as a function of a parameter C, which
characterizes the overall “structure” of the pairwise interactions and gaps. More specifically, the
algorithm runs in O ((m + ~ L ~ + ~ . ~ ~ M log(n))nc+’) time on a sequence of size n and a fold template
of size m, consisting of M core secondary structures. This provides an effective framework for an
in-depth study on how the fold recognition accuracy relates to the computational complexity of
the threading problem. For a fixed fold template, the value of C changes as the allowed maximum
distance, D, between two interacting amino acids (measured between their beta carbon atoms,
alpha carbon for glycine) varies. In a case study, we have demonstrated that C is less than or equal
to 3 for about 90% of the 296 unique folds in our database when we restrict D 5 681, implying
the practical solvability of the threading problem on those folds. Our preliminary results suggest
that C stays as a small integer (3 or 4) even when D is increased to 9 N lOA. For protein folds
with C > 3, we have developed an approximation scheme, which removes the minimum number of
pairwise interactions to make the C value small enough to be practically solvable.

2 Fold Recognition Through Threading
We have used the 3D protein structure database derived by Fischer et al. 171 as our protein
database. This database consists of 301 distinct, representative, and accurate structures. We
removed 5 uncompact structures (PDB codes lmec4, lmypa, lscma, 2plv4, aspca), and have also

2

replaced 24 entries which have been updated in Brookhaven Protein Data Bank (PDB) [8]. This
database of 296 protein folds serves both as the source of deriving the knowledge-based energy
functions and as the templates to align the sequences of unknown structures.

2.1 Energy calculation

A protein structure is governed by physical energies such as bond interaction, van der Waals, and
electrostatics. It is well-known that these energy terms are both difficult to calculate (very time-
consuming) and too sensitive to small displacements in atomic coordinates. As a result, most
threading programs employ knowledge-based potential functions. The total potential energy E,,,
can be decomposed to the following two terms:

Elocal represents a residue's local preference of the secondzry structures and its preference in certain
solvent environment (either exposed to solvent or in the interior of the protein). Epa;, is the pairwise
interaction potential between amino acids.

To calculate Elocal, most researchers treat the secondary structures preference and the preference
of solvent accessibility separately by two decoupled energy functions. We have, instead, used a single
energy function for different combinations of secondary structures and solvent accessibilities [9] ,

N (i , ss, sol) Elocal(i, SS, sol) = -log E (N (i , ss, sol))'

N (i , ss, sol) is the number of occurences of amino acid i in the secondary structure conformation
ss and in the solvent accessibility type sol, and E (N (i , ss, sol)) is a normalization factor. It can
be calculated by T, where N; is the number of amino acid i, N,, is the number of residues
in the secondary structure ss, Nsor is the number of residues in the solvent accessibility type sol,
and N , is the total number of residues (all of which are calculated based on our protein database).
The secondary structures of each protein are assigned by the DSSP package [lo]. The solvent
accessibility, which is defined as the percentage of exposed solvent accessible surface area of the
residue, is calculated by the program ACCESS [ll]. Three types of solvent accessibility sol are
considered: buried (sol 5 9.7%), exposed (sol > 49.0%), and the intermediate (9.7% < sol 5 49.0%).
The cutoffs are determined such that in each type of the solvent accessibility there are equal number
of residues in the database. Combined with the 3 types of the secondary structures, there are 9
combinations of ss and sol. Our results show that a secondary structure typically has significantly
different preferences with different solvent accessibilities, and vice versa, indicating that our function
is more sensitive than those treating the two preferences separately by two independent energy
functions.

The pairwise potential, EpaiT(i , j) , between residue i and residue j is derived from the frequency
of the inter-residue interactions, i.e.,

N N N

K (i , j) is the number of contacts between i and j in the database (for a specified cutoff distance),

and E (K (i , j)) is a normalization factor, which can be calculated by E, K(i, j) ci K(i, j)
2' ' W i d i ,3

In our case study, we have used 6A as the cutoff distance, which accounts for most of the
important inter-residue interactions [12].

2.2 Problem formulation

Now we give aformal definition of the protein threading problem. Let s = 5152 ..A, be an amino acid
sequence, and (t , T) be a protein fold template, with t = t l t 2 ... tm being a sequence of template po-
sitions (with an array of physical properties attached to each of them) and T = TI, ..., TM being the
sequence of core secondary structures t is partitioned into. Let (3,f) = ((31,31), ('s2,Z2),, (&,&))
be an alignment [13] of s and t , where 3; (similarly T i) is either an element of s (or t) or q5 (repre-
senting a gap), and max{n, m) 5 k 5 m+n. Let A(s, t , T) denote the set of a l l possible alignments
between s and t , which satisfy the following constraint': if s; is aligned with t, and s j aligned with
t,, and t , and t , are from the same core of T , then si+, is aligned with tP+, for all z E [l,j - i],
and for any i and j . Let I (t , T) be the set of all pairs of positions from t ' s different cores, with
their distance 5 a specified cutoff value. For each pair (Zi, Ti), F(si, T i) denotes the alignment score
of the two, which could be either a fitness score or a gap penalty depending on what S; and Ti are.
For each pair of positions (T i , T j) E I (t , T) , and the two amino acids Si and Sj assigned to them,
the interaction preference is given by P('s;,Zj,Ti,$). A protein threading problem is defined as to
find an alignment between the amino acid sequence s and the fold template (t , 7') that minimizes
the following function:

3

This section presents an algorithm for solving the minimization problem (4), and analyzes its
computational complexity. This algorithm significantly improves the computational complexity of
our previous work [14], and applies to a much wider range of threading problems.

An Algorithm for Optimum Threading

3.1 The threading algorithm

An interaction graph of a fold template (t , 7') is defined to have a vertex set {till 5 i 5 m} and an
edge set {(t ; , t j) \ (t ; , t j) E I (t ,T)} . Cuttingb the graph between vertices t; and ti+l creates a set of
open links (see Figure 1), each of which has one end in the graph and the other end open. If we
assign an orientation' to a cut edge, one of its two open links is called an in-link and the other one

"Informally, gaps are confined to regions between two cores or at the ends of a core.
%utting the interaction graph always means to cut between two adjacent vertices in this paper.
"The orientation of a cut edge is determined dynamically by our algorithm, and it affects its computational

complexity.

4

I

Figure 1: An interaction graph and a cut between vertices i and i + 1.

an out-link. An assignment (of an amino acid) to an in-link means an (assumed) assignment of the
same amino acid to the end vertex of its corresponding out-link.

We now outline a simple strategy for solving the minimization problem (4), which slightly
generalized Smith-Waterman sequence alignment algorithm and uses a threading matrix (storing
combined alignment and interaction scores) like an alignment matrix in [13]. The basic idea is to
calculate the threading matrix between the amino acid sequence s and the partial template t[l,i]
(note t = t[l ,m]) for each combination of all possible assignments of the amino acids to the open
links of t[l, i] (treated as in-links), and resolve any inconsistency between an assumed assignment
and the actual assignment to t; by assigning +m to the corresponding matrix cell, if t i is a right-end
vertex of a link. It repeatedly expends the threading matrix to include the next template position
just as in Smith-Waterman algorithm, until i = m.

It can be shown that the minimum threading score between s and t among all assumed assign-
ments is an optimum solution to problem (4), using a simple inductive argument on i, i E [l, m]. A
careful implementation of this strategy solves problem (4) in O(mn2Ornax111<~ I lca l l) time, where Ci
denotes the open links at cut point i, and 11 11 represents the cardinality of a set. For an average
fold template, the maximum cut size maxl<i<, - IlC;ll could be as large as a few dozen or even lager,
making this strategy impractical. In the rest of this section, we improve on this basic strategy by
exploiting the constraint that gaps are confined to regions between cores or at the ends of a core.
For the simplicity of discussion, we further assume that gaps are all confined to regions between
cores. Extention to situations with gaps being at the ends of a core is straightforward.

Note that the essence of this strategy is to (repeatedly) solve the threading problem on a partial
template with open links by examining all combinations of amino acid assignments to them, and
the computational complexity depends on the maximum size of open links. While preserving the
basic idea, we generalize this strategy by using a more general divide-and-conquer approach to
greatly reduce the maximum open link size, and hence improve the computational complexity. It
uses two key ideas: (1) group non-independent open links together, and (2) hierarchically partition
the fold template into sub-templates in such a way that the maximum open link size, throughout
the partition, is minimized.

Let Ci,j be the set of edges connecting vertices of cores Ti and Tj, and a , b be two open links
of Ci,] (assuming llCi,jll 2 2). Since no gaps are allowed within a core, the choices of assignments
to a and b are not independent. Obviously the total of number of all possible assignments to C;,j’s

~ ~~ ~

dSome care needs to be taken so that gaps are all confined to regions between cores or at the ends of a core.

5

1 3
I I

; i’........... , r
I i I

2
I

I I I

Figure 2: (a) Contraction of interaction graph. Each dotted box represents a core. (b) Merge of
in-links and out-links. (c) A hierarchical partition of a template. Each node represents a core, and
the numbered vertical lines represent a partition in the specified order.

open links is O (n) (the sequence size). Hence we can redefine the interaction graph by contracting
vertices of each core into one vertex and contracting the edges between two cores into one edge
(see Figure 2(a)). Now each open link has O (n) possible assignments, i.e., each position on the
sequence gives a valid assignment to an open link.

The following observation helps to further reduce the open link size. Consider a series of cores
a , b, c and d, and links (a , b) , (a , e) and (a , d) between them (see Figure 2(b)). A cut between a and
b creates a partition a and (b , e , d) , and three open links. Note that these links are not independent
due to the restriction of no gaps within a core. If we let them be all out-links of a (and hence
in-links of b , c , d) , these links effectively reduce to one link for this particular partition and this
orientation assignment. Generally, for each core a, the number of open links can be counted as
follows: all out-links of a are counted as one link; And for a series of cores in a partition, all its
in-links directed from the same core (outside of this series of cores) are counted as one link. We
call the number of open links counted this way the effective number of open links.

The basic idea of our divide-and-conquer approach is to repeatedly bi-partition the (contracted)
interaction graph (see Figure 2(c)), and solve the threading problem on a partial template with
open links by optimally merging solutions for its sub-templates. We use the following example to
explain the basic idea.

Consider a cut of the interaction graph at any position i E [1,M - 13. We want to show
that a minimum-scoring threading between s and (t ,T) can be constructed through merging a
minimum-scoring threading between s[l,j] and T[1, i] with open links and a minimum-scoring
threading between s[j + 1,4 and T [i + 1, MI with open links, for some j E [I, n - 11 and some set
of “consistent” assignments to both open link sets of the two sub-templates. For each in-link, we
examine every possible assignment to the end vertex of its corresponding out-link and calculate the
interaction score P () based on each assumed assignment; and for each out-link, we examine every
possible assignment to its own end vertex and set the corresponding interaction score P() to be
zero.

6

Let min-score(z, y, A) be the minimum threading score (as defined in problem (4)) between
a (sub)sequence z and a (sub)template y under the assumption that y's open links are assigned
with A. The following statement can be shown using an inductive argument, which we omit in this
abstract.

(5)
minscore(s, T , 0) =

min~<j<n,~{minscore(s[l,j],T[l,i],A)+ - minscore(s[j + l ,n] ,T[i+ 1, M] , A) }

where A represents a set of assignments to T[1, i] (and also to T[i + 1, MI). This equation is the
foundation of our divide-and-conquer algorithm. Note that equation (5) is true for any i E [l, M - 13
and any orientation assignments to the cut edges, which allows us to choose a partition strategy in
such a way that its effective open link sizes are as small as possible. Section 3.2 gives a partition
algorithm, which repeatedly bi-partitions a (partial) template into two sub-templates until all sub-
templates become cores. It partitions the template in such a way that the maximum effective open
link size of the partition is minimized. We call this minimized maximum effective open link size an
optimum open link size of the template.

We now give the pseudo code of the threading algorithm. Given are a sequence s, a fold template
(t ,T) , and a partition strategy, calculated by the algorithm of Section 3.2. L represents the open
links of T and A denotes a set of assignments to L. score is a one-dimensional array, storing the
last column (each template position corresponds to one column) of the threading matrix between
T and s [k , n]; And scorel amd score2 are defined similarly.

Algorithm threading (T , s, b, L , A , score)
1. if T is a core then call align (T , s, I C , L , A , score);
2. else
3.
4.

5.
6 .
7.
8.
9.
10.
11.
12.
13.
14.

begin
divide T to TI and T2 based on the partition strategy, and divide L to L1 and L2 accordingly;
let Lo be the open links (between 7'1 and 7 '2) created;
for each combination of assignments A0 to LO do

begin
call threading (7'1, s, b, LO U L1, A0 U AI, scorel);
for i = k step +1 until n do

begin
call threading (T2, s, i, LO U La, A0 U A2, score2);
call updatescores (score, scorel, score2, i);
end

end
end

align (T , s, I C , L , A , score) uses a slightly-generalized Smith-Waterman alignment to calculate
the threading matrix between core T and sub-sequence s[b, n] under the assumption that the open
links L are assigned with A , and stores the last column of the threading matrix in array score.

7

updatescore (score, scorel, score2, i) is a procedure that updates the array score by comparing
the current values of score with the values of score2 incremented by the value of scorel[i]. By
using a search tree data structure [15], each call to this procedure takes O(1ogn) time.

Based on recurrence (5) and the pseudo code, we can show that threading (T,s, l,fl,fl,score)
calculates the score of an optimum threading between s and (t, T) . If C is the optimum open link
size of the template, this algorithm runs in O((m+ n1+0.5CMlog(n))ncf1) time and O(nrn+ nC+’)
space. We omit implementation details and the analysis on the computational complexity in this
abstract. Some bookkeeping is needed for recovering an optimum threading from the minimum
threading score, which can be done within the above time and space bounds.

3.2

We define a purtition tree of an interaction graph as follows. The tree root represents the whole
interaction graph, and each tree leaf represents a single vertex of the interaction graph. Each non-
leaf tree node has two children, each of which represents a subgraph created by a cut as illustrated
in Figure 1. For each tree node z, we use C,(A,) to denote the effective open link size (of z’s
representing sub-graph) when orientations of its open links are given by A,. The goal is to find a
partition and a set of consistent orientation assignments that minimize the following function:

Construction of an optimum partition

partition,orientation min { m F { G (A, 11 1. (6)

We now outline an algorithm for calculating min{m~{C,(A,)}}. Let Ai,j be a set of particular
in/out assignments to the open links of T [i ? j] . For any bi-partition (T[i , k],T[k+l , j])of T[i , j] , Ai::
and Aitj denote the corresponding portions of Ai,j for the two parts, respectively, k E [i , j - I].
We use Azj to represent a set of in/out assignments to the open links created by dividing T[i , j]
into T[i , k] and T[k + 1,jI7 and A t j represents the inversed in/out assignments to the other half of
the open links. Ii,j(Ai,j) denotes the effective open link size of T[i , j] under the assignment A i j ,

and Ci,j(A;,j) denotes the smallest maximum effective open link size among all partitions of T[i , j] .
The following equations can be shown using an inductive proof, which we omit.

k + l , j

-

k + l , j - mini~k<J,Af,~ {max{ct,k(Ai:r u Af,3)7 Ck+l,J(A;,j u A%), Iz , j (Ai , j) }} , < j7

. . effective-openlink-size (T[i , j] IAi,j), z = 3 .
(7)

Ci,j(Ai,j) =

It is not difficult to show that Cr ,~(f l) gives an optimum solution to problem (6) . Our algorithm
calculates the Ci,j values in a bottom-up fashion using the equation (6). Though the algorithm
runs in exponential time of 2, it is efficient enough for our practical purpose due to the small size
of the open links (at most a few dozen).

8

20.0

m 2 15.0

0

D

E 5.0

.- -
b

LI e, 10.0

E

0.0
(5.0 10.0 15.0 20.

distance cuttoff (A)
(a)

b) 4.0
N
v)

24
.f 3.0

.-

c

5 e 2.0
2
’3 1.0
a
0

0.0
(

1 ,
5.0 10.0 15.0 20.

distance cutoff (A)
(b)

Figure 3: An example showing the relationship between maximum distance between interacting
amino acids, and the total of number of links and the optimum open link size.

4 Discussion

We are now in the final stage of completing the implementation of the threading algorithm and the
calculation of the “energy” terms, and expect to fully test the performance of the threading system
in the very near future. By our estimation, the threading algorithm, in its current form, can find
an optimum threading within a few minutes to a few hours, between a sequence of a few hundred
amino acids and a fold template of similar size with C 5 3.

We have calculated the C values for the 296 unique fold templates in our database when re-
stricting the maximum distance between two interacting amino acids to 6A, as a case study. Our
results show that over 90% of the 296 fold templates have C values less than or equal to 3, and the
rest are all small numbers (the dominating majority is 4). This indicates the general applicability
of the threading algorithm on fold templates when we restrict the maximum interaction distance
to 6A.

Research is currently under way to study how well the algorithm generalizes when we relax
the maximum interaction distance to larger values. We have studied how the total number of
interactions and the optimum open link size C change as the maximum interaction distance, D,
increases, on a portion of the protein database. Figure 3 shows the result on a typical protein fold
template (PDB code: lbrd - 171 residues). For this example, C stays 5 3 when D 5 9 f i .

For the practical purpose of using our threading algorithm, we have also designed a simple
algorithm to remove the minimum number of edges to keep the C value 5 a specified C* (for
our case study C* = 3) for a given fold template, and to use this as a pre-processing step of the
threading algorithm. In describing the algorithm, we use the same notations as in Section 3.2
except that now each edge has a removed/kept assignment, denoted by A. In addition, let w;,j(Ai,j)
denote the minimum number of edges that need to be removed to guarantee that T[i,j]’s optimum
open link size 5 C*, under the removed/kept assignments A;,j. The following equation can be
shown using an inductive proof.

9

k + l , j
I A:$) -k Wk+l,j(Ai,j u A t j) - llA$1l>, I)Ai,jII 5 c*

(8) -
where IlAll represents the number of “kept” edges in A, IlAll the number of “removed” edges, and
the boundary condition of recurrence (8) is given by wi,;(Ai,i) = [lAi,i/l or 00, depending on if
IIA;,;II 5 C* or not. On a typical fold template, our algorithm, using recurrence (8) , removes the
minimum number of edges in seconds to minutes of time.

A number of issues are being studied related to the implementation of the threading algorithm.
One of the key issues is that the algorithm keeps a number of very large tables during the exe-
cution to avoid recalculations, and its (disk/memory) space requirement could be too large to be
practical when the problem sizes are becoming large. Research is currently under way to develop
an implementation that is time most-efficient for a fixed amount of allowed space.

In conclusion, we have developed an algorithm that finds an optimum threading between an
amino acid sequence and a protein fold template, and have structured the algorithm in such a
way which allows us to in-depth study how the maximum allowed interaction distance affects the
computational complexity versus the fold recognition accuracy of the threading problem. Using
this framework, we can determine what distance will be small enough for a practical solution to
the threading problem, and large enough to guarantee an accurate fold recognition. We expect this
study will lead to new insights into the computational protein threading problem, and possibly new
and better ways to model the problem.

Acknowledgements

This research was supported by the United States Department of Energy, under contract DE-AC05-
840R21400 with Lockheed Martin Energy Systems, Inc.

References

[l] T. F. Smith, L. Lo Conte, J. Bienkowska, C. Gaitatzes, R. G. Rogers Jr., and R. Lathrop,
“Current Limitations to Protein Threading Approaches”, Journal of Computational Biology,
VO~. 3, 4, pp. 217 - 225, 1997.

[a] R. H. Lathrop, “The Protein Threading Problem With Sequence Amino Acid Interaction
Preferences is NP-complete”, Protein Engineering, Vol. 7 , No. 9, pp. 1059 - 1068, 1994.

[3] S. H. Bryant and S. F. Altschul, “Statistics of Sequence-Structure Threading”, Curr. Opin.
Struct. BioI., Vol. 5, pp. 236 - 244, pp. 1995.

10

[4] T. Madej, J. F. Gibrat and S. H. Bryant, “Threading a Database of Protein Cores”, Proteins:
Structure, Function, and Genetics, Vol. 23, pp. 356 - 369, 1995.

[5] R. H. Lathrop and T. F. Smith, “Global Optimal Protein Threading With Gapped Alignment
and Empirical Pair Score Functions”, J . Mol. Biol., Vol. 255, pp. 641 - 665, 1996.

[6] A. Godzik, A. Kolinski, and J. Skolnick, “Topology Fingerprint Approach to the Inverse Fold-
ing Problem”, J . Mio. Biol., Vol. 227, pp. 227 - 238, 1992.

[7] D. Fischer, C. J. Tsai, R. Nussinov, and H. Wolfson, “A 3D Sequence-Independent Represen-
tation of the Protein Data Bank”, Protein Engng, Vol. 8, pp. 981 - 997, 1995.

[8] F. C. Bernstein, T. F. Koetzle, G. J. B: Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers,
0. Kennard, T. Shimanouchi, and M. Tasumi, “The Protein Data Bank: A Computer Based
Archival File for Macromolecular Structures”, J . Mol. Biol., Vol. 112, pp.535 - 542, 1977.

[9] M. S. Johnson, J. P. Overington, and T. L. Blundell, “Alignment and Searching for Common
Protein Folds Using a Data Bank of Structural Templates”, J. Mol. Biol., Vol. 231, pp. 735 -
752, 1993.

[IO] W. Kabsch and C. Sander, “Dictionary of Protein Secondary Structure: Pattern Recognition
of Hydrogen Bonded and Geometrical Features”, Biopolymers, Vol. 22, pp. 2577 - 2637, 1983.

[ll] S. Hubbard, ACCESS, University College, London, 1992.

[12] D. T. Jones and J. M. Thornton, “A New Approach to Protein Fold Recognition”, Nature,
VOI. 358, pp. 86 - 89, 1992.

[13] T. F. Smith and M. Waterman, “Comparison of Biosequences”, Advances in Applied Mathe-
matics, Vol. 2, pp. 482 - 489, 1982.

[14] Y. Xu and E. C. Uberbacher, “A Polynomial-Time Algorithm for a Class of Protein Threading
Problems”, Computer Applications in Biosciences, Vol. 12, pp. 511 - 517, 1996.

[15] R. E. Tarjan, Data Structures and Network Algorithms, Philadelphia, PA, Society for Industrial
and Applied Mathematics Press.

11

