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ABSTRACT

A lookup table for water thermodynamic and trans-
port properties (SANWAT) has been cunstructed tor
use with the two-phase computational code, SHAFT.
The table, which uses density and specific inter-
nal energy as independent variables, covers the
liquid, two-phase, and vapor regions. The liquid
properties of water are contained in a separate
subtable in order to obtain high accuracy for this
nearly incompressible region that is frequently
encountered in studies of the characteristics of
nuclear-waste repositories.
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WATER PROPERTY LOOKUP TABLE (SANWAT) FOR
USE WITH THE TWO-PHASE COMPUTATIONAL CODE SHAFT

Introduction

The two-phase code SHAFTl

solves for energy, e, from the conservation-of-
energy equation and density, p, using the conservation-of-mass equation (see
Figure 1l). Consequently, it is necessary to have an equation-of-state lookup
table for water that relates (e,p) to temperature (T), pressure (P), and satura-
tion (S). Available source materials such as the 1967 American Society of Mechan~
ical Engineers (ASME) Steam Tables2 use (T,P) as independent variables. It is
therefore required to map (T,P) into the (e,p) field. This report details an

appropriate mapping procedure.
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Figure 1, Water Properties



An equation-of-state lookup table for water was originally constructed at
Lawrence Berkeley Laboratory (LBL) for use in the SHAFT 78 computer code. LBL de-
veloped SHAFT1 in order to study certain geothermal problems of heat and mass trans-
fer through porous rock. These problems focused on the process of water boiling
and steam condensation in geothermal applications involving the exchange of large
quantities of heat between the fluid and the rock matrix. Sandia National Labora-
tories then modified the LBL table so that SHAFT could be used to study nuclear-
waste disposal problems. The table was divided into two subtables--one for the

liquid region and one for the two-phase vapor region. This extension was required
to obtain the table lookup accuracy needed in the liquid region over a large pres-
sure range (up to 900 bar) and at a wide temperature range extending down to 1l0°C.

Using density and energy as independent varlables has two advantages: (1) The
two variables are independent even in the two-phase region, and (2) They are the
natural variables arising in the conservation forms for the energy and mass-flow
equations. However, the use of p and e introduces several problems. 'The maln prob-
lem is how to accurately determine the liquid water pressure. In the nearly incom-
pressible liquid region, because small changes in liquid density at constant energy
correspond to large éhanges in pressure, accurate interpolation within the tables
must be done. Therefore, Sandia has developed a method of table formation based
on the use of a separate liquid subtable that is felt to be more accurate than the
method developed at LLB. The table for the vapor and two-phase (2¢) regions re-
mains similar to that used by LBL.

Counstruetion of "Main" Tahle

Flyure 1 showo a schematin plot of water properties that uses density (log
ordinate) and energy (abscissa) coordinates. The second set of coordinates shows a
typical spacing of the density and energy index numbers used in the lookup table.
The "main" table, which covers the 2¢ and vapor region, uses 81 energy subdivisions
and 74 density subdivisions. The interval locations (DB and EB) from which the
table is construc¢ted must be obtained by using good judygment.

Because the thermodynamic derlvalives arc dicoontinuous acraoss the saturation
line, interpolation across this line must be avoided. 1In our first computer program,
TVALUES, we specify a set of temperature values and compute the corresponding pres-
sures, enerdgles, and Jdensiticas along thw liginid saturation line hetween Points @D
and '<:> (see Figure 1l).* We then specify a second set of temperatures and compute
~ the pressure, energies, and density along the vapor saturation line, Points C) to
. The region between Points @ and @ is filled in with intermediate values
of energy and density. Since we are interested only in 2¢ and vapor pressures up

*

Values of temperature, not energy or density, are specified on the saturation
line because most equation-~of-state water routines use temperature as the indepen-
dent variable. Also, most problems are usually defined in terms of temperature and
pressure limits.



to 160 bar, no attempt is made to define the saturation line near the critical
point. The intermediate range ((:) to (:)) was filled in with evenly spaced values
at energy and density.

In addition, several values of energy were selected to the right of the vapor
saturation line to define the vapor region, up to the maximum specified temperature.
Note that the slope of the saturation line in p - e coordinates is negative for den-
sities above about 15 kg/m3; for smaller densities the sldpe becomes positive. This
means that the resulting (e) values along the vapor saturation line are not mono-
tonically decreasing with increasing density. Some shifting of the density-energy
combination must be made in this region for the double-valued function. That is,

DDS3 must equal DDS4 (see Figure 2). 1In code TVALUES, the 74 values of energy and

TEDS, D03,
- JLEDS,. DDS,)
(EDS,, DOS;)
]
(=]
=
=
wv
<
a
= (EDS,, DDS,)
P
b0, 005, DDS,

ENERGY INDEX
Figure 2. Typical (EDS,DDS) Pairs That Must Coincide with Saturation Line

densities are reshuffled to ensure that both the EDband DB arrays are monotonic.

In summary, we now have 58 EB and DB coordinate locations located on the saturation
line and 13 additional FR, DB points coveriny the maximum temperature vapor region,
(Figure 3). The first 10 low-energy points are reserved for low-energy liquid

water, (see Liguid, Table A).

Our second computer program, MAIN, constructs the final table in four stages,
given the EB and DB array shown in Figure 3. A full set of water propertiec will
be calculated for each EB, DB coordinate point iying within the pressure tempera-

ture range specified (2¢ and vapor only).
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Figure 3. Energy-Density Pressure Matrix of Table Points

A list of the four steps executed by the code MAIN is given below, followed
by a detailed explanation of each step.

1. Torm a pressure~energy table by using density and temperature and phase
of each point.

2. Form preliminary density-energy table. Obtain temperature and pressure by
linear interpolation.

3. Use two .dimonsional Newton-Raphson formula Lo obtain aocourate temperatnure
and pressure values.

4. Use temperature and pressure values to obtain remaining water properties.
Step 1

The pressure-energy table is formed by first determining values of density
and temperature at each point. The lowest pressure value and the ilucrement ot préc-
sure are input. For each pressure value Lhe cerreoponding saturatinn temperature
is computed by using subroutine TSAT. Then the saturated liquid energy and satu-
rated vapor energi for each pressure are computed. The phase of a given pressure-
energy point is determined by comparing the value of energy with the saturation en-
ergy values: the point is in the liquid region if the enerygy is below the saturated
liquid energy, in the vapor region if the energy is above the saturated vapor ener-
gy, and in the 2¢ region if the energy lies between the two values. The liquid
points are considered during construction of the liquid subtable.

" For the single vapor-phase region, the temperature is estimated from an ap-
proximate relation of the form T = T(e). Accurate temperature values are obtained

by Newton-Raphson iteration of an accurate relation of the form e = e(T,P) for



given P. With the temperature and pressure known, the density is obtained from a

relation of the form p = p(T,P).

Step 2

The second step in the program is the preliminary formation of a density-
energy table. At each energy, for a given density value, DB, the pressure values
that bracket the density value are found in the presshre—energy table. The pres-
sure-energy table is then interpolated to obtain approximate values of pressure and

temperature for points on the density-energy table.

Step 3

To get accurate values of temperature and pressure, the third stage of the
program uses a two-dimensional Newton-Raphson formula to solve two relations of the
form e = e(T,P) and p = p(T,P) iteratively until the absolute value of the changes
in temperature and pressure are 10-5°C and 10—3 Pa. Partial derivatives are approx-
imated by finite differences. The following are computed in the 2¢ region for a
given approximate temperature: (1) the corresponding saturation pressure:; (2) lig-
uid saturation energy (UF) and density (DF); and (3) vapor saturation energy (UG)
and density (DG).' The correéponding quality for a given density is then computed.
Using this value of quality, the mixture energy is computed and compared to the re-
quired value. The temperature is obtained by Newton-Raphson iteration until the
discrepancy in energy is less than 10-8 J/kg.

Step 4
_In the fourth step, the temperature and pressure at each point on the density-

energy table are taken and are used to compﬁte

* Temperature

* Pressure

¢« Saturation (volume fraction of vapor)

¢+ Thermal conductivity

+ Liquid relative permeability/liquid viscoeity
 Vapor relative permeability/vapor viscosity

* Liquid density

*+ Vapor density

*» Liquid energy

« Vapor energy

New Liquid Subtable

The increase in pressure with increased density at constant energy is so
large in the liquid region that the liquid regime occupies a very narrow band above
the liquid saturation line and becomes even narrower at lower energy, where water
is more nearly incompressible (see Figure 4). In LBL SHAFT, water properties are
linearly interpolated bLetween three points--two on the saturation line and one at

the intersection of the constant density and energy lines, shown as Point 3 in

11
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Figyure 4. Definition of Liguid Water Region

Figure 5. This point will usually be at high pressure. Accuracy is difficult to
obtain because - LBL considers the ligquid water properties as an integral part of the
main table. 'The maximum errur in pressure in the LBL tahle is 6%, with a total
pressure range of less than 1U bars. For the Sandia nuclecar-waste problem, with
its considerably greater ranges of pressure and temperature, the results would be
worse. Consequently, the water properties are constructed as a separate subtable.
Details of this development follow.

Sandia Liquid Subtable A

The idea of using a density-energy table in the liquid region has been aban-
doned. Lines corresponding to Densities 75 to 81 are used for the liquid table.
On table Line 75, each point corresponds to liquid saturation at a given energy.
The pressures corresponding to the points on Line 76 are above saturation pressure
by a specified pressure increment (AP); those on Line 77 are above saturation by
2AP, etc. (see Figure 6). ‘''he temperature is obtained by a Newton-Raphson solution
of E = E(P,T). Knowing P and T, we can easily obtain density and all other trans-
port properties.

Use of this table ensured that reasonably accurate results were obtained when
pressures for problems of interest were in a narrow range of 1 to 9 bars. When
higher pressures became of interest, the same method was used, except that the new
liquid table contained much larger pressure increments (AP) between table lines.
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Figure 5. Interpolation for Points in Liquid Region

These tables, although better than the original LBL table, were not always satis-
factory. As a result, further changes discussed in the next section were made.

Sandia Liquid Subtable B

Much wasted memory results from using density and energy as independent vari-
ables in the table (see Figure 3). Many points in the rectangular p - e grid cor-
respond to pressures and/or temperatures that are too high or to pressures that are
too low. As a result, more than half of the water table is filled with the default
number -0.7777B177 for all 10 entrles at the point. One way to increase accuracy
and eliminate some of this waste of memory is to use different energy steps in the

liquid and 2¢ regions.

For the liquid region, maximum enérgy corresponds to less than half the  num-
ber of energy points (40 out of 81). It was realized that the energy points in the
liquid table did not have to agree with those in the main table. Each energy in-
crement in the main table was therefore cut in half. This means that if energy EX
i9 between poinls NELOK and NELUK+1 ihn the main table, it will be between points
2*NELOK-1 and 2*NELOK or between 2*NELOK and 2*NELOK+l in the liquid table. This
results in nearly full use of all the points in the liquid table. Halving the en-
ergy increment greatly increases the accuracy of the pressure determination. The
worst errors are 0.2% of the absolute pressure, about 1.9 bar, for p = 900 bar.

max
This improvement is to be expected because the error in quadratic interpnlation

13
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X POINT OF INTEREST
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Figure 6. Data Used for Interpolation Schéme

should be approximately proportional to the cube of the energy increment. (Halving

the increment cuts the interpolation error in the energy direction by about one

eighth.)

The accuracy of the liquid pressure and temperature computation has been
tested in a test program. Pressure and temperature are input, and the corresponding
liquid energy and density are computed. These values are input into the subroutine
GETIT that performs the interpolation. The resultant pressure and temperature com-
ing from the tables are output. The errors as a function of the fractional dis-
tance from the lower density—energ& point were compared. Only very small errors
are expected near any of the points (zero error at the points) and maximum errors
near the middle of the interpolation region. Temperature errors are typically less

than 0.01%.
Incorporation of SANWAT into GHAI'T
Because the basic construction of SANWAT differs appreciably from that of the

original LBL table, many program changes were necessary to make the new table com-

patible with SHAFT 78. These changes were limited to subroutine GETIT.-



Subroutine GETIT is entered with energy EX and density DX. GETIT locates EX
between energies El and E2. The fractional distance of EX between El and E2, Q, is
obtained linearly by using Eg. 1:

_ EX - El
Q= g2 —F1 (1)

GETIT contains logic to determine whether or not the point of interest is in the
main or the liquid table. In the main table, the fractional distance of DX between

the bounding densities D1 and D2, P, is obtained by linear interpolation

DX - D1
D2 - DI (2)

P =

For the liquid table, the density DL shown on Figure 6 is obtained by qua-
dratic interpolation, using densities D1, D2 and D3. Density DH is likewise

found, using D4, D5 and D6. Quadratic rather than linear interpolation is used

because

(ap) ‘ '
Je (3)
[Psat+nAP] .

is highly nonlinear. The fractional distance between DL and DH, P, is obtained by

linear interpolation

DX - DL ' : (4)

P=®5-o1°

Linear interpolation can be used because

3y
\oP e = constant (5)

The rest of the properties (page 1ll) are obtained from P and Q by double linear

interpolation.

The current version of subroutine GETIT (Appendix A) has been tested by
computing the water and geologic properties about a heat-generating waste canisfer.
The geologic medium at time = 0 was cold (temperature = 28°C). As time‘progressed,
the water in the pores went from 1¢ liquid to 2¢, and finally to vapor. No diffi-
culties were incurred in crossing the saturation curve that separates the regions.

References
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APPENDIX A

Subroutine GETIT

The flow diagram of the revised subroutine GETIT is-given by Figure A-1l.

This is provided to show the revisions required to the original GETIT to make GETIT

compatible with SANWAT, which contains the separate liquid subtable.

list for the symbols used in the flow chart is given below.

DSAT
DB
DX
EB
E2
Key C
NDLOK
NE
NELOK
P

Q

o
¢
Subscripts
L

u

Flow-Chart Nomenclature

Saturation density for given energy
Density (table ordinate)

Density from equation solution

Energy (table abscissa)

Energy from table

Time-step counter

Defined such that D (NDLOK) <DX<D (NDLOK+1)
Maximum table index for energy

Defined such that E(NDLOK) <EX<{(NELOK+1)

Fractional distance (DX - DL)/(DH - DL)
(See Figure 6)

Fractional distance (EX-El)/(E2-El)
(See Figure 6}

Density
Phase

Liquid
Energy

A nomenclature
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SUBROUTINE GETIT

HELLO

Figure A-1l.

Flow Diagram of

the Revised Subroutine GETIT
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