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An analytical and numerical study of the suppression of the transverse head-tail instability by
modulating the chromaticity over a synchrotron period is presented. We find that a threshold can
be developed, and it can be increased to a value larger than the strong head-tail instability thresh
old. The stability criterion derived agrees very well with the simulations. The underlying physical
mechanisms of the damping scheme are the rotation of the head-tail phase such that the instability
does not occur, and the Landau damping due to the incoherent betatron tune spread generated by
the varying chromaticity.

A bunched beam traveling in a storage ring creates a deflecting force generated by the interactions of the particles
and environment. The deflecting force, the so-called wake field, reacts and perturbs the beam, often causing transverse
collective instabilities. These instabilities limit the peak current in the bunch. In this Letter, we analyze a new method
for controlling such instabilities; namely, through a temporal variation of the ring parameters. We apply this method
to a practical example, the head-tail (HT) instability.

In a storage ring, particles with different energy see different focusing strength in the quadrupoles, and thus have
different betatron frequency. The ratio of the relative frequency difference to the relative momentum difference is
called the chromaticity. The betatron angular frequency of an off-momentum particle is given by W{3 (0) = w{3o(l +~o),
where ~ is the chromaticity, W{30 is the betatron angular frequency of the on-momentum particle, and 0 = /:::,.p/p is the
relative momentum difference. Even if ~ = 0, there is an instability called the strong head-tail (SHT) instability. This
instability has a threshold created by the particle's synchrotron oscillation, and when the threshold is exceeded, the
bunch's motion grows exponentially. In practice, ~ #- 0, there is still a SHT instability with a threshold; in addition,
there is the head-tail instability due to chromatic effect, which has no stability threshold. The HT instability was
observed in experiments [1], has been well analyzed [2], and has been confirmed by simulations [3].

The HT instability has been a concern for many circular accelerators in the world, for example, we may note
the observations and simulations of single-bunch transverse excitation of the beam in the proton ring of the HERA
collider at DESY [4], the observation of higher-order HT instability in the PS Booster of the LHC at CERN [5], and
the investigation of the possible HT oscillation due to a transverse feedback kicker at KEK's B-Factory (KEKB) [6].

It is understood that, when ~/1] > 0, the in-phase mode which governs the bunch's transverse center of motion is
damped, while the bunch's transverse size which is governed by the out-of-phase mode grows exponentially; when
~/1] < 0, the condition reverses [7], where 1] = pdC/Cdp - 1112 is the slippage factor, C = 21fR = eTo is the
circumference of the ring, I = (1 - (32)-1/2, and (3 = v/e ~ 1 for a relativistic beam discussed in this Letter.
Moreover, the growth rate of the out-of-phase mode when U1] > 0, is smaller than the growth rate of the in-phase
mode when ~/1] < O. Consequently, machine parameters are usually chosen such that ~/1] is positive and small, i.e.
we need ~ > 0 « 0) when the machine is operated above (below) transition. Damping mechanisms, such as radiation
damping and Landau damping, mayor may not stabilize the HT instability, depends on the damping time, the width
of the incoherent tune spread, and so on.

As the sign of E.!1] is crucial to the stability of the two fundamental modes of head-tail oscillation, in analogous to
the strong focusing principle, alternating the sign of ~/1] within a synchrotron period could stabilize both modes. Since
varying 1] means transition crossing, which involves many unfavorable problems, such as vanishing Landau damping,
large momentum spread, bunch-shape mismatch and nonlinear effects [8]; we propose, in this Letter, variation of the
chromaticity in order to stabilize the HT instability.

While drafting this Letter, we were advised of the existence of the paper written by T. Nakamura of SPring-8 [9].
Nakamura suggested, as we have also (independently), the concept of chromaticity modulation, which contributes an
incoherent tune spread that effectively Landau damps the transverse instabilities. In this Letter, going considerably
beyond what Nakamura has done, we provide analysis, simulation results, and a stability criterion for the head-tail
instability.
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We consider that the chromaticity is no longer a constant but a function of "time" s, where s measures the distance
around the ring. The chromaticity can be expanded by a Fourier- series in terms of the harmonics of the synchrotron
phase advance <f;, as

~(s) = :L ~n cos(n<f; + On),
n=O

(1)

where <f; = wss/c, Ws is the synchrotron angular frequency, n = 0 corresponds to the case of constant chromaticity
(DC) ~o, and On is the phase difference between the chromaticity and energy variation.

The introduction of a time dependent part of the chromaticity generates an additional incoherent tune spread that
contributes to the Landau damping, as was emphasized by Nakamura. Specifically, the constant part of chromaticity
causes both the HT instability and Landau damping. However, Landau damping generated by the DC incoherent
tune spread is not effective in stabilizing the weak instability. As will be shown in this Letter, the varying part of
the chromaticity does not cause the HT instability, and consequently, Landau damping due to the AC (e.g., n=l)
incoherent tune spread suppresses the instability due to the DC part of the chromaticity.

The incoherent chromatic tune spread due to the AC part of chromaticity can be estimated as Uv = .J378//(306 Ub,
for a Gaussian beam, where //(30 = w(3o/wo, Wo = c/R, Ub = (w./C'fJ)uz, Uz is the rms bunch length. In obtaining the
equation for the incoherent tune spread, we have adjusted 01 such that the chromaticity modulation is in-phase with
the energy oscillation, i.e. ~ = ~o + ~1 sin <f;, 0 = (w s/ c'fJ)rz sin <f;, where (rz, <f;) are the action-angle variables in the
longitudinal phase space. The AC part of the incoherent tune spread contributes to a Landau damping without driving
the HT instability, and the damping rate per turn can be approximated as TL~ [1/turn] ~ 27l'Uv = 27l'.J378//.X1, where
//. = ws/wo, and Xl = W(30~lUz/C'fJ is the AC part of head-tail phase. Note that the Landau damping time due to
the AC part of chromaticity is independent of beam intensity and the impedance of a ring. Simulations of a bunched
beam traversing an averaged impedance in a storage ring confirm this. The implication is that, within the tolerance
of dynamic aperture reduction due to the chromaticity, one can increase the damping rate (by a large enough Xl) to
suppress the HT instability.

For an analysis of the effect of variable chromaticity, we assume the particle in a bunched beam experiences two
forces: the external focusing force and the wake force generated from the interaction between the beam and cavities.
We neglect any nonlinear synchrotron oscillation, the longitudinal wake force and the gradient of the transverse wake
force. The synchrobetatron coupling effect on the longitudinal orbit is also ignored.

There are two parameters essential to the dynamics studied in this Letter:

(2)

where Xn is the phase shift between head and tail of a bunch for each harmonic n of the chromaticity, N is the number
of particles in a bunch, ro = e2 / moc2 , and W J. is the transverse wake function. The parameter 1 is approximately
the ratio of betatron tune shift to the synchrotron tune. It can easily be shown, by a two particle model, that the
onset of the SHT instability is where 1 2 1 [7], when Xl = O. The well-known transverse Boussard criterion is also
consistent with this condition [10]. In this work, we concentrate on the case of n = 0& 1, therefore we have three
independent parameters under study: Xo, Xl, and 1.

The effect of nonlinear chromaticity characterized by ~01, where ~DC is expanded as ~DC = ~o+~01 0, plays a similar
role to the AC component 6. In fact, 6 ~ ';OlUb. Since both ';01 and Ub are usually small, the nonlinear part of the
DC component ~01 is not effective enough to suppress the HT instability.

A linearized Vlasov analysis of a many-particle system yields an eigenmode equation. The mode frequency, 0(1),

can be approximated for the dominant radial mode (j = 0), as [11]

(3)

where NJI) =L q IglO(X1,Xq - XoW, glo is the frequency spectrum of the beam's perturbed density of the (/,j) =(/,0)
mode, I is the index of the azimuthal mode, Xq = wquz/c, wq = qwo + w(3 + lws , the transverse impedance is
Z((wq) = -WJ.Z(wq), and the effective impedance is

{

(

(4)

Note that, the number of azimuthal and radial nodes in the longitudinal phase space are, I and j, respectively.
Ip. the following study, we assume the beam distribution is Gaussian, and take a model-impedance function as:
Z(w) = l/w - i7l'o(w). The coherent tune shift, given by the real part of the mode frequency, is
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(5)

where f:lv = (n(l) - W{3o)!wo - I V s , and Jo(x) is the Bessel function. The growth rates per synchrotron period of

the two fundamental modes, given in terms of the imaginary part of the mode frequency, l/'rP) = 21r"S(f:lv)!vs , are
approximately

(6)

(7)

where Erfi(x) = -iErf(ix), Erf(x) is the error function, and Lk1)(x) is the Laguerre polynomial. One can see that,
when Xo = 0, the growth rate of HT instability is zero.

We can make a rough estimate of the stability criterion for the HT instability, which is that the incoherent tune
spread is larger than the absolute value of the coherent tune shift; that is: (jll > l.6.vl. The approximate stability
condition is therefore

(8)

where N1 = Jdwp 19/0\2. Explicitly, expressed in terms of the accelerator parameters, we have

(9)

where Cl = V273f(l + 1!2)!1rl!21+l, E = 'Ymoc 2
, and 10 = Nec!C which is the averaged current. When 0 < Xo < 1,

the I = 1 mode is usually the dominant unstable mode, and Cl = 0.058. In contrast, when -1 < XO < 0, the I = 0
mode is the dominant unstable mode and Co = 0.23.

A code has been developed to simulate a bunched beam traversing a ring with a transverse impedance. A bunch
beam is loaded with a bi-Gaussian distribution in both longitudinal and transverse phase spaces. All results are
numerically converged when the number of macro-particles simulated is larger than 400. Since Xo is usually chosen as
a positive parameter in accelerators, we only show the figures of numerical work for XO > O. Simulations, nevertheless,
confirm the growth rates and stability criterion for both sign of Xo.

In Fig. 1, we show the results of multi-particle simulations. The curve of (y) presented in this Letter has been
averaged over a synchrotron period. For a beam with initial centroid offset, the bunch centroid motion is initially
dominated by the I = 0 mode, which is a damping mode when XO > 0; the higher order unstable modes then cause
the growth of averaged bunch-center after the initial damping. The varying chromaticity, nonetheless, Landau damps
all the higher order unstable modes when Xl is larger than the HT stability theshold estimated in Eq. (8).

The estimate for stability in Eq. (8) is usually sufficient for the bunch centroid motions. A rigorous stability
criterion can be derived by incorporating the incoherent tune spread in the Vlasov analysis. We first write down the
betatron phase advance,

Wj30 W(1 wEO wo·
<I>{3 = -5+-

2
<f;rz--rzcos<f;--4r z sm(2<f;),

c c C C
(10)

where WE(O,l) = wj3ot,(O,1)!7J, and the tune generated by the in-phase oscillation between the chromaticity modulation
and the energy oscillation is included. Following the well-known technique [12], one can find the dispersion relation
of the most dominat radial mode, which is

v + iU = ~~ N1 {?R [Z~~] + i"S [Z~~]}, (11)

where V + iU is the so called "beam transfer function" [7]. For a Gaussian beam with the model-impedance, we have
V +iU =

-ixi!2

3
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(13)

for the l = 0 and l = 1 modes, respectively, where II = D..lI / lis· Examination of the dispersion relation shows that the
SHT threshold can be enlarged by increasing Xl.

Multiparticle simulations show that the rms-emittance of a Gaussian beam is stabilized, when the the value of Xl
approaches the stability threshold of Eq. (11) [cf. Fig. 2], where erms = ((y2)(P;) - (yPy)2)1/2, Py = (c/wf3o) dy/ds,
and the bracket () means a phase-space ensemble average. We find that, the results of simulation of the bunch
centroid motion agree very well with the approximate stability limits, and the results of emittance growth agree with
the exact stability criterion [cf. Fig. 3]. Figs. 4 show the simulation results of stabilization of the SHT effect by a
large enough Xl, when Xo = O. This implies that the limitation of peak current in a storage ring can be increased by
the varying chromaticity scheme.

In summary, the chromaticity of a storage ring, which causes the head-tail instability, usually needs to be controlled
by sextupoles. We have shown that, by the varying chromaticity scheme, the head-tail instability is suppressed, and,
futhermore, a stability threshold is developed. With a large enough allowable AC part of the chromaticity, one could
even make larger the threshold of the strong head-tail instability. The physics of the underlying mechanism is simple:
strong focusing principle and Landau damping. Studies of practical operation issue, such as rapid modulated sextupole
magnets, and theoretical issues, such as the reduction of dynamic apertures, and exact calculations of the azimuthal
mode-coupling, are required. Also, of course, the practical aspects of varying chromaticity must be compared with
the other schemes that also introduce an incoherent tune spread, e.g., space-charge, ion-trapping, rf-nonlinearity, and
octupole magnets. Temporal variation of accelerator parameters might be used in the control of other instabilities.

We are grateful to Sasha A. Zholents, who called our attention to the paper by Nakamura. We alo thank Alexander
W. Chao for his helpful discussion. In particular, W.-H. C. would like to thank Robert 1. Gluckstern for his introduc
tion of the concept of Alternating-Phase-Focusing (APF) which inspired the early idea of this work. Work supported
by the U.S. Department of Energy under contracts No. EDDEFG-03-95ER-40936 and DE-AC03-76SF00098.
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FIG. 1. Multi-particle simulation results showing stabilization of the HT motions of the centroid of a Gaussian beam by Xl,

where xo = 0.2, Y = 0.22. The estimated stability threshold for the 1= 1 mode, according to Eq. (8), is where Xl 2:: 0.0127.
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FIG. 2. Multi-particle simulation result showing stabilization of the HT motions of the rms-emittance of a Gaussian beam

when Xl 2:: 0.026 - the theoretical stability threshold of the 1= 1 mode [d. Eq. (11)]. Here Xo = 0.2, Y = 0.22.
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DC (Xo) space. Here T = 0.22, (y) is the averaged centroid motion at 8000 turns, .6.£rms = £rms(8000)!£rms(0), and the
approximate and exact stable limits are plotted according to the criteria shown in Eqs. (8) and (11), respectively. The
region below the solid (dashed) line is stable for the bunch's rms-emittance (centroid) motion. Note that, (y)(O) = O.l[cm],
£rms(O) = O.Ol[cm], and .6.£rms is rounded to the closest integer.
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