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A detailed analytical and numerical study of the suppression of the transverse head-tail instability
by modulating the chromaticity over a synchrotron period is presented. We find that a threshold
can be developed, and it can be increased to a value larger than the strong head-tail instability
threshold. The stability criterion derived agrees very well with the simulations. The underlying
physical mechanisms of the damping scheme are the rotation of the head-tail phase such that the
instability does not occur, and the Landau damping due to the incoherent betatron tune spread
generated by the varying chromaticity.

I. INTRODUCTION

A bunched beam traveling in a vacuum chamber creates a deflecting force generated by the interaction of particles
and environment. The deflecting force, the so-called wake field, reacts and perturbs the beam, often causing transverse
collective instabilities. These instabilities limit the peak current in the bunch. In this paper, we analyze a new method
for controlling such instabilities; namely, through a temporal variation of the ring parameters. We apply this method
to a practical example, the head-tail (HT) instability [1].

In a storage ring, particles with different energies see different focusing strengths in quadrupoles, and thus have
different betatron frequencies. The ratio of the relative frequency difference to the relative momentum difference is
called the chromaticity. The betatron frequency of an off-momentum particle is given by

(1)

where ~ is the chromaticity, wl30 is the betatron angular frequency of the on-momentum particle, and 8 = !::"p/p is
the relative momentum difference. Even if ~ = 0, there is an instability in the particle's transverse motion called
the strong head-tail (SHT) instability. This instability has a threshold created by the synchrotron oscillation, and
when the threshold is exceeded, the bunch's transverse motion grows exponentially. In practice, ~ "# 0, there is still a
SHT instability in transverse motion with a threshold; in addition, there is the head-tail instability due to chromatic
effect, which has no stability threshold. The HT instability was observed in experiments [2]' has been well analyzed
[3], and has been confirmed by simulations [4]. The HT instability has been a concern for many circular accelerators.
For example, we may note the observations and simulations of single-bunch transverse excitation of the beam in the
proton ring of the HERA collider at DESY [5], the observation of higher-order HT instability in the PS Booster of the
LHC at CERN [6], and the investigation of the possible HT oscillation due to a transverse feedback kicker at KEK's
B-Factory (KEKB) [7].

It is understood that, when ~/TJ > 0, the bunch's transverse center of motion which is governed by the in-phase
mode of head-tail oscillation is damped, while the bunch's transverse size which is governed by the out-of-phase mode
o~ head-tail oscillation grows exp~nentia~ly; when ~!TJ < 0, th: condition reversesJ8], where TJ = pdC/Cdp-l/if. i~ t~e
shppage factor, C =2n-R = eTa IS the CIrcumference of the rmg, I = (1_/32)-1 2, and /3 = v/e ;S 1 for a relatIVIstIc
beam discussed in this paper. Moreover, the growth rate of the out-of-phase mode when ~/TJ > 0, is smaller than
the growth rate of the in-phase mode when ~/TJ < 0. Consequently, machine parameters are usually chosen such that
UTJ is positive and small, i.e. we need ~ > °« 0) when the machine is operated above (below) transition. Damping
mechanisms, such as radiation damping and Landau damping, mayor may not stabilize the HT instability, depending
on the damping time, the width of the incoherent tune spread, and so on.

As the sign of ~/TJ is crucial to the stability of the two fundamental modes of head-tail oscillation, in analogy to the
strong focusing principle, alternating the sign of UTJ within a synchrotron period could stabilize both modes. Since

'Work supported by the U.S. Department of Energy under contracts No. DE-FG-03-95ER40936 and DE-AC-03-76SF00098.
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varying TJ means transition crossing, which involves many undesirable problems, such as vanishing Landau damping,
large momentum spread, bunch-shape mismatch and nonlinear effects [9]; we propose, in this paper, variation of the
chromaticity in order to stabilize the HT instability.

While drafting this paper, we were advised of the existence of the paper written by T. Nakamura of SPring-8 [10].
Nakamura suggested, as we have also (independently), the concept of chromaticity modulation, which contributes an
incoherent tune spread that effectively Landau damps the transverse instabilities. In this paper, going considerably
beyond what Nakamura has done, we provide analysis, simulation results, and a stability criterion for the head-tail
instability.

The chromaticity is considered a function of "time" s, where s measures the distance around the ring. We restrict
our analysis to functions that are periodic with the synchrotron period. The chromaticity can thus be expanded in a
Fourier series in terms of the harmonics of the synchrotron phase advance ¢, as

.~(s) = L ~n cos(n¢ + On),
n=O

(2)

where ¢ = wss/C, Ws is the synchrotron angular frequency, n = 0 corresponds to the case of constant chromaticity
(DC) ~o, and On is the phase difference between the chromaticity and energy variation.

The introduction of a time dependent part of the chromaticity generates an additional incoherent tune spread that
contributes to the Landau damping, as was emphasized by Nakamura. Specifically, the constant component of the
chromaticity causes the HT instability. As will be shown in this paper, the varying part of the chromaticity does
not cause a HT instability, and consequently, Landau damping due to the AC (e.g., n=1) incoherent tune spread
suppresses the instability due to the DC part of the chromaticity.

The incoherent chromatic tune spread due to 6 can be estimated as

U v = V,B06J((<5sin¢)2)

= fij8ga V,Bo6 U 6, (3)

where v,Bo = wf3o/wo, Wo = c/R, U6 = (ws/ CTJ)uz, Uz is the rms bunch length, ga = J(rnr.lUz which is a geometric
factor depends on the longitudinal distribution 'l/Joz(rz), and ( ) = ( )rz ( ),p,

(f(rz))r
z

= fo
oo

cL;zrzf(rz)'l/Joz(rz) ,
fo drzrz'l/Joz(rz)

(f(¢)),p = 2
1
7r121r

d¢f(¢).

(4)

(5)

For a Gaussian distribution, ga = 1. In obtaining Eq. (3), we have adjusted Ol such that the chromaticity modulation
is in-phase with the energy oscillation, i.e. ~ = ~o + 6 sin ¢, <5 = (w s /cTJ)rz sin ¢, where (rz , ¢) are the action-angle
variables in the longitudinal phase space. Note that, the cross-term of ~o and 6 vanishes because (sin3 ¢),p = O. The
AC part of the incoherent tune spread contributes to a Landau damping without driving the HT instability [as will
be shown], and the damping rate per turn can be approximated as

(6)

where V s = ws/wo, and Xl = wf306uz/cTj is the AC part of head-tail phase. Note that the Landau damping time due
to the AC part of chromaticity is independent of the beam intensity and the impedance of a ring. In Figs. 1 and 2,
we show that, when there is no HT instability (Xo = 0), the formula for the Landau damping rate is confirmed by
simulations of a bunched beam traversing an averaged impedance in a storage ring [ef. Appendix A]. The implication
is that, within the tolerance of dynamic aperture reduction due to the chromaticity, one can increase the damping
rate (by a large enough Xl) to suppress the HT instability.

In Sec. II, a Vlasov analysis is presented. We examine the growth rates for beams with a hollow distribution and
with a Gaussian distribution, where both the contributions of the AC and DC are included. Results of macro-particle
simulation are discussed.

In Sec. III, the effect of Landau damping, which is not considered in Sec. II, is included by the method of singular
eigenfunction expansion. We provide an approximate stability criterion, and study the dispersion relation which
includes the incoherent tune spread. We compare the stability limit with macro-particle simulations.

Conclusion is given in Sec. IV.
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II. VLASOV ANALYSIS

In this section, we derive the linear eigenmode equation which includes both the DC and AC parts of the chro­
maticity. The effect of incoherent tune spread is not included, and will be included in the next section. We also study
the coherent tune shift of a hollow beam and a Gaussian beam in the longitudinal phase space, in terms of the three
parameters: Xo, Xl and 1.

For an analysis of the effect of varying chromaticity, we assume the particle in a bunched beam experiences two
forces: the external focusing force and the wake force generated from the interaction between the beam and cavities.
The transverse equation of motion for a particle in a bunch is

/I W~(O)
Y (z, s) + -2- y(z, s)

C

= _ r~100

dz'p(z')W.dz _ z')y(z',s),
"Y z

(7)

where y(z) is the transverse (longitudinal) oscillation coordinate with respect to the bunch center, ' = djds, N =
Jdz'p(z') is the number of particles in a bunch, ro = e2jmoc2, Wi is the transverse wake function, and particle's
energy is E = 'Ymoc2.

In the following study, we neglect the nonlinear oscillation due to the rf bucket of the accelerating cavities, or
the Q" bucket of the quasi-isochronous lattice [11]; we also neglect the longitudinal wake force and the gradient of
the transverse wake force, which both affect the longitudinal motion. The synchrobetatron coupling effect on the
longitudinal orbit is also ignored.

There are two parameters essential to the dynamics studied in this paper:

(8)

(9)

where Xn is the phase shift between the head and the tail of a bunch for each harmonic n of the chromaticity. The
parameter 1 is approximately the ratio of betatron tune shift to the synchrotron tune. It can easily be shown, by a
two particle model, that the onset of the SHT instability is where 1 2: 1 [8], when Xl =o. The well-known transverse
Boussard criterion is also consistent with this condition [12].

We have studied a two-particle model incorporating the varying chromaticity scheme. We find that the two-particle
model, in contrast to the Vlasov model and the multi-particle simulations, does not demonstrate the effectiveness of
the varying chromaticity in damping the HT instability. Physically speaking, it is because a two-particle system does
not adequately exhibit the effect of Landau damping.

In this paper, we concentrate on the case of n = 0 & 1, therefore we have three independent parameters under study:
Xo, Xl and 1. A larger periodicity of modulation, i.e. n > 2, is of course also possible. However, it can be shown
that n must be an odd number, such that the ~n does not cause instability [ef. Appendix B].

The nonlinear chromaticity characterized by ~Ol, when ~DC is expanded as ~DC = ~o + ~Ol0, plays a similar role
to the AC component 6. In fact, 6 ::::: ~Ol 0"6· Since both ~Ol and 0"6 are usually small, the nonlinear part of the DC
component ~Ol is not effective enough to suppress the HT instability. Unless a machine has a large enough ~OI0"6, one
needs to modulate the sextupole magnets to have the value of 6 large enough, so that the damping effect overcomes
the instability.

A. Eigenmode Equation

We now present a Vlasov analysis of a many-particle system. We first write down expressions for the dynamical
variables in the four dimensional phase space (z, y; 0, y'), in terms of the action-angle variables, as

z =r z cos q; z, 0 = W S r z sin q;z ,
TJC

A, , wf30 . A,
y = r y cos 'f'y , Y = --rySlll'f'y,

C

where q;(z,y) = W(s,f30)sjc. The linearized Vlasov equation can then be expressed as

3
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(12)-i~7/Jl + W{30 IN1 + W. EN1 + Fy(z, s) (No ~ 0
c c o<Py c o<Pz - E oy' '

where the distribution function is expanded as 7/J = 7/J0 + 7/J1 exp(-ins/c), and 0, is the mode frequency. Eq. (12) can
be solved by [8]: (1) the decomposition of the unperturbed and perturbed distribution functions as

(13)

(2) assuming

which describes the transverse dipole oscillation; and (3) using a linear model of the deflecting force given by

F, (z s) =i(y)e
2
e-in./c~p- (w )Z.L(w )eiwqZ/c

y, CT. L..J 1 q 1 q ,
o q

where wq = qwo + W{3 + lw.,

(14)

(15)

(16)

f dz d87/Joz = N, and Zt(w) is the total transverse impedance of the ring. The linearized Vlasov equation, including
the chromatic term, therefore becomes

Let the longitudinal perturbed distribution function be Fourier expanded as

7/J1z = I:Cl!/R/(rz )ei(/4>.-iP),
/

where

(17)

(18)

(19)

<P =Wf30J~s ~8

= - wee rz cos <Pz - We1 rz cos(2<pz),
c 4c

and We(O,1) = w{30~(0,1)/fJ, when ~ = ~o + 6 cos<Pz· In this section, we attempt to find the growth rate of the HT
instability, the effect of incoherent tune spread which will be illustrated in Sec. III, is ignored here. We now apply

1 12
11" 12

11"__ dd, e-i/'.p.+iiP dd, e-i4>y
(271-)2 0 ,+,z 0 ,+,y ,

on both sides of Eq. (17), in which 7/Jlz is replaced by Eq. (18). We then obtain the eigenmode equation

(0, - Wf30 - lw s ) Cl!/R/(rz )

= i 7l~~~To 7/Joz(rz) I:h(wq )Zf(wq )I/(wq ),
q

where, by using the generating functions of Bessel functions

m

e±ixsin.p = I: i'fmJm(x)eim4>eim1l"/2,
m
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and Eq. (16),

and

h(wq ) =Jdze-;wqz/cPl(z)

W s ·-1' 100

,= 27r- LZ aI' drz x
cry I' 0

r' R (r' )0(1') (WEl r' Wq - WEO r')
Z I' Z q 4c Z , c z'

(24)

(25)

(26)

Note that, when 6
(I) )Oq (X q) = JI(X q .

0, Eq. (21) is the eigenmode equation for the case of constant chromaticity [8], where

B. Degenerate Radial Mode

The eigenmode equation shown in Eq. (21) can be simplified by assuming a hollow distribution,

(27)

(28)

where the radial perturbation occurs only on the surface of a delta shell in longitudinal phase space, i.e. RI(rz ) ex:

o(rz - i). For the zero order perturbation, a~:) = 0/1', n(l) = W{30 + lws. The mode frequency of the first order
perturbation, for the lth mode, is then [ef. Eqs. (21)-(25)]

( n(I) - w{3o - lWs)

_ . 4ws T '" 1. I (I) Xl 1
2

- Z7rW1. TOL.J Zl (wq) Gq (4' Xq - Xo) ,
q

where Xq =wqi/c = (qWO +w{3o + lws)i/c, and X(O,l) =W{(o,l)i/c.
With Eq. (28), we can now find the growth rate, which is the imaginary part of the mode frequency. For a broad­

band impedance, the growth rate of the head-tail instability per synchrotron period, given in terms of the imaginary
part of the mode frequency, is then

(29)

where zf(wq) = -W1.Z(wq) = -W1.[Zr(Wq) + i Z;(wq)], and 2:q has been replaced by Jwq/wo. In Fig. 3, we show
the growth rate of the impedance corresponding to a uniform wake function, where [8]

(30)

and the growth rate of the impedance of the broad-band resonator model, where
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- 1
Z(wq ) = 2wqZ[1 + i (l/w - w)]' (31)

Q = 1, Z = i/b, w=Wq/WR, WR = c/b, and Wi = -2ciRs /b3 . Note that, impedances for the broad-band resonator
model and the uniform-wake model give a similar dependence of the growth rates on XO and Xl [ef. Fig. 3]. In the
resonator model, a longer bunch would scale down the growth rate of the HT instability. In the uniform-wake model,
the growth rate is independent of O"z. To illustrate the effectiveness of damping mechanism due to Xl, we will employ
Eq. (30) as the function of impedance in the following analysis and simulations.

Note that, l/r~1) = 0, when XO =0, since Zr(Wq) is odd in w q . As emphasized, the AC part of chromaticity alone
does not cause the HT instability. The growth rate for the uniform-wake impedance can be approximated as,

(32)

up to the first order of Xo, where the terms of m :f °in G~l) [cf. Eq. (26)] are ignored. The growth rate is
obviously decreased by the AC amplitude Xl. When Xl = 0, Eq. (32) reduces to the well-known [3,8] formula

l/rP) = 32TXo/1T2(4l2
- 1).

c. Radial Modes

When considering realistic particle distributions, the radial eigenfunctions RI(rz) are no longer degenerate. In this
section, we assume a Gaussian longitudinal distribution, i.e.

(33)

and that the mode frequency shift 6.n(1) is smaller than W s , so that the modes n(l) do not couple. The issues of
azimuthal mode coupling will be briefly discussed later. The eigenmode equation, for the uncoupled lth mode, is a
modified form of Sacherer's integral equation,

(n(l)~w.BO -I) RI(rz)

= W(rz)100

dr~r~RI(r~)KI(rz,r~),

where

and the kernel of the integral equation is given by

Introducing an orthonormal complete set e~I)(rz) defined by

6
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the eigenfunction can be expanded as

(38)

For a Gaussian unperturbed distribution the weight function W(rz ) [ef. Eq. (35)] has the orthonormal basis e~l) (rz )
given by [13]

where L~l) are the Laguerre polynomials. We now apply

100

drzrze~l)(rz)

to both sides of Eq. (34). The integral equation becomes an eigenvalue system,

where I is an identity matrix,

and

(39)

(40)

(41)

(42)

(43)

Note that the meaning of glk is related to the beam frequency spectrum of the lth mode, since [ef. Eqs. (25), (26),
and (43)]

(44)

(45)

The eigenvalues. then need to be solved by diagonalization of the infinite dimensional matrix M(l). Note that,
the number of azimuthal and radial nodes in the longitudinal phase space are, I and j, respectively. To achieve a
qualitative description of the eigenmodes, we now focus only on the dominant radial mode, where k = j = O. Using
Eqs. (26), (35), and (39), for the integral in Eq. (43), in ~hich L~I)(x2) = 1, we have [13], for the (lj) = (10) mode,

glO(Xl,Xq - xo) =
1 ( x)m (x - X )2m+1

V27rl! ; (2 - «SmO) -if (2m: I)! x

2)_I)qf(q+l+3m/2+1) (Xlfq x
q=O q!f(q+m+l) 4

2Fl [-q,-m- q;2m+l+l;(X::;:or],

where X(O,l) = WE(O,l)G'z/V2c, xq = wqG'z/V2c, «SmO is the Kronecker delta, and 2Fl(a, b; c; x) is the hypergeometric
function. Note that X(O,l,q) = X(O,l,q)/V2. The beam spectra IglO(XqW are shown in Figs. 4. It can be seen that, the
center of spectra is shifted by an amount of Xo; and .with a large enough Xl, the spectral amplitudes are suppressed

7



(46)

for all azimuthal modes. This implies that, besides the additional incoherent tune spread due to Xl which causes
more Landau damping [cf. Eq. (6)], the HT instability induced by Xo is further suppressed by Xl, although the later
effect is much less effective than the first one, as will be seen in the next section.

The beam spectrum g/o(O, Xq - Xo) reduces to the spectrum of the DC case when 6 = 0:

g/o(X - Xo) = 1 (X - XO)l e-(Xq-xo)'/2.
q V27r/! 21/ 2 q

The mode frequency can now be approximated for the dominant radial mode of a Gaussian beam, as

(")(1) _ _ / ....., _ .8l'ws N(I)Z-(l)
H wf30 W s - Z To 9 eff'

where

N~I) = :L !gzO(Xl, Xq - XO) 1
2

q

and the effective impedance is

Z~k = [N~I)] -1:L Z(wq) IgzO(Xl, Xq - xo)1
2

.
q

When Xl < 1, one can approximate the beam spectrum by

IglO(Xl,Xq - xo)1
2

1 ( )21 -(x -x)' 2 (Xl)~ -- X - Xo e q 0 Jo -27rl! 21 q 4 .

(47)

(48)

(49)

(50)

(51 )

For simplicity, instead of using the exact representation of the beam spectrum shown in Eq. (45), we use the
approximate form of Eq. (50) in the following study, for the case of Xl < 1. In this way, for a broad-ba.nd impedance,
the growth rate per synchrotron period is simply

l/rp) :: -8l'JdwqZr(wq) IglO(Xl, Xq - xo)j2

= -8l'NISR [Z~k] ,

where for a Gaussian beam,

N - Jd 1 12 '" r(/ + 1/2) C J2 (Xl)
/ - W q glo '" /' 21+1 0 -4 .7r . U z

(52)

The coherent tune shift is given by the real part of the mode frequency. For of a uniform-wake impedance [cf. Eq.
(30)], we have

27rSR[D..I/(I)] = -1~~ll/sX6Ie-X~JJ (~l) ,
where .6.1/(1) = ([2(1) - wf3o)/wo -ll/s; and the growth rates of the two fundamental modes are approximately,

l/r}O) ~ -4l'Erfi (Xo) e-x~JJ (~l ) ,
and

(53)

(54)

l/rp) ~ y'1rl'xoLi/~/2)(X6)e-x~JJ (~l) , (55)

where l/r}l) = 27r8'[.6.I/(I)]/l/s, Erfi(x) = -iErf(ix), and Erf(x) is the error function. Fig. 5 show the real part
and imaginary parts of the coherent tune shifts for I =°& / = 1. When Xo ~ 1, the growth rates can be further
approximated by using Erf(xo) ~ 2Xo/..Ji, Li/~/2)(X6) ~ 2/7r. For a uniform-wake impedance, and Xl < 1, we
recapitulate the growth rates in Table 1, when Xo ~ 1.

8



r (I) 2 )1·1'S X01Jo(xd4)
hollow Gaussian

l- a -3.242 -4.514
l = 1 1.081 1.128

Table 1: Comparisons of the geometric factor of the growth rate of the HT instability, for a bunched beam with a
hollow distribution and with a Gaussian distribution, when XO ~ 1. A uniform-wake impedance is assumed, and the
effect of Landau damping in not included.

Simulations agree very well with Eq. (54) for the damping and growth rates of the l = amode of a Gaussian beam.
Figs. (6) show examples of the bunch centroid motion of a Gaussian beam, where the evolution of the envelope agrees
very well with the theory's prediction. In other words, the imaginary part of the coherent tune shift calculated is
confirmed by simulations.

When the SHT effect is prominent, i.e. 1 is close to 1, the azimuthal mode-coupling is likely to occur. Examination
of Eqs. (53), (54) and (55), shows that, both the real and imaginary parts of the coherent tune shift of the (/0)
mode are approximately reduced by Jg(Xl/4). Even before solving the matrix of infinite dimension, or including the
Landau damping, this suggests that the SHT threshold can be raised by a large value of Xl.

The most important results in this section are Eqs. (53), (54) and (55), which are the real part and the imaginary
part of the tune shift of a Gaussian beam with the model impedance of Eq. (30). These results will be used in the
next section.

III. LANDAU DAMPING

In this section, we include in the linearized Vlasov analysis the incoherent tune spread induced by the varying
chromaticity. We present an approximate stability criterion, a rigorous criterion using the dispersion relation, and
comparisons with simulation results.

A. Approximate Stability Criterion

With the knowledge of the incoherent tune spread and coherent tune shift, which cause damping and instability
respectively, we can now estimate a stability condition. Let's assume that the stability criterion for the HT instability
is that the incoherent tune spread is larger than the absolute value of the coherent tune shift; that is

I7v > l.6.v(1)I·
From Eqs. (6) and (47), a general expression for the stability condition is

(56)

(57)

where the factor Jg(xd4) is neglected. From Eqs. (47), (48), (50), and Figs. 4, one can see that, without taking
into account Landau damping, Xl does not significantly reduce the coherent tune shift, unless Xl » 1. Explicitly, the
approximate stability criterion, expressed in terms of accelerator parameters, is

(58)

where Cz = J273r(l + 1/2)/7rl!21+ l and the average current is f o = Nec/C. When a < Xo < 1, the l = 1 mode
is usually the dominant unstable mode, and Cl = 0.058. In contrast, when -1 < XO < 0, the l = a mode is the
dominant unstable mode and Co = 0.23. Note that, as the dimensionality of zt is [O/m], both sides of Eq. (58) are
dimensionless.

As an example, consider a Gaussian beam distribution, an impedance function it = l/wq - i7ro(wq ) , and XO = 0.2,
the stability criterion [cf. Eq. (57)] predicts that the l = a mode is stabilized if Xl > 1, and the l = 1 mode is
stabilized if Xl > 0.0581. In Figs. 7 and 8, we show the growth of the bunch centroid, rms-size, and rms-emittance
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due to the HT instability, and its stabilization by various amounts of Xl. The value of Xl needed to stabilize the
bunch centroid motion is approximately consistent with the estimated criterion of Eq. (57). In Fig. 8, the bunch
centroid motion is initially dominated by the I = amode, which is a damping mode when XO > 0 [cf. Figs. 5 and 6];
the higher order unstable modes cause the growth of averaged bunch-center after the initial damping. The varying
chromaticity, nonetheless, Landau damps all the higher order unstable modes when Xl is larger than the HT stability
threshold estimated in Eq. (57).

Eq. (57) is an estimate for the stability condition, and is usually sufficient for the bunch centroid motion. A rigorous
criterion may be derived by incorporating the incoherent tune spread in the Vlasov analysis. In doing so, one needs
to include the damping mode by the method of singular eigenfunction expansion, and solve the dispersion relation
[14]. The basic derivations are formulated in the next section.

B. Singular Eigenfunction Expansion

In this section, we use the method of singular eigenfunction expansion [14] to include the Landau damping in the
Sacherer equation. We first rederive the betatron phase advance,

W{O W{l .
~ = --rcos¢z - -rsm(2¢z),

c 4c

(59)

(60)

rz -t r, and 51 = w{l!2c. The in-phase oscillation between the chromaticity modulation and the energy oscillation
generates a tune spread proportional to 51 r, as illustrated in Sec. 1. We now rewrite Eq. (34) as

( ) W(r) 100

" (') ( ')RI r = 5 dr r RI r KI r, r ,
1I1 - 1 r 0

(61)

where 1I1 = (fl(l) - wf3o)lws - l = Llll(l)Ills, Wf30 -t Wf30 + 51wsr, and 1II -t 1I1 - 51r. According to the orthogonality
condition defined in Eq. (37), the kernel KI(r, r') can be expanded as

( , "" (I) (I) (I),Kr r, r ) =LJ MWek (r)ekl (r ),
k,k'

where

M~I~, =100

drrW(r)e~l)(r)x

100

dr'r'W(r')e~I)(r')KI(r,r').

As in Sec. II, we now apply Jdrre)I)(r) on both sides of Eq. (61). The eigenvalue system becomes

where
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(63)

(64)

(65)

(66)



(67)Gjk(f) = - ~ feJI)(f)e~l)(f)W(f),

f = 1///51 , and P.V. is the Cauchy principal value. In Eq. (65), we have used the formula: l/(r- f) -.. P.V./(r- f)+
i7r8(f). The dispersion relation of the dominat radial mode is

1 _ (I)
(I) - Moo,
0:00

(68)

or, explicitly,

iV + iU = _l_ = _
0:(/) Foo(l/l) + iGoo(l/l)

00

_ 'M(/)
- l 00

= 81 NI {~ [2(/)] + i~ [2(/)1}
27r eff effJ '

(69)

where V(U) is the real (imaginary) part of the i/0:~16, and i/o:~~ is the so called "beam transfer function" (BTF). For
a Gaussian beam, we have

i

Foo(l/o) + iGoo(l/o)
-ixi!2

(70)

and

i

(71)-ix1
..;?:ff (Xr+4Xll/n-87rl/fe-2vi!xi [Erfi (1;' )-i] ,

for the I = 0 and I = 1 modes. The real and imaginary parts of the effective impedance are given by [cf. Eqs. (53),
(54) and (55)]

81N/~ [2~k] =

{
41Erfi(xo)e-x~JJ (Xf)
-VilxoLi/~/2) (X6) e-x~ JJ (¥-)

(I = 0)
(l= 1) , (72)

(73)

In Figs. 9 and 10, we show the stability diagrams in the U - V space, when I = 0 &1 = 1. The curve of the BTF
(the outer limit on the U - V plane), is determined by Xl. The parameters related to the beam intensity and the
effective impedance, i.e., 1 and Xo [cf. Eqs. (53), (54) & (55)], determine the curve of the inner elliptical circle on
the U - V plane. Note that, in drawing the figures, the contribution of JJ(xrl4) in the beam spectrum [cf. Eq. (50)]
is moved to the left-hand side of the dispersion relation [cf. Eq. (69)].

We find that, the stability limit for the I = 0 mode is where I/o = 0, i.e., ~(BTF) = O. According to the dispersion
relation [cf. Eq. (69)], the stability condition is 1(1 = 0) :S 0.31Xlex~. For the I = 1 mode, the stability limit is
usually given by where Foo = 0, i.e. ~(BTF) = O. Unlike the I = 0 mode, one needs to solve the dispersion relation
numerically to obtain the stability condition of the I = 1 mode.

In short, it is the real (imaginary) part of the effective impedance that gives rise to the stability limit, for the
I = 1(1 = 0) mode.

Figs. 11 and 12 show that the stability area can be enlarged by a larger Xl, for both the I = 0 & 1= 1 modes. Eqs.
(70) and (71) show that the left-hand side of the dispersion relation is approximately proportional to Xl; this implies
that the SHT threshold can be enlarged by increasing Xl.
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The multiparticle simulations show that the rms-emittance of a Gaussian beam is stabilized when the the value of
Xl approaches the stability threshold of Eq. (69) [cf. Figs. 13 and 14]. The results of simulation of the bunch centroid
motion agree with the approximate stability limit, and the results of emittance growth agree with the exact stability
criterion [cf. Fig. 15]. Compared with the rigorous criterion, to stabilize the bunch's higher moments, such as the
rms-size and rms-emittance, Xl usually needs to be larger than the estimate from the approximate criterion [cf. Eq.
(57)] by a factor of between 1 and 3.

As mentioned in previous sections, the varying chromaticity can not only stabilize the HT effect, but also increase
the SHT threshold. Figs. 16 show the simulation results for the stabilization of the SHT instability by a sufficiently
large Xl, when T = 1.65 and Xo = O. Note that the SHT stability threshold, without varying chromaticity, is
approximately l' < 1 (which has been confirmed by simulations). This implies that the current limit in a storage ring
can be increased by the varying chromaticity scheme.

The stability criterion derived in this section are in good agreement with the simulation results, and the criterion
provides a useful guidance for the implementation of the varying chromaticity scheme.

IV. CONCLUSION

In summary, we have shown that, by the varying chromaticity scheme, the head-tail instability is suppressed and
a stability threshold is developed. The underlying physical mechanism of the damping scheme is from the Landau
damping due to an additional incoherent betatron tune spread induced by the varying chromaticity. Moreover, the
varying part of chromaticity rotates the head-tail phase, such that the chromatic term is ±7T/2 out of phase from the
resonant term, in the first and second half synchrotron period, respectively. The imaginary terms (±7T/2 out of phase
terms) are therefore cancelled out by varying chromaticity in one synchrotron period. Consequently, the AC part
of the chromaticity does not cause instability. Multi-particle simulations confirmed the estimated Landau damping
rate, the mode analysis, and the stability condition. In short, it is both the strong focusing principle and the Landau
damping that make this scheme work. With large enough AC part of the chromaticity, one should be able to increase
the threshold of the strong head-tail instability.

Studies of practical issues, such as rapidly modulated sextupole magnets and the reduction of dynamic apertures;
and further theoretical works, such as exact calculations of the azimuthal mode-coupling, are required. Also, of
course, the practical aspects of varying chromaticity must be compared with the other schemes that also introduce
an incoherent tune spread, e.g., space-charge, ion-trapping, rf-nonlinearity, and octupole magnets.

Finally, this work suggests that temporal variation of accelerator parameters might be useful in the control of other
instabilities.
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APPENDIX A: MULTI-PARTICLE SIMULATION

A simulation code has been developed to study the damping effect of the varying chromaticity for the HT instability.
The code simulates a bunched beam traversing a ring with a transverse impedance. The momentum Py is changed by
the kick of the transverse wake force, where Py = (c/wfJo)y'. Particle's betatron oscillation is carried out by a rotation
matrix, where Eqs. (1) and (2) are used for the angular frequency. A uniform transverse wake function is used. No
longitudinal wake force is included. Eqs. (7) and (10) are transformed into a 4-D map for particle's transverse and
longitudinal motions.

The parameters used in the simulations are listed in Table 2.
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Particle's classical radius ro [em]
Energy E[GeV]
Circumference G[m]
Slippage factor TJ

Synchrotron tune I/s

Betatron tune l/f3o
RMS bunch length o-z[cm]
RMS bunch size o-y[cm]
Shunt impedance Rs [Q]
Pipe radius b[cm]
Chromaticity(Head-tail phase) ~o (Xo)
Initial beam transverse offset ~y[cm]

Number of particles per bunch N

1.534 x 10 -iti

40
6400
10-3

0.0094
16.35

1
0.1

3000
3.0

1.246(0.2)
0.1

2 x 1011

Table 2: Parameters used in the simulations_ Note that, from this table, the intensity parameter is Y = 0.22_

The accelerator parameters can be scaled according to the three dynamical parameters Y, Xo, and Xl, which are
the only parameters relevant to the dynamics discussed. In simulations, a bunch beam is loaded with a bi-Gaussian
distribution in both the longitudinal and transverse phase spaces. All results are numerically converged when the
number of macro-particles simulated is larger than 400.

The curves of (y) and Yrms presented in this paper have been averaged over a synchrotron period, they are defined
as

where

1 Nm

fi(i) = N L Ym(i),
m m=l

o-;(i) = N~ t [Ym(i) - fi(i)]2 ,
m=l

(AI)

(A2)

(A3)

Nm is the number of macro-particles used in the simulations, Tn is the number of turn, and N s is the integer part of
l/l/s. The rms-emittance is defined as

where

o-;_Py(Tn) =
1 Nm _

N
m

L [Ym(Tn ) - fi(Tn )] [Pym(Tn ) - Py(Tn )] .

m=l

APPENDIX B: PERIODICITY OF VARYING CHROMATICITY

(A4)

(A5)

In this appendix, by using a two-particle model, we show that the periodicity of chromaticity modulation n must
be an odd number, such that the AC part of the chromaticity does not cause additional HT instability.

For a two macro-particle system, the longitudinal motion of the two macro-particles is prescribed as:
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(B1)

, ,
, . Zl,2 WsZ

Z12 = ±Z sm¢, 612 = -- = =f- COS¢,, , ry ~ cry

where i is the oscillation amplitude with respect to the bunch center, and the upper (lower) sign denotes for the 1st
(2nd) particle. The transverse motion in the first half synchrotron period, i.e. 0 < sic < Ts/2, can be described as
follows,

(B2)

(B3)

where a constant short-range transverse wake W.L is assumed. For the second half period, i.e. Ts 12 < sic < Ts ,

Y1 +-+ Y2·
According to Eqs. (1), (2), and (BI), the betatron frequencies of the head and tail split as

W,61,2(S) = W,60 =F Ws L Xn cos ¢ cos(n¢ + Bn ).
n=O

The approximate solution of Eqs. (B3) can be found by assuming

where both Y(s) and cI>(s) vary slowly compared with the betatron oscillation,

is ,W,61,2(S') _ s 1~
cI>1,2(S) = ds - w,6o- =F -2~ Xn 9n,

o c C n=D

and

( .../..) B [sin(n + I)¢ sin(n - 1)¢]
9n n r 1 = cos n 1 + 1n+ n-

. B [cos(n + 1)¢ - 1 cos(n - 1)¢ - 1]
+sm n 1 + 1 'n+ n-

91 = cosB1 (~sin2¢ + ¢) + ~sinB1 (cos2¢ -1).

Substituting Eq. (B5) into Eq. (B3) and neglecting the small parts, where

(Iyr IY21, 1cI>~1) ~ 1cI>~Y~/Y21 ~ w,60Y~/CY2

and Ws ~ W,60, leads to

Integration of Eq. (BIO) leads to

where

51 = ~1" d¢exp (i L xn9n) .
o n=O

Similarly, for the second half synchrotron period, we have
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(B6)

(B7)

(B8)

(B9)

(BI0)

(Bll)

(BI2)
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where

(B14)

and

(
.../..) II [sin(n + 1)¢ sin(n - 1)¢]

hn n T 1 = cos Un + +
n+1 n-1

. Il [cos(n+ 1)¢- (_l)n+l
SIll Un +

n+1

cos(n - 1)¢ - (-It-I]
(B15)

n-1 '

hI = cos B1 (~sin 2¢ + ¢ - 7r) +

~sinBl(cos2¢-1). (B16)

The amplitudes of the two-particle system after a complete synchrotron period can therefore be written as

V(s/c = Ts ) = MIl' MI' V(s/c = 0)
= M . V(O), (B17)

The eigenvalues of Mare

(BIg)

where 5 = 5ISII . Note that when the chromaticity is constant, and the head-tail phase is small, i.e. n = 0 and
Xo ~ 1, we have 51 = 511 :::::: 1 + 4iXo/7r [8]. When the chromaticity is zero, i.e. Xo = 0, and l' < 1, the modulus of
the eigenvalue is one and the system is stable. The value l' = 1 corresponds to the threshold of the SHT instability.

To investigate the stability of the two-particle system, we first discuss the situation when the head-tail phase is
small, i.e. Xn ~ 1. The functions SI, 511 can then be approximated as

where

5I~1+iLXnGn,
n=O

511 ~ 1- i L: XnHn ,
n=O

Gn(n:/= 1) =17r

d¢gn(¢)

=! cos en [1 + (_l)n + 1+ (-It]
7r (n + 1)2 (n - 1)2

-sinBn (_1_ + _1_),
n+1 n-1

r27r

Hn(n:/= 1) = J
7r

d¢hn(¢)

=-!cosB
n

[l+(-l)n + l+(-l)n]
7r (n + 1)2 (n - 1)2

+ sin Bn [(_l)n + (_l)n)] ,
n+1 n-1
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and

G1 = HI = ~ COS 01 - ~sin 01 .

The product of Sj and SIl in Eq. (BIg) is then

S = SjSIl

=1+ L XnXmGnHm+iLXn(Gn-Hn).
n,m=O n=O

(B24)

(B25)

Note that, in Eqs. (B20) and (B2I), the real part of SI(Sn) is the resonant term, and the imaginary part is the
chromatic term, in the 1st(2nd) half of a synchrotron period. Examining the form of the eigenvalue >., the stability
condition is, in general, when

S E 1R, S > 0 and y2 < 1/S,

where the modulus of eigenvalue of the transfer map M equals to one, i.e. 1>'1 = 1. Since Gn - Hn =°when

n C odd,

or

(B26)

(B27)

(B28)-1 [ 2(n
2 + 1) ]

n C even & On = tan 1I"n(n2 _ 1) ,

which makes the imaginary part of S vanishes, we conclude that the stability conditions of the had-tail instability
with varying chromaticity when Xn ~ 1, are Eqs. (B26)-(B28). Note that in case the chromaticity is a constant, i.e.
when n =°only, we have Go - Ho = 8/11", ~(S) -# 0, and 1>,1 -# 1, the two-particle system is inherently unstable.

In other words, for a small head-tail phase Xn, using a varying chromaticity with an odd function of synchrotron
oscillation period, one can build up a stability threshold for Y from zero to I/..;s. An odd chromaticity function can
be achieved, by either alternating the sign of ~ or modulating ~ by a sinusoidal function within a synchrotron period.
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FIG. 1. Multi-particle simulation results showing damping of the centroid motion of a Gaussian beam, when Y = 0.11,
XO = 0, (a) Xl = 0.2, and (b) Xl = 0.5. The solid lines are where, according to Eq. (6), (y)[turnJ = 0.1 exp( -turn/TLD). See
Eqs. (8) and (9) for definitions of Xo, Xl, and T.
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FIG. 2. Multi-particle simulation results showing damping of the centroid motion of a Gaussian beam, when Y = 0.328,

XO = 0, (a) Xl = 0.2, and (b) Xl = 0.5. The solid lines are where, according to Eq. (6), (y)[turn] = 0.1 exp( -turnITLD). See
Eqs. (8) and (9) for definitions of Xo, Xl, and T.
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FIG. 3. Scaled growth rate, IfT~I) fT, of a h~llow beam due to the impedances of a uniform-wake (solid line) and a broad-band
resonator model (dashed line), when Xl = 0, z= 0.1. Curves are labeled by the azimuthal mode index I. See Eqs. (8) and (9)
for definitions of Xo, Xl, and T.
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FIG. 4. Normalized frequency spectra IgIO(XqW of a Gaussian beam, when xo = 0.1, (a) 1 = 0&1, and (b) 1 = 2&3. See
Eq. (8) for definition of XO and Xl.
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FIG. 5. Scaled coherent tune shift of a Gaussian beam due to the impedance of Eq. (30) vs. Xo, when Xl = 0, and where
the solid(dashed) lines are the real(imaginary) part of 27r~v(l)IvsT. Curves are labeled by the azimuthal mode index l. See
Eqs. (8) and (9) for definitions of Xo, Xl, and T.
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(a) Xo = +0.2, and (b) XO = -0.2. The solid lines are where, according to Eq. (54), (y)[turn] = 0.1 exp(vsturn/r}O)). See Eqs.
(8) and (9) for definitions of Xc, Xl, and T.
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FIG. 7. Multi-particle simulation results showing stabilization of the liT motions of (a) the centroid, (b) the rms-size, and

(c) the rms-emittance of a Gaussian beam by Xl, when XO = -0.2 and r- = 0.22. The estimated stability threshold for the
1=0 mode, according to Eq. (57), is Xl ?: 0.22. See Eqs. (8) and (9) for definitions of Xc, Xl, and T.
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FIG. 8. Multi-particle simulation results showing stabilization of the HT motions of (a) the centroid, (b) the rms-size, and

(c) the rms-emittance of a Gaussian beam by Xl, when XO = 0.2 and Y = 0.22. The estimated stability threshold for the I = 1
mode, according to Eq. (57), is Xl 2 0.0127. See Eqs. (8) and (9) for definitions of Xo, Xl, and Y.
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FIG. 9. Stability diagram of a Gaussian beam with the impedance function given by Eq. (30), for the I = °mode. Parameters

that label the ellipses are: (-Xo, Y) = (a) (0.2,0.22), (b) (0.5,0.28), (c) (0.7,0.36), (d) (0.85,0.45). The outer curve is where
Xl = 0.7. See Eqs. (8) and (9) for definitions of xo, Xl, and Y.
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FIG. 10. Stability diagram of a Gaussian beam with the impedance function shown in Eq. (30), for the 1 = 1 mode
Parameters that label the ellipses are: (xo, Y) = (a) (0.05,0.83), (b) (0.2,0.22). The outer curve is where Xl = 0.026. See Eqs.
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FIG. 11. Stability diagram of a Gaussian beam with the impedance function shown in Eq. (30), for the 1= °mode. The

stability boundaries are enlarged by Xl. See Eqs. (8) and (9) for definitions of Xo, Xl, and Y.
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FIG. 14. Multi-particle simulation result showing stabilization of the HT motions of the rms-emittance of a Gaussian beam

when Xl --+ 0.026 - the theoretical stability threshold of the 1= 1 mode [cf. Eq. (69)]. Here Xo = 0.2, Y = 0.22. See Eqs. (8)
and (9) for definitions of Xc, Xl, and Y.
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FIG. 15. Stability limits of a Gaussian beam with the impedance function of Eq. (30) for the 1= 1 mode, in the AC (Xl)

vs. DC (xo) space. Here Y = 0.22, (y) is the averaged centroid motion at 8000 turns, b.erms = erms(8000)/erms(0), and
the approximate and exact stable limits are plotted according to the criteria shown in Eqs. (57) and (69), respectively. The
region below the solid (dashed) line is stable for the bunch's rms-emittance (centroid) motion. Note that, (y)(O) = O.I[cm],
erms(O) = O.OI[cm], and b.erms is rounded to the closest integer.
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FIG. 16. Multi-particle simulation results showing stabilization of the SHT motions of (a) the centroid, (b) the rms-size and

(c) the rms-emittance of a Gaussian beam by Xl, where the SHT stability limit is T < 1 (when Xl = 0). In these figures,
xo = 0, T = 1.65. See Eqs. (8) and (9) for definitions of Xo, Xl, and T.
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