DCRE 15076

INSTHURINT SELECTION, IMSTALLATION, AHD GUALYSIS OF DATA FOR THE
SPENT FSEL MIUE-EY, NEVADA TEST SITE, CLIMAK STJCK

$$
9.0^{\circ} 415180 \%
$$

By
T. Schrauf
M. Board

TR79-51
Terra Tek, Inc.
July, 1979

INSTRUMENT SELECTION, INSTALLATION, AND ANALYSIS OF DATA FOR THE
spent fuel mine-by, nevada test site, climax stock

By
T. Schrauf
M. Boarí

> TR79-5!
> Terra Tek, Inc. Juły, 1979

Page
Table of Contents i
List of Figures ii
List of Tables v
ABSTRACT 1
INTRODUCTION 3
INSTRUMENTATION 3
Instrument Selection 3
Ins trument Locations 4
Field Installation 4
Field Calibration 9
Field Activity Sumnary 10
Ins trument Readings 13
Instrument Performance 15
NUMERICAL MODELING OF THE SPENT FUEL MINE-BY AND COMPARISON WITH ACTUAL ROCK MASS DISPLACEMENTS 16
Computer Codes, Methods and Assumptions 16
Results of Modeling 22
CONCLUSIONS 38
APPENDIX A Extensometer Voltage Readings 40
APPENDIX B Extensometer Displacement Readings 51
APPENDIX C Extensometer Mine-by Calibration Data 62
APPENDIX D Convergence Point Data 77
APPENDIX E Plots of Displacement vs. Advance of Face for all 81 Extensometers
APPENDIX F Plots of Convergence vs. Advance of Face 34
REFERENCES 98

LIST OF FIGURES

Figure Number

1

2

3
4
5

Extensometer Measurement Scheme.
Convergence Point Anchor Locations
Mining of Heater Spent Fuel Storage Drifts.
Finite Element Mesh used to Model the Mine-by.
Idealization of the Mine-by for the Displacement Discontinuity Model.

Actual and Predicted Displacement during the Mining of the Heading, Horizontal Extensometers.

Actual and Predicted Displacement during Mining of the Bench, Horizontal Extensometers.

Actual and Predicted Displacement during Mining of the Heading, 330 Extensometers.

Actual and Predicted Displacement during Mining of the Bench, 33^{0} Extensometers.

Actual and Predicted Displacement during Mining of the Heading, 50° Extersometers.

Actual and Predicted Displacements afte "Mining of the Bench, 50° Extensometers.

Vertical stress across pillar centerine during mining of the Spent Fuel drift.

Zone of Reduction in pillar modulus used in the finite element models.

Actual and Predicted Displacements during Mining of the Heading, Horizuntal Extensometers.

Actual and Predicted Displacements during Mining of Bench, Horizontal Extensometers.

Actual and Predicted Displacements during Mining of Heading, 33 Extensometers.

LIST OF FIGURES (continued)

Figure Number

17

Description

Actual and Predicted Displacements during Mining of Bench, 33° Extensometers.

Actual and Predicted Displacements during Mining of the Heading, 50° Extensometers.

Actual and Predicted Displacements during Mining of the Bench, 50° Extensometers.

Plot of Vertical Stress (Total) along Line A-A' after all Mining for case of Single Modulus and Reduced Pillar Modulus.

Displacements Vs. Advance of Top Heading.E1
Displacements Vs. Advance of Top Heading.E2
Displacements Vs. Advance of Top Heading.E3
Displacements Vs. Advance of Top Heading. E4
Displacements vs. Advance of Top Heading.E5
Displacements vs. Advance of Top Heading.E6
Displacements us. Advance of Top Heading.E8
Displacements vs. Advance of Top Heading.E9
Displacements vs. Advance of Top Heading.E1O
Displacenents vs. Advance of Top Reading.Ell
Displacements vs. Advance of Top Heading. El2
Displacements vs. Advance of Top Heading.El3
Displacements vs. Arvance of Bench. El
Cisplacements vs. Advance of Bench. E2
Displacements vs. Advance of Bench. E3
Displacements vs. Advance of Bench. E4
Displacements vs. Advance of Bench. E5
Displacements vs. Advance of Bench. E6

Figure Number	Description	
E19		Displacements us. Advance of Bench. E8
E20		Displacements vs. Advance of Bench. E9
E21		Displacements vs. Advance of Bench. E10
E22		Displacements vs. Advance of Bench. E11
E23		Displacements vs. Advance of Bench. E12
E24		Displacements vs. Advance of Bench. E13
F1	Convergence Point Readings. CA1 to CA2	
F2	Convergence Point Readings. CA3 to CA4	
F3	Convergence Point Readings. CA5 to CA6	
F4	Convergence Point Readings. CA7 to CA8	
F5	Convergence Point Readings. CA9 to CA10	
F6	Convergence Point Readings. CA11 to CA12	

LIST OF TABLES

Table Number	Description
1	Extensometer Anchor Locations
2	Variation of In Situ Stresses
3	Material Properties Used in Model Runs
4	Parameters varied for Model Runs
5	Comparison of Results of the Finite Element and Displacement Discontinuity Methods
A	Voltage Readings (volts)
B	Cisplacement Readings (mm)
C-1	Mine-by Calibration Data
C-2	Calibration Statistic:
D	Convergence Foint Readings (rim)

During the time period of February to April, 1979, Terra Tek personnel installed, calibrated and monitored twelve roi extensometers and twenty-two convergence measurement points in support of the spent fuel mine-by experiment at the Climax Stock in granite. This report details the instrumentation, installation, calibration, monitoring and subsequent analysis of the data.

Extensometer performance was good to excellent. Readings taken during heading and bench advance shows good instrument stability, with little or no anchor creep or slippage. Repeat calibrations indicate excellent repeatabllity. Convergence measurements proved to be somewhat disappointing. Measurement points within the heater drifts indicate little closure. Convergence pins within the spent fuel drift were subjected to significant blast damage that resulted in a discontinuous record.

A numerical analysis of the stresses and displacements of the rock mass as a result of the mine-by was performed. Two methods, finite element and displacement discontinuity, were used to model the mine-by. The results show an excellent agreement of the two methods. A comparison of the actual to predicted displacements show a good agreement for the 33° and 50° extensometers for a rock mass modulus of $3-5 \times 10^{5} \mathrm{psi}$ and Poisson's ratio of .2. The horizontal extensometers however indicate a convergence of anchor and collar, whereas the prediction indicates a divergence. In addition, the IRAD stressmeters installed within the pillar indicate a significant reduction in vertical compression during mining of
the heading, These phenomena indicate that the pillar has been anloaded and a stress arch formed around the openings. The modutus of the pillar Was reduced and the finite element code re-run to try to account for the unloading of the pillar. It is shown that a simple reduction of pillar modulus will not account for the ubserved strass and displacement changes. Varying the ratio of vertical to horizontal stress ratio over the range .8 to 1.25 also did not acrount for observed stresses and displacements. Based on this analysis, it is concluded that the displacements and stresses are a result of block motion or joint slippage within the pillars. This is primarily the result of the small dimensions of the piilars in relation to the spent fuel and heater drifts. Tnis joint sippage can account for the formation of stable stress arch around the openings and thus a relaxation of the fitilar.

INTRDOUCTION

Twelve extensometers and 22 convergence measurement points were installed at the Nevada Test Site, Area 15 shaft, to monitor rock mass movenents associated with "mining of the spent fuel" canister drift. The purpose of this program was to determine and evaluate rock mass movements and to compare these measured displacements with those predicted from finite element models. The firgt secting this repgot deals with the selection, installation, calibration, and performance of the instrumientaziön.

A second section covers the finite element and displacement continuity modeīing and its comparison with the actual field data.
(1) INSTRUWENPATION

Instrument Selection

$\because \because$

The instruments selected for this project were multipoint rod extensometers (Terrametriss model CSLT-R) and a convergence point theasuring tape (Terrametric model TE-75).

The rod extensometers measure displacement between 3 or 5 downhole anchore and the borehoie collar. "Instrument lengths ranged between 17 and 45 feet. These instruments featured hydraulic bladdey archors with $1 / 4$ inch mild steef connecting rods for transmitting anchor displacements to the borehole collar. A l, 1/4 inch (32 mm) waterproofed flexible conduit. was usad to protect the connepting rods from corrosiote. The connecting rods were spring tensioned to approximately 100 lbs . (450 N) and fitted with teflon spacers about every 15 feet $(4.6 \mathrm{~m})$ to reduce rod friction oue to sagging and twisting of the rods downhote. Differential mevements between the rod ends and the borehole collars were measured by means of linear potentioneters with a total displacement range of 25 mind an response
of about 0.4 volts $/ \mathrm{mm}$. Overall extensometer precision is about 0.02 mn .
The convergence point measuring tape consists of a standard steel surveyor's tape used in conjunction with a dial indicator. The instrument proyides a constant spring tension for all readings to obtain maximum repeatability. Although readings are taken to the nearest 0.01 mm , actual precision is approximately 0.1 mm .

Instrument Locations

The rod extensometers are located in two measurement planes perpendicular to the spent fuel canister drift. These two measurement planes intersect the canister drift at its survey coordinates $2+83^{\prime}$ and $3+45^{\prime}$. A total of six extensometers are located in each measurement plane, three extending from the south heater drift and three extending from the north heater drift, as shown in Figure I. Exact anchor depths are listed in Table 1.

The location of the convergence anchor points is shown in Figure 2.

Field Installation

Extensometer construction and installation can be subdivided into three separate tasks: (1) construction of downhole portion, (2) installation into borehile, and (3) installation of head assembly.

Construction of the downhole portion involved assembly of rods, anchors and pressurizing lines, and conduit section. This job was handled on a long workbench to accommodate the entire instrument during assembly. A two-man crew was required for the job. Procedure was as follows:

EXTENSOMETER MEASUREMENT SCHEME

$\triangle E X T E N S O M E T E R$ HEADS
O EXTENGOMETER ANCHORS

Figure 1.

SOUTH ORIFT

万小,

CANISTER DRIFT

NORTH DRIFT

Figure 2. Schematic Drawing of Convergence Point Anchor Locations

TABLE 1

Ext./Anchor ${ }^{\prime}$	$\begin{aligned} & \text { Originel } \\ & \text { Rod Length } \end{aligned}$	Extra Rod Length	Distance From Rod Top to Flange	Oistance From Flange To Anchar Point	
E1-1	144	76.5	2.5		
-2	168	14.0	2.5	${ }^{65} 5^{*}{ }^{\text {a }}$	- 1.65 m
-3	288	68.0	2.5	${ }^{151.5 .5}$	1.85 m $\begin{array}{l}3.3 \mathrm{~m}\end{array}$
E2-1	144	74.0			
-2	170	19.0	2.5	${ }^{67.58}$	" 1.71 m
-3	288	53.0	2.5 2.5	$148.5{ }^{\prime \prime}$ 232.5	${ }^{3} \begin{aligned} & 3.77 \% \\ & 5.910\end{aligned}$
-4	336	22.0	4.5	232.5*	-5.91m
-5	362	8.5	2.5	$311.5{ }^{\text {a }}$	${ }^{\text {m }}$ - 7.91 m
-6	432	23.0	2.5	$406.0^{\prime \prime}$	${ }^{8.33}$
E3-1	144	67.5	2.5		
-	$\underline{192}$	1.3	2.5	188.04	- $\begin{aligned} & 1.88 \mathrm{~mm} \\ & 4.78 \mathrm{~m}\end{aligned}$
-3	332	27.0	2.5	${ }_{302} 18.5{ }^{\text {a }}$	7.68m
- -5	432	42.5	2.5	$3028 .{ }^{\text {3 }}$	7.68m
-5	480	7.6	2.5	$470.5{ }^{\text {5 }}$	11.95m
-6	576	28.5	2.5	$545.0{ }^{\text {* }}$	13.84m
[4-1	144	75.0	2.5		
-?	204	62.0	2.5	$139.5{ }^{\text {c }}$	3.54 m
-3	228	23.5	2.5	204.5 "	5.19 n
E5-1	144	77.0	2.5		
-2	167.5	23.5	2.5	141.5"	3.590
- 3	263	46.0	2.5	$214.5{ }^{\text {² }}$	5.450
-4	288	14.0	2.5	$271.5{ }^{\text {n }}$	6.99010
-6	360	21.0	2.5	336.50	8.550
-6	432	31.0	2.5	$398.5{ }^{*}$	10.12
E6-1	143.5	72.0	2.5	$69.0{ }^{*}$	
-2	216	3.5	2.5	$210.0^{\prime \prime}$	5.35
- -4	311.5	8.0	2.5	$301.0^{\text {a }}$	7.65
-4	431	29.5	2.5	$399.0{ }^{\text {" }}$	10.13 m
-5	479	5.5	2.5	$471.0^{\prime \prime}$	11.96 m
-6	575.5	25.5	2.5	$547.5{ }^{\prime \prime}$	13.91 m
E8-1	144	55.0	2.5	8\%.5*	2.20 n
-2	214	59.0	2.5	152.54	3.877
-3	288	71.5	2.5	214.0^{*}	5.440
t9-1	144	71.5	2.5	70.0"	1.78m
-2 -3	144	0.5	2.5	$141.0^{\prime \prime}$	3.59 m
- -4	288	79.0	2.5	$206.5{ }^{\text {² }}$	5.25m
- -5	288	7.0	2.5	278.57	7.074
-5	432	63.0	2.5	$246.5{ }^{\text {² }}$	8.80×10
-6	432	31.0	2.5	388.5 "	10.12 m
100-1	144	70.5	2.5	$71.0{ }^{4}$	1.80 m
-2	262	81.0	2.5	178.5"	4.5 mm
-3	388	81.5	2.5	$304.0{ }^{\text {n }}$	7.72n
- -5	432	48.5	2.5	$361.0{ }^{\text {a }}$	9.68n
-5	${ }^{552}$	81.5	2.5	$468.10{ }^{\prime \prime}$	11.89
-6	576	37.5	2.5	635.01	13.61 m
[1]-1	144	60.5	2.5	81.00	2,06n
-2	159	6.5	2.5	250.01	3.81m
-3	297.5	83.5	2.5	201.5	5.12π
E12-1	143.5	72.5	2.5	68.5"	1.74m
-2	165.5	5.5	2.5	158.5"	4.03 ${ }^{1}$
-3	297.5	66.0	2.5	219.0 "	5.56月
4	287.0	5.5	2.5	$279.0{ }^{4}$	7.09m
- 6	359.5	21.0	2.5	$396.0{ }^{4}$	8.53n
-6	432.0	53.5	2.5	$376.0^{\prime \prime}$	9.55 m
\$13-1	143.5	73.0	2.5	69.01	1.73m
-	215.0	28.5	2.5	184.010	4.67m
-3	316.5	10.5	2.5	303.51	7.71m
-4	431.5	54.5	2.5	374.5"	9.51 m
-5	508.0	42.5	2.5	$46.3^{\prime \prime}$	11.76π
-6	575.5	50.5	2.5	522.5 " 13	13.27m

1. Rod sectinns joined, measured and marked
2. Anchors and protective conduits joined and placed around rods
3. Collar stabilizer tube attached to conduit
4. Anchor pressure lines strung and connected to anchors

Placing the instrument in the borehole followed by grouting and setting of the anchor positions was the next step. Due to the length of the instrument, a large crew (minimum 6 persons) is required to move the assembled extensometer and feed it into the borehole. Grouting operations required only a two-man crew. Procedure was as follows:

1. Instrument placed into borehole
2. Anchors positioned by connecting rods and inflated in place
3. Grout tube inserted and collar of hole packed off
4. Grout mix prepared (4 parts water, 2 parts cement, 1 part sand)
5. Collar tube grouted (nlst meter of hole)

Following curing of the grout, the extensometer head assembly was mounted in place. This involves tensioning of the rods and setup of the measuring system. This task was handled by one person. Procedure is as follows:

1. Rod spring assembly prepared and implaced
2. Rods locked to spring assembly, tensioned and cut to length
3. Transducer mounting and transducers installed and wired
4. Cover plate and calibration screws installed

This complates nxtensometer assembly. Irregularities associated with this installation are listed below:

Extensometer Irregularities
E2-1 Moved in six inches further from collar than originally specified

E5-6	Anchor struck bottom of hole--i.e., actual hole length Was less than believed.
E8-3	Same problem as E5-6.
E9-6	Anchor moved out four inches closer to colfar than originally specified.
E10-5,5	Anchors off location due to pinching (jaming) of hydraulic lines during installation.
E11,12,13	Hydraulic tubing bursting at louser pressure levels $(\sim 1000 ~ p s i) ~ d u e ~ t o ~ i n f e r i o r ~ g r a d e ~ o f ~ t u b i n g, ~ E 13-6 ~$
burst at 500 psi.	

Field Calibration
Extensometer calibrations are in situ calibrations invoiving both manual (portable readout) and remote monitoring of transducer output. The in situ calibrations allc ior factors of instrument deformation (for example, rod stretch) occuring turing displacement measurements. Portable readout readings are hand recorded and serve as both a visual check during calibrations and a calibration for use with portable readoult readings taken during the experiments.

Calibrations were performed by raising the head assembly with respect to the upper flange surface of the collar stabilizer tube. Three head lifting screws allowed for this movement. Three machined step blocks were inserted between the stabilizer tube flange and the overhanging 1 ip of the head assembly, Calibrations were performed in steps of 1.00 mm from 10 to 15 millimeters. Following calibration, the head lifting screws were used to place the head at midrange (12 mm).

Since the calibration curves are characteristically slightly nonlinear, actual accuracy of small measurements is expected to be higher than suggested by the standard errors computed over the calibrated 5 mm range.

Field Activity Summary

The following is a summary of the field work performed by Terra Tek in the installation, calibration and monitoring of extensometers for the mine-by experiment. Despite some conflict with other activities at the site installation and calibration of iie instrumentation was completed within the scheduled time frame (Terra Tek proposal P78-50). Completion of the rail car room and mining of the top heading for the center canister drift proceeded somewhat faster than originally estimated, however, resulting in some overlap of these activities.

Week 1 (February 7-February 8)

The instrumentation was delivered to the Lawrence Livermare warehouse in Mercury on the morning of February 8, Access to the forward areas was prevented by poor weather and delays of scheduled nuclear testing. Heek 2 (February 20 - February 23)

Terra Tek field personnel arrived on site on February 20. Arrival on site has been delayed one week by a slow down in drilling operations and the interference of scheduled nuclear testing. The equipment was already undergrcund and assembly of the extensometers was begun in the north heater drift. The extensometers MB1 1, 2, 3, 9 and 10 were assembled and emplaced in their respective boreholes by week's end.

Whek ? (February 26-March 2)
Terra Tek field personnel returned on site on February 26. Extensometer MBI 8 was assembled and emplaced. All extensometers in the north heater drift (MBI 1, 2, 3, 8, 9 and 10) were then grouted in place. Notification was then received from \amalg personnel that due to advancement of the mining schedule the forward stations (MBI I thru 6) sholld be operative as soon as possible.

Lawrence Livermore Laboratory was informed at this time that March 2nd was the earliest possible date for completion of these stations. Arrangements were made with REECO to move driliing equipment in the south heater drift and an assembly area was established. The equipment was moved to the South heater drift and assembly of extensometers MBi 4, 5 and 6 was completed. These extensometers were installed and grouted in place. Measurement heads on MBI 1 thru 6 were installed and wired for manual readout by 5 p.m., March 2nd. At this point, the top heading was approximately 80 feet from the first station. Instructions were left with the LLL site personnel for centering of the instrument heads when hook up to the surface data collection system was completed.

Week 4 (March 5 - March 9)
Terra Tek personnel returned on site on March 5. An assembly area was established on the west end of the south heater drift and assembly of extensometers MBI 11, 12 and 13 was started. Calibration of the forward stations was begun on March 6. As advancement of the top heading was occurring at this time, some data may have been lost. Head assemblies for extensometers MBI 8, 9 and 10 were installed and wired and assembly, installation, and grouting of extensometers MBI 11, 12 and 13 was completed by week's end. Anchor points CAI thru CAl2 were installed and convergence mea surements thitiated.

Heek 5 (March 12 ~ March 16)
Terra Tek personnel arrived on March 11th to continue convergence point measurements. The head assemblies on extensometers MBI 11,12 and 13 were installed and wired and extensometers MBI 8 thru 13 were calibrated. The portable extensometer read out unit was altered to operate using the LLL power supplies.

Week 6 (March 19 - March 23)
Extensometers MBI 1 thru 6 were recalibrated. Convergence anchor points were installed in the center drift top heading and measurements begun.

Week 7 (March 26 - March 30)
Extensometers MBI 8, 9 and 10 were recalibrated. Convergence point measurements were continued.

Week 8 (April 2 - April 6)
Convergence point measurerients were continued.

Instrument Readings

Records of the data collected by Terra Tek during the mine-by experiment are listed in Tables A through D in the appendices. All data shown was obtained using the portable manula readout unit supplied with the instrumentation. Tables A list the vol tage readings recorded along with the respective dates/ times of the readings and the voltage used to power the linear pots. Problems or changes which may have effected the recorded readings are footnoted. Tables B list the displacements (in millimeters) computed from the voltage readings listed in Tables A. Corrections for changes in battery voltage or other offsets were made where possible. The position of the advancing face has also been noted where the position of the face has changed since the last reading. Whre more than one face position is noted in the same column more than one advance has occurred between readings. Tables $C-i$ list the calibration data recorded, The column headings refer to the actual displacement of the instrument head with respect to the collar flange. The table lists the recorded voltages (first line) and the corresponding indicated displacements (second line) computed from the linear regression fit to the actual displacement/ recorded voltage data. With the exception of extensometers 11,12 and 13 all instruments were recalibrated and these data are also shown. It should be noted that these repeat calibratioris were performed between the top heading and benching operations and therefore reflect diffirent instrument voltage zeros. Extensometer 4 was recalibrated twice and these datum (rows 3 and 5 for each sensor) are directly comparable as repeat calibrations. All calibration data was taken in the order shown
(left to right). During the repeat calibrations certain displacement steps were repeated to determine instrument precision. Tables c.-2 list the statistics determined by a linear regression fit of the recorded data. The sample variance (or standard error) is shown as the variance of the data about the linear regression fit in the displacement axis direction. Tables D list the convergence point readings as change in reading (mmi) versus position of the face.

All displacement data (Tables B and D) is plotted versus position of the advancing face in Figure E 1-24 through F 1-6.

Instrument Performance

Ferformance of the rod extensometers is good to excellent. The calibration statistics indicate instrument readings are gencrally precise to about 0.02 millimeters (0.001 inch). This is confimed by the indicated calibration standard errors and repeat readings. The displacement versus face advance curves show good instrument stability when the face is distant from the measurement station with no apparent anchor slippage or creep. The shape of these curves is as expected with the displacement changes increasing to a maximum as the face pass?s the measurement plane followed by a gradual decrease in measured movement. Extensometers located at similar lucations with respect to the opening geometry also compare quite favorably. Very large displacements associated with the number three anchors of extensometers 9 and 10 are probably the result of a large shear zone intersecting the pillar at this point. This zone was observed independently by the shift forerian.

The convergence point measurements were not as accurate as hoped for somewhat obscuring the rather small displacements cocurriing at these locations. In addition, convergence points located in the center canister drift were subjected to a significant blast damage resulting in a rather discontinuous record. The convergence points located in the north and south drifts however do provide some usable data. The sudden change in these readings (about 1.0 mm) occurring near the end of this data record appears to be a result of instrument malfunction. The instrument failed completely shortly thtieafter and was returned for repairs.

NUMERICAL MODELING OF THE SPENT FUE MINE-BY
 AND COMPARISON WITH ACTUAL KOCK MASS DISPLACEMENTS

A simple finite element analysis of the spent fuel mine-by was conducted and reported in tine previous progress report. A short description of the finite olement code used is given. In addition, a simple mode] of the same problem utilizing a displacement discontinuity code was run as a program check. A comparison of the actual to calculated displacements is given here for a series of computer runs in which rock mass modulus, Poisson's ratio and the ratio and magnitude of horizontal and vertical stresses were varied.

Computer Codes, Methods and Assumptions

The finite element code "DIG" was used to predict rock mass displacements and stresses. This code, constructed by Dr. C.M. St.John of the University of Minnesota was developed specifically for use in model ing mining problems. The code has provision for initial stress, sequential excavation and jointed rock mass behavior. Axisymmetric, plane strain and plane stress problems can be modeled.

The displacement discontinuity code "TWODI", written by Dr. Steven L. Crouch, University of Mirnesota, was used as a comparison to the computed displacements and stresses from the DIG code. The code allows for the analysis of two dimensional, linear elastic, plane strain probTems in infinite or semi-infinite bodies. Only the boundaries of an excavation need be discretized by a number of displacement discontinuities. The code is therefore efficient and simple to use.

A. Methods and Assumptions.

For this simple analysis, the mining of the north and south heaterdrifts and the heading and bench of the spent fuel drift were idealized as a problem in plane strain. Figures $3 a-c$ illustrate the idealization of the three tunnel system. Since the three tunnels are long in comparison with the width of the area of interest, and since the displacements were measured within the central section of the tunnel system, the assumption of plane strain is a reasonable one. The calculated displacements and stresses are not representative, however, of those which occur near the ends of the system where the three tunnei's converge.

B. Bozindary Conditions.

The mining kas further considered to be symmetrical about the yertical centerline of the spent fuel storage drift. The horizontal displacements are therefore fixed along the vertical symmetry line. The vertical and horizontal boundaris of the finite element mesh (Figure 4) were extended to 30.5 meters (100 feet) beyond the centerline of the spent fuel storage drift to avoid any boundary effects. The horizontal boundaries were fixed in the vertical direction, and vertical boundaries fixed in the horizontal direction prior to application of initial stresses. Triangular and quadrilateral elements: were used to model the rock mass.

The boundary conditions of the displacement discontinuity code were identical, except that the rock mass was considered to be infinite in extent. This idealization is illustrated in Figure 5:

Figure 3. Mining of heater spent fuel storage drifts.

Figure 4. Finite Element Mesh used to Model the Mine-by.

Figure 5. Idealization of the Mine-by for the Displacement Discontinuity Model.
C. Initial Conditions.

The initial stress state in DIG is applied at each element centroid prior to mining. Table 2 shows the variation of in situ stresses used in the modeling runs. Table 5 further defines the parameters varied during these runs.

TABLE 2

VARIATION OF IN SITU STREडSES*

$\frac{\text { overt }}{(\text { psi })}$	$\frac{\text { ohoriz }}{(\text { psi })}$
$i 500$	1200
1200	1500

The horizontal and vertical stresses were assumed to be the principal stresses.
D. Material Properties.

The rock mass was considered to be a homogeneous linear elastic medium with properties given in Table ?. Initial runs assumed a single modulus for the entire rock mass. Later runs were made in which the modulus of the pillar between the heater and spent fuel drifts was reduced to simuiate a zone of blast damage or natural destressing around the openings.

* The second stress state given below more closely represents the stresses as measured by the USGS.

TABLE 3
MATERIAL PROPERTIES
USED IN MODEL RINS

$\begin{aligned} & \text { Young's Modulus } \\ & \text { Rock Mass } \\ & \text { Er (psi) } \\ & \hline \end{aligned}$	Young's Modulus Pillar Ep (psi)	Poisson's Ratio Rock Mass v_{r}	Poisson's Ratio Pillar ${ }^{\nu}$
5×10^{6}		. 2	
5×10^{6}		. 25	
5×10^{6}	1×10^{6}	. 2	. 25

Table 4 gives a listing of all of the runs that were made with both DIG and THOOL.

TABLE 4
PARAMETERS VARIED FOR MODEL RUNS

Run	E_{r}	E_{p}	v_{r}	ν_{p}	${ }^{0} \mathrm{H}$	${ }^{\text {v }}$	$\begin{aligned} & \text { Codes } \\ & \text { Used } \end{aligned}$
1	5×10^{6}		. 2		1200	1500	DIG
							TWODI
2	5×10^{6}		. 2		1500	1200	dig
3	5×10^{6}		25		1200		TWOOI
3	5×10		. 25		1200	1500	DIG
4	. 5×10^{6}		. 25		1200	1500	DIG
5	5×10^{6}	1×10^{6}	. 2	. 25	1200	1500	DIG
6	5×10^{6}	1×10^{6}	. 2	. 25	1500	1200	DIG

Results of Modeling

Both codes used have been compared to analytical solutions and the results have been documented (St. John, 1972; Crouch, 1976). A comparison of the results of the two codes was made for the case of the first mining step (i.e., heater drifts only mined) with a biaxial loading of ${ }^{\circ}$ vertical $=$ $-216,000$ psf (-1500 psi) and ${ }^{0}$ horizontal $=-172,800 \mathrm{psf}(-1200 \mathrm{psi})$. Table 5 gives a comparison of the X - and Y - displacements as calculated by DIS and TWODI at the tunnel rib and crown midplanes. The agreement is quite good, and is a function of the degree of discretization of the tunnel boundaries. It was seen (Figure 5) that quite a coarse discretization of the boundary was used in the displacement discontinuity run.

TABLE 5

COMPARISON OF RESULTS OF THE FINITE ELEMENT AND DISPLACEMENT DISCONTINUITY METHODS

Code	$\underline{\theta(\mathrm{deg})^{*}}$	$\underline{U x(f t)}$	$\underline{U y(f t)}$	Corments
DIG	0	-.0016	-.0002	The displacements are given at the difift boundary
TWODI	0	-.0019	-.00074	
DIG	90°	.00007	-.0023	
TWODI	90°	.00004	-.0026	

${ }^{*} \theta=0$ is displacement at tunnel rib midplane; $\theta=90^{\circ}$ is displacement at tunnel crown midplane.

A. Displacement Calculations.

The relative displacements of anchor to collar were calculated from the computer output in the following manner:

1. The north and south heater drifts were mined, and new nodal coordinates calculated from initial nodal coordinates and nodal displacements. These new coordinates are considered the starting coordinates for further relative anchor displacement calculations.
2. As the heading and bench are mined, new nodal coordinates are calculated. The distances between the nodes along the length of the rod and the collar node are then calculated. This distance is then subtracted from the distances between nodes calculated after mining of the heater drifts. The change in distance is therefore the relative displacement between anchor and collar and is analogous to the displacement as measured from the extensometers.

B. Comparison of Actual to Theoretical Displacements

Figures 6 to 11 show a comparison of the measured and predicted displacements as a function of rod length for the $0^{\circ}, 33^{\circ}$ and 50° extensometers during the heading and benching operations. The theoretical displacements were calculated on the basis of a rock mass modulus of $5 \times 10^{6} \mathrm{psi}$, Poisson's ratio of .2 , vertical stress of 1500 psi and horizontal stress of 1200 psi . As seen in Figures 6 and 7, the displacements as determined from the horizontal extensometers is consistent between all four extensometer locations. There is some variation in magnitude, however all anchors show a convergence of anchor and collar, or a net decrease in pillar width. In addition, the magnitude of these displacements are approximately 4 to 6 times that predicted. The predicted displacements, however, show a divergence of anchor and collar, and thus a net increase in pillar width.

The 33° extensometers show a trend much closer to the calculated values. Figures 8 and 9 show the relative anchor displacements for all 33° extensometers as a function of distance from the hole collar for both heading and benching. With the exception of one anchor, all displacements for extensometer E2 are less than predicted for the heading operation. All other anchors show greater displacements than predicted, with extensometer E5 providing the besi fit, with actual displacements approximately twice the predicted. The agreement between actual and predicted improves somewhat during the benching operation. Figure 9 indicates that the ratio of actual to predicted displacements is nearly one for extensometers E2 and E5.

Figure 6. Actual and Predicted Displacement during Mining of the Heading,
Horizontal Extensometers.

Corpartson Aceual to ineoretsch Dipplacement. Horit. Ext.

$$
\begin{aligned}
& \sigma_{v} / \sigma_{H}=1.25 \\
& E_{r}=5 \times 10^{5} p=1 . v . z
\end{aligned}
$$

- Mremar and collar converging
* Anchar and colla- divergtog

Figure 7. Actual and Predicted Displacement during mining of the Bench, Horizontal Extensometers

Figure 8. Actual and Predicted Displacement during Mining of the Heading, 33° Extensometers.

Comperison Theoretical to detual Displacements, 33° Ext Benching

Figure 9. Actual and Predicted Displacement during Mining of the Bench, 33° Extensometers.

Conurition of theoretical to Mctual Dteptacements. 50° Ext. Heading

Figure 10. Actual and Predicted Dispiacements during mining of the Heading, 50° Extensometers.

Comprisdi of Theoretical to Actual displatements, 5np Ext.

Figure 17. Actual and Predicted Displacements after Mining of the Bench. 50° Extensometers.

In general, the back two extensometers, E9 and E12, show more erratic behavior and greater displacements. This might be attributed to the fact that the rock is more highly fractured in this section (Schrauf, 1979). However, by comparison with the less erratic extensometers (E2 and E5), quite good agreement is obtained after the benching operation.

Figures 10 and 11 show the actual and predicted dispiacements after the heading and benching operations for all 50° extensometers. For comparison purposes, the case of the horizontal stress of 1500 psi and vertical stress of 1200 psi is given, since this appears to better approximate recent stress measurements made at the Climax Stock (Patrick. 1979). Figure 10 indicates an excellent agreement of actual and theoretical displacements after heading operations. The scatter of the actual measurements is much less than the 33° extensometers, with the exception of the longer rods in E3 and E10. It is see.. ... at a stress state of ${ }^{\sigma} /{ }^{/} \sigma_{v}=1.25$ makes little difference in the calculated displacements. After benching . (Figure11), the scatter of the actual displacements decreases further. Only anchor 5 and anchor 6 on extensometers ElO and E3, respectively, show divergence from the grouped data. From these data, the following conclusions can be drawn:

1. The two upper extensomoters show generally good agreement with the predicted data, and indicate an in situ rock mass modulus of $3-5 \times 10^{6} \mathrm{psi}$.
2. The data from all extensometer anchors show a general consistency, thus lending credence to their results. Displacements at some anchor locations varies widely, indicating possible structural control of the displacements.
3. The horizontal extensometers indicate displacements in the opposite direction as predicted with a magnitude of 3 to 5 times the predicted levels.

The convergence measurements help littie in sorting out the horizontal displacements. The measurements show little closure of the heater drift; (Figures Fl to Fb). The measurements across all drifts show varying results. Station $3+42$ indicates a convergence of the heater drifts of approximately 1.0 mm , whereas station $\mathbf{2}+80$ shows a divergence of the drifts of approximately 1.0 mm . Assuming the reliability of these measurements, strictural control of the convergence is indicated.

The stress change as measured by the IRAD gayes indicate significant reduction in the vertical compression across the pillar as the heading is mined (Patrick, 1979). As seen in Figure 12, the finite element model indicates an increase in vertical compression across the pillar between the spent fuel and heater drift. The reduction in the actual vertical stress induced across the pillar (as measured by the IRAD gages) indicates that a stress arch has formed around the openinys, thus unlvadiig the pillar. The unloading of the pillar, resulting in a relaxation and a decrease in pillar width, could account for the anamalous harizontal displacements. The unloading of the pillar and the formation of an arch around the openings could be the result of several factors including:

1. Reduction in modulus of the pilar due to blasting damage and/or natural destressing by fracturing due to the concentration of loads caused by the small pillar dimensions.

Figure 12. Vertical stress across pillar centerline during mining of the Spent Fuel drift.
2. Slip along joints and thus block motion in the pillar, due to its small dimension in relation to the dimensions of the drifts. As a result of block motion, a stable stress arch could bé formed around the openings, thus unloading the pillar.

To examine the possibility of a reduced rock mass modulus for the pillar resulting in an arching effect, several computer runs were made with the DIG cade in which the pillar modulus was reduced to 1×10^{5} psiand a Poisson's ratio of .25 (Figure 13). As seen in Figures 14 to 19, the net effect of the reduction is to increase the magnitude of the displacements for all extensometers during the heading and benching operations. Figure 20 indicates that the vertical load in the pillar has been reduced, but not by a significant amouist. The assumption of a simple reduction in modulus of the pillar therefore does not. explain the anomalous horizontal displacements.

Recent work by Voegele (1978) and Barton (1979) has shown how jointing can control displacements and stresses in the vicinity of underground workings. These studies, in which large motion block models (both numerical and physical) are used, indicate that the geologic structure can control both the majnitude and direction of displacements, particularly in the rock mass adjoining multiple openings. In the case of the spent fuel mine-by, the piilars between the spent fuel storage and heater drifts are quite small, approximately one diameter of the spent fuel drift. It is common miring practice to maintain pillars between drifts in, for example, !ane and pillar systems, of at least two and nomally three tunnel diemeters. The spacing allows a confined "core" of the pillar which allows the rock to behave in an

$$
\begin{aligned}
& \overrightarrow{5 \mathrm{ft}} \\
& \text { Scale }
\end{aligned}
$$

Figure 13. Zone of Reduction in pillar modulus used in the finite element models.

Figure 14. Actual and Predicted Displacements during Mining of the Heading, Horizontal Extensometers.

Benching

Figure 15. Actual and Predicted Displacements during Mining of Bench, Horizontal Extensometers.

Comoarison Theoretical to metual Displacenents, 33° ixt.
Headim

出

Figure 16. Actual and Predicted Displacements during Mining of Heading, 33^{0} Extensometers.

Combarison Thearatical to Actual oispiacements. 33° Ext

Aenching

Figure 17. Actual and Predicted Displacements during Mining of Bench, 33° Extensometers.

Comparison of Theoretical to Acturi Displacemencs. 50° Ext Heading

$\begin{aligned} & \text { Theor } \\ & \text { ET } \\ & \text { EF } \end{aligned}$	O
$\begin{array}{ll} \text { ETO } \\ \text { E, } \end{array}$	\square

Figure 18. Actual and Predicted Displacaments during Mining of the Heading, 500 Extensometers.

Coporison of Theoret'cel to Actual Oliplacements. 50° Ext.
Benching

Figure 19. Actual and Predicted Displacements during Mining of the Bench, 500 Extensometers

Figure 20. Plot of Vertical Stress (Total) Along Line A-A' After All Mining for Case of Single Modulus and Reduced Pillar Modulus.
elastic manner. As pillar dimensions are decreased, the confinement is reduced. The geologic structure thus becomes more important and can control the res:llting rock mass response. Observations which might support these ideas to explain the mine-by displacements are the following:

1. Only the horizontal extensometers which are entirely within the pillar show the anomalous behavior. The upper extensometers, which show reasonable behavior, are not located within the pillar.
2. The IRAD gages show a large decrease in compression across the pillar. This indicates an unloading of the pillar and formation of a stress arch around the openings.
3. During the mining of the heading and bench, block motion and some slabbing in the heater drifts was observed (Schrauf, 1979).
4. Larger displacements were generally recorded at the back stations where the rock mass is more highly jointed.

It would appear that some work should be done to try and correlate the intensity and attitude of jointing to the observed displacements. If time and/or money permits, the geometry of the jointing and mine openings might be modeled by a large displacement block model as is currently in use at the University of Minnesota (Voegele, 1978).

CONCLUSIONS

The extensometers performed well during the mine-by. Results have shown good consistency between anchars at all extensometer locations. Blasting vibration during the mining of the spent fuel drift has appeared to have little effect on instrument performance. Field calibration of the instruments show excellent repeatability.

Convergence measurements have shown varying results. Closure measurements in the heater drifts indicate small displacements. Convergence measurements in the spent fuel drift yielded poor results due to blast damage.

Comparison of measured to predicted displacements have shown the following:

1. The displacements from the 33° and 50° extensometers compare well with those calculated from a simple continuum finite elem nt model. The rock mass modulus for west fit of the data appears to . be approximately $3-5 \times 10^{6}$ psi. Runs made with ratios of horizontal to vertical stress of .8 and 1.25 make little difference in the calculated relative extensometer displacements. It is interesting to note that the agreemerit of actual to theoretical displacements becomes worse as the extensometer nears the pillar between drifts (i.e., the 50° shows best agreement, 33° next, and horizontal worst).
2. The horizontal extensometers indicate a convergence of anchor and collar rather than the divergence as predicted. In addition, the IRAD gages indicate a large reduction in compression across the pillar, unlike the model runs which indicate an increase in
compression. Thus, it would appear that the pillar is unloading. This unloading is consistent with the anomalous horizontal displacements.
3. It would appear that the unloading is a result of the formation of a stress arch around the openings. The arch formation could be a result of sliding along joint surfaces due to close proximity of the heater and spent fuel drifts, and the small dimensions of the pillar with respect to the openings dimensions.

APPENDIX A

EXTENSOMETER VOLTAGE READINGS

Tables A
Voltage Readings (volts)

Voltage Readings (volts)

$\begin{gathered} \text { Ins trument } \\ \text { I.D. } \\ \hline \end{gathered}$	$\begin{aligned} & 3-15 \\ & 08: 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-76 \\ & 10: 01 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-16 \\ & 15: 37 \\ & \hline \end{aligned}$	$\begin{gathered} 3-20 \\ 09: 51 \\ \hline \end{gathered}$	$\begin{aligned} & 3-21 \\ & 08: 48 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-22 \\ & 19: 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-22 \\ & 20: 25 \\ & \hline \end{aligned}$	3-23	$\begin{aligned} & 3-23 \\ & 12: 38 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-23 \\ & 13: 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-23 \\ & 14: 00 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-26 \\ & 10: 05 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-27 \\ & 14: 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-29 \\ & 13: 13 \\ & \hline \end{aligned}$
E1-1	4.557	4.557	4.539	4.539	4.539	4.539	4.554					4.553	4.554	4.554
-2	4.471	4.471	4.454	4.455	4.455	4.456	4.478					4.477	4.479	4.487
-3	4.727	4.727	4.709	4.712	4.713	4.801^{2}	4.911					4.907	4.908	4.897
E2-1	4.973	4.973	4.954	4.954	4.954	4.954	4.953	4.973	4.969			4.967	4.967	4.971
-2	5.052	5.052	5.033	5.034	5.034	5.034	5.034	5.05]	5.045			5.043	5.044	5.052
-3	4.995	4.997	4.979	4.980	4.980	4.979	4.979	4.993	4.998			4.996	4.597	5.000
-4	4.674	4.676	4.659	4.661	4.661	4.660	4.661	4.685	4.683			4.680	4.681	4.684
-5	5.021	5.021	5.003	5.007	5.007	5.007	5.007	5.026	5.030			5,028	5.031	5.037
-6	4.935	4.935	4.917	4.919	4.919	4.920	4.919	4.998	4.989			4.985	4.988	4.953
E3-1	4.965	4.964	4.946	4.945	4.945	4.945				4.942	$4.95]$	4.950	4.950	4.947
กi -2	4.959	4.959	4.940	4.938	4.938	4.938				4.932	4.939	4.936	4.937	4.928
No -3	4.927	4.927	4.908	4.909	4.909	4.908				4.905	4.927	4.925	4.926	4.901
-4	4.968	4.967	4.949	4.948	4.948	4.947				4.943	4,960	4,957	4.958	4.943
-5	4.977	4.978	4.959	4.959	4.959	4.959				4.958	5.006	5.004	5.005	4.967
-6	4.942	4.941	4.923	4.923	4.923	4.923				4.922	4.964	4.962	4.962	4.925
Battery Voltage	9.994	9.993	9.965^{1}			9.968	9.968	9.968			-----	-----	-----	-----
							(E])	(E2)			$\stackrel{+}{(E 3)}$			
	1 Powe	suppl	switche	from	rtante	adout	w Zero $\left.L^{3} \mathrm{~S}\right\rfloor$	Follow tem.	$\mathrm{ga} \mathrm{Ca}$	ation				
	2 Pot	ose -	zeroed	and tig	tened.									

Voltage Readings (volts)

Voltage Readings (volts)

Voltage Readings (volts)

Voltage Readings (volts)

Voitage Readings (volts)

Voltage Readings (volts)

Voltage Readings (volts)

APPENDIX B

EXTENSOMETER DISPLACEMENT READINGS

Tables B
Displacement Readings (mm)

Displacement Readings (mm)

Jisplacement Readings (mm)

Displacement Readings (nm)

$\begin{gathered} \text { Instrument } \\ \text { I.D. } \end{gathered}$	$\begin{aligned} & 3-13 \\ & 14: 22 \end{aligned}$	$\begin{aligned} & 3-74 \\ & 22: 48 \end{aligned}$	$\begin{aligned} & 3-15 \\ & 08: 31 \end{aligned}$	$\begin{aligned} & 3-16 \\ & 09: 48 \end{aligned}$	$\begin{aligned} & 3-76 \\ & 15=18 \end{aligned}$	$\begin{aligned} & 3-20 \\ & 09: 29 \end{aligned}$	$\begin{aligned} & 3-21 \\ & 09: 1 \end{aligned}$	$\begin{aligned} & 3-22 \\ & 13: 15 \end{aligned}$	$\begin{aligned} & 3-22 \\ & 13: 20 \end{aligned}$	$\begin{aligned} & 3-22 \\ & 14: 14 \end{aligned}$	$3-22$ $18: 17$	$\begin{aligned} & 3-22 \\ & 18: 50 \end{aligned}$	$3-22$ $20: 07$	$\begin{aligned} & 3-26 \\ & 11: 32 \end{aligned}$
E4-1	-. 292	-. 297	-. 303	-. 310	-. 329	-. 324	-. 324	-. 326		-. 329	-. 329			-. 334
-2	-. 258	-. 258	-. 255	-. 260	-. 276	-. 274	-. 274	-. 276		-. 278	-. 278			-. 288
-3	-. 896	-. 893	-. 833	-. 891	-. 909	$-.893$	-. 893	-. 893		-. 894	-. 894			-. 302
E5-1	-. 034	-. 039	-. 039	-. 042	-. 057	-. 057	-. 054		-. 058			-. 058		-. 071
-2	-. 020	-. 023	-. 020	-. 026	-. 038	-. 036	-. 033		-. 037			-. 037		-. 050
-3	-. 245	-. 248	-. 248	-. 253	-. 267	-. 264	-. 261		-. 270			-. 270		-. 286
-4	-. 360	-. 360	-. 357	-. 362	-. 376	-. 370	-. 368		-. 373			-. 373		-. 378
-5	-. 648	-. 651	-. 643	-. 648	-. 663	-. 658	-. 658		-. 664			-. 664		-. 659
-6	-. 569	-. 569	-. 563	-. 566	-. 580	-. 573	-. 578					-. 583		-. 572
צ'\%														
E6-1	-. 049	-. 052	-. 049	-. 055	-. 068	-. 065	-. 068	-. 068					-. 070	-. 083
-2	-. 230	-. 241	-. 241	-. 244	-. 231	-. 262	-. 262	-. 262					-. 263	-. 258
-3	-. 209	-. 217	-. 217	-. 222	-. 235	-. 233	-. 235	-. 235					-. 235	-. 246
-4	-. 283	-. 291	-. 296	-. 294	-. 307	-. 304	-. 307	-. 307					-. 307	-. 304
-5	-. 333	-. 335	-. 360	-. 363	-. 377	-. 374	-. 377	-. 377					-. 378	-. 334
-6	-. 249	-. 2357	-. 263	-. 263	-. 279	-. 276	-. 276	-. 279					-. 280	-. 280
	$3+11$	3+19	$3+27$	3+42		$3+57$	3+95	2+05						$2+33$
			$3+35$	$3+49$		$3+62$	End							
						$3+70$ $3+77$	Top							
						$3+86$	Heading							
	' .													

(unu) sbutpeay quamaseldsto

Displacement Readings (nan)

Displacement Readings (mm)

$\square^{6}+\varepsilon$	$09+\varepsilon$		$\checkmark 2+\varepsilon$		
Sع\＆＊－	L2E．－	10E＊－	tot－	122＊－	9－
969．－	¢¢9．－	219＊－	＜19．－	619.	S－
916＂－	$800^{\circ}-$	ャ8E．－	688．－	b82：－	b－
¢¢๕＂－	0ES ${ }^{\text {－}}$	LUE．－	908．－	Sゅで，	$\varepsilon-$
£ど．－	610．－	S62．－	008．－	682：－	
tol．－	960．－	080＊－	880．－	580 ${ }^{-}$	1－81］
ヵ06．－	668．－	108：－	カャ8．－	008：－	9－
8G1＊${ }^{\text {－}}$	SSI．1－	SEl－${ }^{\text {c－}}$	5E1＇t－	くSO＊－	5－
9¢8．1－	EE8．－	カ18－	${ }_{9}^{1180^{\circ}}{ }^{1-}$	1810．	${ }_{8-}$
269 ${ }_{\text {¢ } 22^{\circ}-}$	¢829 ${ }_{\text {¢ }}$	－790－2	$9799^{\circ}-$ 002	¢¢9\％－	$\underline{\varepsilon}$
$910^{\circ}-$	$610^{\circ}-$	800－－	E00．－	とا	i－21．
	$\begin{aligned} & 9999^{\circ}-2- \\ & 1 \not \geqslant 20^{\circ} \end{aligned}$		$6 \angle \varepsilon \cdot 1-$ 9880° 720	$\varepsilon \angle \varepsilon \varepsilon^{\circ}{ }^{\circ}-$ $\varepsilon 90^{\circ}-$ $2 \angle 0^{\circ}$	$\begin{aligned} & \varepsilon- \\ & c- \\ & 1-1.3 \end{aligned}$
tl：2t	Ot：90		Lz： $\operatorname{loz}_{\substack{\text { ct }}}$		$\text { quaurnı } 0 \text { suI }$

（um）sEuspeay quamase1dsị
（i）
f：

APPENDIX C

EXTENSOMETER MINE-BY CALIBRATION DATA

Tables C-1

Mine-By - Calibration Data

	10.0 mm	11.0 mm	12.0 mm	13.0 mm	14.0 mm	15.0 mm	12.0 mm
E1-7	3.834	4.225	4.589	4.956	5.341	5.743	
	10.000	11.032	11.992	12.961	13.977	15.038	
	3.879	4.207	4.560	4.924	5.332	5.717	4.554
	10.015	11.026	11.976	12.940	14.020	15.023	11.960
E1-2	3.831	4.172	4.582	4.952	5.338	5.731	
	10.049	10.941	12.074	12.982	13.993	15.021	
	3.739	4.128	4.482	4.807	5.240	5.626	4.478
	9.996	11.031	11.972	12.997	13.989	15.016	11.962
E1-3	3.814	4.174	4.553	4.948	5.347	5.751	
	10.055	10.981	11.956	12.972	13.999	15.038	
	4.132	4.513	4.913	5.296	5.726	6.079	4.911
	10.013	10.982	11.999	12.973	14.067	14.965	11.994

Mine-By Calibration Data

	10 mm	11 mm	12 mm	13 mm	14 mm	15 mm	12 mm	13 mm
E2-1	4.192	4.579	4.978	5.360	5.751	6.115		
	9.987	10.989	12.022	13.011	14.024	14.967		
	4.194	4.579	4.968	5.354	5.743	6.101	4,968	5.352
	9.989	10.993	12.008	13.015	14.030	14.964	12.008	13.010
E2-2	4.315	4.584	5.064	5.428	5.700	6.142		
	9.982	10.990	12.027	13.027	14.009	14.971		
	4.315	4.565	5.057	5.423	5.781	6.119	5.048	5.123
	9.995	10.957	12.034	13.039	14.023	14.952	12.009	13.039
E2-3	4.286	4.648	5.005	5.364	5.750	6.129		
	10.025	11.009	11.978	12.954	14.002	15.032		
	4.298	4.642	5.004	5.368	5.756	6.109	4.989	5.368
	10.037	10.980	11.973	12.97 I	14.035	15.003	11.932	12.071
E2-4	4.247	4.635	5.000	5.368	5.747	6.098		
	9.974	11.022	12.007	13.001	14.024	14.972		
	3.95%	4.302	4.683	5.043	5.426	5.791	4.680	$\therefore .041$
	10.025	10.973	12.004	12.979	14.016	15.004	11.996	12.073
E2-5	4.301	4.676	5.046	5.421	5.799	6.150		
	9.991	11.002	11.998	13.009	14.027	14.973		
	4.298	4.665	5.039	5.409	5.779	6.118	5.024	5.111
	9.997	10.990	12.011	13.022	14.032	14.958	11.970	13.027
E2-6	4.288	4.647	5.018	5.379	5.767	6.123		
	10.015	10.989	11.996	12.976	14.029	14.995		
	4.269	4.585	4.936	5.366	5.723	6.003	4.997	5.368
	10.052	10.993	11.912	13.111	14.106	14.887	12.082	13.116

Mine-By Calibration Data

	10 mm	11 m	12 mm	13 mm	14 mm	15 mm	12 mm
E3-1	4.235	4.582	4.958	5.334	5.724	6.107	
	10.050	10.972	11.972	12.971	14.008	15.026	
	4.221	4.572	4.957	5.316	5.705	6.097	4.953
	10.044	10.978	11.987	12.959	13.994	15.038	11.992
E3-2	4.225	4.595	4.965	5.331	5.707	6.072	
	10.000	11.001	12.002	12.992	14.009	14.997	
	4.197	4.569	4.942	5.299	5.677	6.050	4.938
	9.998	17.004	12.012	12.978	13.999	15.008	12.002
E3-3	4.244	4.583	4.971	5.325	5.677	6.011	
	10.000	10.951	12.039	13.033	14.020	14.957	
	4.175	4.535	4.906	5.264	5.631	5.982	4.929
	9.996	10.990	12.014	13.002	14.015	14.983	12.077
E3-4	4.287	4.633	5.005	5.373	5.749	6.115	
	10.032	10.974	11.986	12.988	14.012	15.008	
	4.242	4.588	4.958	5.320	5.698	6.063	4.963
	10.031	10.977	11.989	12.979	14.013	15.011	12.003
E3-5	4.294	4.616	5.025	5.411	5.778	6.114	
	10.041	10.909	12.011	13.052	14.047	14.947	
	4.222	4.577	4.958	5.329	5.716	h. 094	5.008
	10.032	10.997	11.997	12.978	14.008	15.014	12.124
E3-6	4.119	4.542	4.968	5.350	5.723	6.078	
	9.925	11.002	12.087	13.060	14.011	14.975	
	4.132	4.496	4.895	5.249	5.661	6.058	4.966
	10.035	10.979	12.015	12.934	14.003	15.034	12.199

Mine-By Calibration Data

	$\underline{10 \mathrm{~mm}}$	11 mm	12 mm	13 mm	14 mm	15 mm	14 mm	12 mm
E4-1	4.343	4.708	5.070	5.451	5.847	6.257		
	30.050	11.005	11.952	12.949	13.985	15.058		
	4.362	4.733	5.093	5.472	5.868	6.251		5.094
	10.028	11.010	11.962	12.964	14.012	15.025		11.955
	4.366	4.729	5.089	5.474	5.869	6.250	5.868	5.000
	10.039	10.999	11.952	12.970	14.016	15.024	14.013	11.955
E4-2	4.247	4.622	4.995	5.354	5.758	6.156		
	10.025	11.011	11.991	12.935	13.996	15.042		
	4.245	4.626	5.005	5.350	5.735	6.124		5.003
	9.994	11.014	12.029	12.953	13.984	15.026		12.024
	4.252	4.620	5.003	5.357	5.748	6.138	5.747	5.002
	10.017	10.995	12.013	12.954	13.993	15.029	13.990	12.010
E4-3	4.312	4.669	5.059	5.457	5.846	6.257		
	10.048	10.963	11.989	12.984	13.981	15.035		
	4.090	4.449	4.820	5.212	5.678	5.996		4.821
	10.049	10.984	11.951	12.972	14.030	15.015		11.953
	4.092	4.446	4.818	5.209	5.617	5.993	5.617	4.818
	10.055	10.979	11.949	12.969	14.034	15.015	14.034	11.990

Mine-By Calibration Data

	10 mm	11 mm	$\underline{12 \mathrm{~mm}}$	13 mm	14 mm	15 mm	12 mm
E5.7	4.107	4.477	4.839	5.229	5.639	6.027	
	10.044	17.005	11.944	12.957	14.021	15.028	
	4.126	4.483	4.858	5.241	5.655	6.043	4.862
	10.057	10.983	11.956	12.950	14.024	15.030	11.966
E5-2	4.052	4.458	4.838	5.248	5.631	6.005	
	9.979	11.016	11.987	13.035	14.014	14.959	
	4.ù?	4.474	4.853	5.274	5.654	6.032	4.862
	9.990	10.998	11.991	13.039	14.009	14.973	11.988
E5-3	4.086	4.455	4.813	5.164	5.529	5.886	
	9.987	11.014	12.011	12.988	14.004	14.997	
	4.032	4.390	4.750	5.108	5.470	5.832	4.751
	10.004	10.999	11.999	12.994	13.999	15.005	12.002
E5-4	4.034	4.408	4.784	5.167	5.541	5.903	
	9.997	10.994	11.997	13.018	14.015	14.980	
	3.939	4.313	4.690	5.071	5.449	5.810	4.689
	9.998	10.994	11.998	13.012	14.019	14.980	11.995
E5-5	3.919	4.320	4.697	5.102	5.522	5.898	
	10.007	11.076	11.965	12.984	14.041	14.987	
	3.733	4.115	4.494	4.895	5.304	5.708	4.493
	10.035	11.001	11.959	12,972	14.006	15.027	11.956
E5-6	4.166	4.533	4.872	5.276	5.563	5.916	
	9.977	11.031	12.005	12.993	13.990	15.004	
	3.992	4.374	4.713	5.058	5.414	5.757	4.712
	9.958	11.046	12.017	12.994	14.007	14.984	12.008

Mine-By Calibration Data

$10 \mathrm{~mm} \quad 11 \mathrm{~mm} \quad \underline{12 \mathrm{~mm}} \quad \underline{13 \mathrm{~mm}} \quad 14 \mathrm{~mm} \quad 15 \mathrm{~mm} \quad 12 \mathrm{~mm}$

E6-1	4.138	4.496	4.898	5.175	5.555	5.924	
	9.980	10.990	12.125	12.906	13.979	15.020	
		4.511	4.895	5.196	5.672	6.013	4.840
		11.033	12.045	12.838	14.092	14.991	11.900
E6-2	4.001	4.414	4.785	5.155	5.549	5.935	
	9.970	11.045	12.010	12.973	13.999	15.003	
		4.352	4.718	5.110	5.509	5.888	4.722
		11.024	11.971	12.986	14.019	15.090	11.982
		4.050	4.427	4.814	5.191	5.589	5.972
	10.014	10.993	11.998	12.978	14.011	15.006	
		4.382	4.763	5.147	5.547	5.934	4.763

E6-4	4.03i	4.391	4.757	5.097	5.480	5.863	
	10.018	11.005	12.008	12.940	13.989	15.039	
		4.332	4.682	5.053	5.432	5.811	4.685
		11.032	11.975	12.976	13.998	15.019	11.984

E6-5	4.045	4.407	4.777	5.135	5.517	5.872	
	10.006	10.994	12.004	12.981	14.023	14.992	
		4.357	4.699	5.096	5.509	5.834	4.701
		11.032	11.939	12.992	14.088	14.950	11.944

E6-6	4.077	4.442	4.799	5.156	5.524	5.884	
	9.998	11.009	11.998	12.986	14.006	15.003	
		4.380	4.731	5.098	5.483	5.838	4.733

11.021	11.978	12.978	14.028	14.995	11.983

Mine-By Calibration Data

	10 mm	$\underline{11 \mathrm{~mm}}$	12 mm	13 m	14 mm	$\underline{15 \mathrm{~mm}}$	$\underline{12 \mathrm{~mm}}$
E8-1	4.9 .63	4.563	5.010	5.372	5.748	6.094	
	10.062	10.864	12.059	13.027	14.032	14.956	
	4.252	4.622	4.997	5.360	5.724	6.074	4.997
	9.982	10.995	12.022	13.016	14.013	14.972	12.022
E8-2	3.469	3.845	4.222	4.583	4.979	5.355	
	10.007	11.004	12.004	12.962	14.012	15.010	
	3.435	3.802	4.179	4.543	4.927	5.303	4.175
	10.012	10.994	12.003	12.977	14.004	15.010	11.992
E8-3	4.183	4.631	4.950	5.332	5.752	6.109	
	9.948	11.119	11.953	12.951	14.048	14.981	
	3.842	4.224	4.598	4.985	5.376	5.765	4.594
	10.013	11.006	11.979	12.985	14.002	15.014	11.969

$10 \mathrm{~mm} \quad \underline{11 \mathrm{~mm}} \quad 12 \mathrm{~mm} \quad 13 \mathrm{~mm} \quad 14 \mathrm{~mm} \quad 15 \mathrm{~mm} \quad 12 \mathrm{~mm}$

E9-1	4.150	4.532	4.926	5.308	5.690	6.059	
	9.991	10.988	12.017	13.015	14.013	14.976	
	$--1 .-$	4.529	4.922	5.302	5.683	6.054	4.922
		10.982	12.013	13.010	14.010	14.984	12.013
E9-2	4.173	4.559	4.911	5.276	5.663	6.035	
	9.995	11.035	11.983	12.967	14.009	15.012	
	$\cdots---$	4.505	4.876	5.239	5.621	5.988	4.876
		11.004	12.004	12.982	14.011	15.000	12.004

E9-3	4.143	4.509	4.887	5.279	5.667	6.018	
	10.014	10.981	11.980	13.016	14.041	14.969	
	$-\cdots$	1.459	1.842	2.278	2.584	2.934	1.838
		10.974	12.011	13.029	14.020	14.967	12.000

E9-4	4.313	4.658	4.983	5.330	5.691	6.061	
	10.032	11.023	11.956	12.952	13.988	15.050	
	$\ldots---$	4.344	4.683	5.026	5.377	5.733	4.683
		11.017	11.993	12.981	13.992	15.017	11.993

E9-5	4.220	4.578	4.947	5.298	5.682	6.058	
	10.021	10.996	12.000	12.956	14.002	15.025	
	----	4.424	4.810	5.174	5.550	5.934	4.817
		10.994	12.020	12.988	13.988	15.009	12.039

$E 9.6$	4.750	4.538	4.896	5.265	5.668	6.047

10.006	$11.03 i$	11.977	12.952	14.017	15.078

4.440	4.837	5.219	5.602	6.002	4.845
10.994	12.015	12.997	13.982	15.011	12.036

Mine-By Calibration Data

	10 mm	11 mm	12 mm	13 mm	14 mm	15 mm	12 mm
E10-1	3.682	4.069	4.454	4.824	5.213	5.587	
	9.989	11.005	12.016	12.988	14.010	14.992	
	3.674	4.059	4.443	4.815	5.202	5.573	4.444
	9.990	11.003	12.014	12.993	14.012	14.988	12.017
E10-2	3.634	4.007	4.368	4.731	5.119	5.483	
	10.004	17.013	11.989	12.970	14.019	15.004	
	3.583	3.971	4.329	4.695	5.079	5.444	4.330
	9.985	11.030	11.994	12.980	14.014	14.997	11.997
E10-3	1.684	2.056	2.444	2.808	3.197	3.565	
	10.001	10.989	12.020	12.987	14.005	14.998	
	-----	-----	----*	--n-*	-----	-----	----
E10-4	3.679	4.006	4.388	4.753	5.099	5.482	
	10.043	10.947	12.003	13.072	13.968	15.027	
	3.600	3.967	4.329	4.679	5.151	5.425	4.328
	10.002	11.011	12.006	12.969	13.992	15.020	12.004
E10-5	3.562	3.921	4.296	4.676	5.063	5.480	
	10.052	10.989	11.968	12.960	13.971	15.060	
	3.267	3.643	4.001	4.369	4.768	5.158	4.010
	10.024	11.021	11.970	12.945	14.003	15.037	11.994
E70-6	3.816	4.165	4.537	4.898	5.259	5.616	
	13.011	10.977	12.007	13.006	14.005	14.934	
	3.734	4.110	4.470	.4.816	5.206	5.553	4.469
	9.987	11.021	12.010	12.961	14.034	14.987	12.007

	$\underline{10 \mathrm{~mm}}$	$\underline{11 \mathrm{~mm}}$	$\underline{12 \mathrm{~mm}}$	$\underline{13 \mathrm{~mm}}$	$\underline{14 \mathrm{~mm}}$	$\underline{15 \mathrm{~mm}}$
E11-1	4.220	4.609	4.989	5.355	5.769	6.149
	10.005	11.014	12.000	12.949	14.023	15.009
-2	4.246	4.610	4.949	5.308	5.710	6.029
	10.007	11.020	11.963	12.962	14.080	14.967
-3	4.586	4.951	5.316	5.667	6.045	6.380
	9.988	11.001	12.015	12.989	14.039	14.969
E12-1	4.110	4.492	4.860	5.220	5.596	5.972
	9.988	11.018	12.010	12.981	13.994	15.008
-2	3.974	4.345	4.702	5.066	5.444	5.816
	10.006	11.015	11.986	12.975	14.003	15.015
-3	4.078	4.462	4.793	5.157	5.558	5.899
	9.996	11.049	11.957	12.955	14.054	14.989
-4	4.124	4.446	4.789	5.158	5.576	5.902
	10.082	10.972	11.919	12.939	14.094	14.994
-5	4.157	4.488	4.822	5.180	5.597	5.929
	10.071	10.993	11.924	12.921	14.083	15.008
	4.192	4.566	4.932	5.267	5.503	5.919
	9.930	11.013	12.072	13.042	14.014	14.929

Mine-By Calibration Data

	10 mm	11 IIIII	12 mm	13 mm	$14 \pi m$	15 nim
E13-1	4.165	4.539	4.925	5. ${ }^{\prime} 94$	5.696	6.066
	10.008	'0.988	12.000	12.993	14.020	14.990
-2	4.203	4.591	4.955	5.307	5.670	5.076
	9.954	11.027	12.034	13.007	74.011	14.967
-3	4.755	A. 547	4.913	5.297	5.677	6.037
	9.986	11.009	11.995	13.013	14.021	14.975
-4	4.196	4.582	4.941	5.322	5.696	6.049
	9.981	11.021	11.988	13.015	14.022	14.973
-5	4.147	4.534	4.909	5.303	5.702	6.073
	10.005	11.006	11.977	12.996	14.028	14.988
-6	4.163	4.530	4.897	5.260	5.622	5.950
	9.975	10.996	12.018	13.628	14.035	14.948

Tables C-2
Calibration Statistics

Inst'unent I.D.	Least Squares Slope (m/volt)	Correlation Coefficient (r^{2})	$\begin{gathered} \text { Sample } \\ \text { Gariance } \text { Sy (mm) } \end{gathered}$
E1-7	2.639	0.9997	0.028
	2.647	0.9997	0.032
-2	2.617	0.9996	0.034
	2.660	0.9999	0.079
-3	2.572	0.9996	0.035
	2.543	0.9996	0.034
E2-1	2.590	0.9999	0.021
	2.609	0.9998	0.021
-2	2.730	0.9999	0.021
	2.747	0.9996	0.035
-3	2.717	0.9998	0.027
	2.742	0.9997	0.027
-4	2.700	0.9999	0.021
	2.707	0.9999	0.019
-5	2.694	0.9999	0.016
	2.731	0.9998	0.025
-6	2.714	0.9999	0.017
	2.739	0.9971	0.092
[3-7	2.658	0.9997	0.031
	2.662	0.9997	0.031
-2	2.705	1.0000	0.005
	2.703	1.0000	0.013
-3	2.805	0.9996	0.035
	2.760	1.0000	0.011
-4	2.722	0.9999	0.019
	2.735	0.9999	0.020
-5	2.695	0.9990	0.054
	2.662	0.9994	0.020
-6	2.547	0.9986	0.064
	2.596	0.9996	0.035
E4-1	2.617	0.9994	0.043
	2.645	0.9998	0,027
	2.646	0.9997	0.030
-2	2.628	0.5996	0.034
	2.678	0.9998	0.026
	2.657	0.9998	0.024
-3	2.564	0.9997	0.031
	2.605	0.9996	0.034
	2.605	0.9996	0.037
E5-1	2.596	0.9995	0.037
	2.594	0.9995	0.040
-2	2.555	0.9998	0.023
	2.557	0.9999	0.021
-3	2.784	1.0000	0.010
	2.778	1.0000	0.004
-4	2.666	0.9999	0.013
	2.663	0.9999	0.012
		4	

$\begin{gathered} \text { Ins trument } \\ \text { I.D. } \\ \hline \end{gathered}$	Least Squares Slope (mm/volt)	Correlation Coefficient $\left(r^{2}\right)$	$\begin{gathered} \text { Samples } \\ \text { Variance Sy (mm) } \\ \hline \end{gathered}$
E5-5	2.516	0.9998	0.025
	2.528	0.9997	0.027
-6	2.872	0.9999	0.017
	2.847	0.9998	0.027
E6-1	2.822	0.9985	0.065
	2.635	0.9962	0.087
-2	2.603	0.9998	0.025
	2.588	0.9998	0.020
-3	2.598	0.9999	0.012
	2.572	0.9999	0.012
-4	2.741	0.9997	0.031
	2.696	0.9997	0.023
-5	2.729	0.9999	0.013
	2.653	0.9985	0.055
-6	2.769	1.0000	0.007
	2.726	0.9998	0.021
E8-1	2.673	0.9983	0.070
	2.739	0.9999	0.019
-2	2.653	0.9999	0.017
	2.676	1.0000	0.012
-3	2.613	0.9985	0.063
	2.601	0.9999	0.013
Eg-1	2.612	0.9999	0.016
	2.624	0.9999	0.014
-2	2.695	0.9998	0.022
	2,695	1.0000	0.010
-3	2.643	0.9998	0.025
	2.708	0.9997	0.025
-4	$2.8 \% 1$	0.9995	0.038
	2.880	0.9999	0.015
-5	2.723	0.9998	0.022
	2.659	0.9999	0.013
-6	2.642	0.9997	0.027
	2.571	0.9999	0.012
E10-1	2.626	1.0000	0.011
	2.632	1.0000	0.010
-2	2.704	0.9999	0.016
	2.693	0.9999	0.017
-3	2.657	1.0000	0.017
	2.764	0.9996	0.033
	2.750	0.9999	0.016
-5	2.611 2.651	0.9994	0.040
-6	2.768	1.9990 1.000	0.032 0.011
	2.749	0.9998	0.024

Instrument I.D.	Least Squares Slope (mm/volt)	Correlation Coefficient $\left(\mathbf{r}^{2}\right)$	Sample Variance Sy (mm)
	2.594	0.9998	0.024
-2	2.782	0.9994	0.042
-3	2.777	0.9998	0.022
E12-1	2.696	0.9999	0.013
-2	2.719	0.9999	0.015
-3	2.742	0.9995	0.040
-4	2.763	0.9985	0.067
-5	2.786	0.9986	0.063
-6	2.894	0.9990	0.054
E13-1	2.621	1.0000	0.017
-2	2.765	0.9997	0.029
-3	2.657	0.9999	0.016
-4	2.694	0.9999	0.020
-5	2.587	0.9999	0.016
-6	2.783	0.9997	0.031

APPENDIX D

CONVERGENCE POINT DATA

Tables D
Convergence Point Readings (mm)

Reading Between Anchors No.	$3+62$	$3+70$	$3+77$	3+86	$\begin{aligned} & \text { 3. } 75 \\ & \text { 1st } \end{aligned}$	$\begin{aligned} & 3+95 \\ & \text { 2nd } \end{aligned}$	Bench $2+05$	$2+33$	2+59	?+72	$3+00$	3+24*	$3+60$	3+94
CA1 - CA2		-0.19		-0.19 -0.04	-0.15	-0.31	-0.13	-0.34 -0.30	-0.08	$\begin{aligned} & -0.44 \\ & -0.13 \end{aligned}$	-0.18 -0.37	-1.43 -1.73	-1.68	
CA3-CA4		0.93		0.88 0.78	0.76	0.64	0.59	0.76 0.78	0.65		-0.67	-1.23	-1.08	
CA5 - CA6		0.17			-0.03 0.90 -0.07	-0.03	0.02	$\begin{aligned} & 0.06 \\ & 0.00 \end{aligned}$	0.77	$\begin{aligned} & 0.92 \\ & 0.34 \end{aligned}$	$\begin{array}{r} 0.08 \\ -0.26 \end{array}$	$\begin{aligned} & -7.18 \\ & -7.46 \end{aligned}$	-1.47	
$\begin{array}{r} C A 7-C A B \\ \vdots \end{array}$.			0.15	0.06	0.02	0.27	0.14	0.16	0.07 0.22	$\begin{aligned} & 0.32 \\ & 0.06 \end{aligned}$	-1.11 -1.18	-1.29	
CA9 - CAl0		-0.85		-0.99 -7.01	-0.94	-7.03	-1.26	-0.96 -1.70	-1.07	-7. 33	$\begin{aligned} & -7.46 \\ & -1.56 \end{aligned}$	-2.40	-2.79	
CAII - CAI2		0.23		0.26 0.23	0.20	0.19	0.19	$\begin{aligned} & 0.20 \\ & 0.35 \end{aligned}$	0.46	$\begin{aligned} & 0.20 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.17 \end{aligned}$	-0.88 -1.25	-1.13	
		Possib	dama	to ex	asomete									

Convergence Point Readings (mm)

APPENOIX E

PLOTS OF DISPLACEMENT VERSUS
ADVANCE OF FACE FOR ALL EXTENSOMETERS

Figure E.3.
Figure E-4.

rigare E-5.
Figure E-6.

Figure E-7.

Figure E-8.

Figure E-9.

Figure E-17.

Figure E-12.

Figure E-13.
Figure E-14.

Figure E-T5.

Figure E-16.

Figure E-17.

Figure E-78.

Figure E-19.

Figure E-20.

Figure E-21.

Figure E-22.

APPENDIX F

PLOTS OF CONVERGENCE VERSUS ADVANCE OF FACE

Figure F-1.

Figure F-2.

Figure F-3.

Figure F-4.

Figure $F-5$.

Figure F-6.

References

1. Schrauf, Todd, Personal Communication, 1979.
2. Patrick, Wes., Personal Commurication, 1979.
3. St. John, C.M., Numerical and Observational Methods in Determining Lite Behavior of Rock Slopes in Open Cast Mines," Imperial College, Ph.D. Thesis, 1972.
4. Crouch, S.L., "Analysis of Stresses and Displicements Around Underground Excavations: An Application of the Displacement Discontinuity Method," University of Minne;sota, Geomechanics Report, Nov., 1979.
5. Voegele, M.D., "Rational Design of Tunnel Supports: An Interactive Graphics Based Analysis of the Support Requirements of Excavations in Jointed Rock Masses," University of Minnesota, Ph.D. Thesis, 1978.
6. Biarton, li., and Hansteen, H., "Very Large Openings at Shallow Jepth: Deformation Magnitudes from Jointed Models and F.E. Analysis," Rapid Tunneling and Excavation Conference, AtTenta, Geornia, June, 1979.
