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A subgrid-scale model for the scalar 
dissipation rate in nonpremixed combustion 

By A. W . Cook1 AND W . K. Bushe 

A subgrid-scale model is presented for the scalar dissipation rate in nonpremixed 
turbulent reacting flows. Inputs to the model are the filtered density, the Favre- 
filtered temperature and the Favre-filtered m isture-fraction. The model contains a 
coefficient which is determined by assuming a form for the scalar energy spectrum. 
Inputs to the presumed spectrum are the integral and dissipation length scales of the 
scalar field. These quantities are estimated locally from the Favre-filtered velocity 
field, resulting in a model coefficient which is spatially and temporally dependent. 
The model is tested a priori using data from a Direct Numerical Simulation (DXS) 
of a temporal reacting m ixing layer. Estimated values of the dissipation rate are 
found in good agreement with dissipation rates computed directly from the DXS 
data. Furthermore, the presumed spectrum methodology is found to accurately 
predict the mean value of the model coefficient as well as its spatial and temporal 
variations. 

1. Introduction 
The Large Eddy Simulation (LES) f h o c emically reacting turbulent flows has 

become a topic of much interest in recent years. The application of LES to non- 
premixed combustion is motivated by a large amount of evidence demostrating that 
m ixing rates are controlled by large-scale eddies. Additional motivation is pro- 
vided by the need to simulate unsteady flows: such as the combustion cycle in a 
diesel engine; LES is well suited to unsteady combustion problems since it yields 
time-accurate information. 

A common practice in the modeling of nonpremixed combustion is to relate the 
various chemical mass fractions to a conserved scalar m ixture-fraction (Bilger 1980). 
Chemical reaction rates are known to be strong functions of the m ixture fraction, 
and several models of nonpremixed combustion, such as the Laminar Flamelet 
Model (LFM) (P e ers t 1985) and the Conditional Moment Closure (CMC) (Bilger 
1993), take advantage of this to acheive closure of the highly non-linear chemical 
source terms. Application of such theories in LES involves characterizing the state 
of m ixing within each grid cell. A useful measure of subgrid-scale m ixing is the 
scalar variance, which can either be modeled or else computed by integrating its 
transport equation. 

An important term in the scalar variance equation is the scalar dissipation rate. 
This term represents the rate at which reactants are brought together at the molec- 
ular level. High rates of dissipation can, in the presence of cold reactants, cause 
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flames to extinguish or else fail to ignite. Mixture-fraction-based models of turbu- 
lent combustion usually express reaction rates as functions of the scalar dissipation 
rate. The scalar dissipation rate is a highly intermittent phenomenon, exhibiting 
large fluctuations associated with the smallest turbulent length scales; however, the 
net dissipation is determined by the rate at which energy is fed to the turbulence 
at large (resolvable) scales. Therefore, there is more information available for mod- 
eling the scalar dissipation rate in an LES than there is in a Reynolds averaged 
calculation. 

De Bruyn Kops et al. (1998) proposed a model for the subgrid-scale scalar dis- 
sipation rate which has the same form as the leading term in a model proposed by 
Girimaji and Zhou (1996). Th e model contains a coefficient which can be spatially 
and temporally dependent. The primary motivation for this work is to determine 
whether an assumed spectrum methodology can be employed in determining the 
model coefficient. Another goal is to investigate the accuracy of the model for a 
flow with large density variations, due to heat release, and a temperature dependent 
scalar diffusivity. 

2. Definitions 
Consider a turbulent reacting flow in which streams of fuel and oxidizer meet in 

a combustion chamber where mixing and reaction take place. During the combus- 
tion process, many chemical species may be produced and/or destroyed; however, 
elemental mass fractions are conserved. Let 2 = Z(x,t) be a conserved scalar 
mixture-fraction, defined as 

where 2; is the mass fraction of element i, N is the total number of elements and 
the indicies f and o refer to values in the fuel and oxidizer streams, respectively. It 
can be seen that 2 .= 1 in the fuel stream and 2 = 0 in the oxidant stream. Now 
let the dissipation rate of scalar fluctuations be denoted by 2x, where 

Here D represents the scalar diffusivity, which may be a function of temperature, 
i.e., D = D(T). I n order to characterize the mean scalar dissipation rate within an 
LES grid cell, it is necessary to specify the spatial filter associated with the LES 
mesh. The filter is defined by 

z(x) = 
s 

G( Ix - x’l; A)Z(x’) dx’ , (3) 

where the integral is taken over all 3-dimensional space (for brevity, the t dependence 
has been dropped). The filter kernel G( Ix - x’l; A) is normalized, 

G(r; A) dr = 1 , (4) 
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and has a characteristic width A which is directly related to the grid spacing of 
the LES mesh. The goal is to derive a model for the filtered value of the density- 
weighted scalar dissipation rate, i.e., pi. Results of de Bruyn Kops et al. (1998) 
suggest this term be modeled in the following way, 

where a tilde 0 is used to denote a Favre-filtered variable, e.g., 2 3 g/p. The 
model contains a coefficient C which can be spatially and temporally dependent, 
i.e., C = C(x, t). In the next section, a new method will be described for computing 
C(x, t); such that, (5) is correct on average. The method utilizes an assumed form 
for the Z energy spectrum. 

3. Determination of model coefficient 
In order to relate C to an energy spectrum, Z must be transformable to wavenum- 

ber space. Fourier’s integral theory assumes that s 12(x)] dx is bounded. For this 
to be the case, Z(X) will be considered to be zero outside a very large box. The 
box can be made arbitrarily large so that an assumption of homogeneity may also 
be made. Forward and inverse Fourier transforms of Z are defined as 

Z^(k) G &- / exp( -ik . x)Z(x) dx , (6) 

Z(x) G 
I 

exp(ik - x)Z^(k) dk , (7) 

where k is a wavevector given in radians per unit length. The Fourier transform of 
cYZ/dxj is 

z 
- = -ikje(k; A)Z^(k) , 
8X.j 

(8) 

where c is a function only of the magnitude of k, i.e., Ic2 G k . k = kjkj. Writing 
az/ax, as the inverse transform of (8) and squaring both sides (and summing on 
j) leads to 

exp(i(k + k’) . x)(-kjkg)G^(k; A&k’; A)z^(k)z^(k’) dkdk’ . (9) 

Since Z(x) is real, Z^(k’) = 2*(-k’) w h ere the asterisk denotes the complex conju- 
gate. For homogeneous turbulence, the Fourier amplitudes Z^(k) and 2*(-k’) are 

statistically orthogonal; hence, the ensemble average (z(k)Z^*(-k’)) is zero unless 

-k’ = k (Batchelor 1953). The ensemble average of (9) thus becomes 

(gg)=J k2G2(k; A) (Z^*(k)Z^(k)) dk . (10) 
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The integral in (10) may be cast as an integral over a spherical shell of radius k, 
followed by integration over all shells. For example, if da denotes a differential 
surface element of a shell, then (10) can be written 

/ k”G”(k; A) (Z^*(k)Z^(k)) dk = lm k2G2(k; A) j (Z^*(k)Z^(k)) da dk . (11) 
0 

The shell integral in (11) is equal to twice the three-dimensional, scalar energy 
spectrum, i.e., 2Ez( k); hence, 

(gg) = 21m k2g2(k;A)EZ(k)dk . 

Repeating the analysis for aZ/&:j leads to the result 

(12) 

(13) 

The coefficient C can be determined by taking the average of (5), i.e., 

c= (/-m7z*uz) (w 0-q sooo k2Ez( k) dk 

(pD(?) v .i? - vz”) = (+ T$?) = sooo k@(k;A)Ez(k)dk * (14) 

Here it has been assumed that pD approximately cancels in the numerator and 

denominator and that 

4. Assumed energy spectrum 
In order to compute C using (14), t i is necessary to specify the functions G^(k; A) 

and EZ(k). For the present analysis, the LES grid filter is assumed to be a ‘top-hat’ 
function, which, in Fourier space, is defined as 

e _ 2sin(kA/2) - 
kA ’ (15) 

The scalar energy spectrum is assumed to be that of isotropic turbulence at high 
Reynolds number (Tennekes and Lumley 1972), i.e., 

EZ(k) = A exp[-1.73(kZz)-4/3]k-5/3exp[-2.25(k~~)4/3] , (16) 

which is applicable for fluids with Schmidt numbers near unity. For fluids with a 
very low or very high Schmidt number, an inertial-diffusive or viscous-convective 
subrange should be included in the assumed spectrum. Equation (16) contains 
three unknown parameters: a constant A, a scalar integral scale Zz, and a dissi- 
pation scale 72 (Corrsin 1951). Th e constant A divides out of (14), and hence, is 
irrelevant to the modeling. The length scales Zz and 72 determine roughly where 
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the spectrum peaks and where it goes to zero. If 22 and 77.z are estimated locally 
and/or instantaneously, then C will be obtained as a function of space and/or time. 
In the present analysis, ZZ and qz are assumed to be related to the integral scale I 
and Kolmogorov microscale q of the velocity field ui. This implies that the flow is 
sufficiently developed; such that, the statistics of the velocity field are reflected in 
the scalar field. The length scale estimates are as follows: 

lz%lFz 
V 

(S;$;J9)“” ’ 
(17) 

V EE (G;Ui)“2 , (18) 

rlz w pw/” ) (20) 
q z alRe13’” , (21) 

Rel z IV/ (v) , (22) 

(v) ES SC (D(F)) . (23) 

where, SC is the global Schmidt number and (x is a constant. 
In the present analysis, cy was set to 2 in order to bring the model into agreement 

with the DNS data (to be described in the next section). The estimates for 72 and 
q are strictly valid only at high Reynolds number. Due to the low Reynolds number 
of DNS, the dissipation range makes up most of the energy spectrum; thus, in a 
priori tests, C can be sensitive to the estimate for 72. In a high Reynolds number 
flow, however, the energy in the dissipation range contributes only slightly to the 
integral of the spectrum. Hence, there is good reason to expect that, at higher 
Reynolds numbers, C(x,t) will be less sensitive to the estimate for 72, so that cy 
can probably be set to 1 if the Reynolds number is high enough. 

5. DNS data 
The model was tested using data from DNS of a reacting temporal mixing layer 

(Bushe et al. 1998). The DNS t’l’ d u I ize a computational mesh consisting of 240 x 
120 x 120 points in the x, y and z directions, respectively. It was initialized with 
a planar laminar flame centered in the domain. Isotropic turbulent velocity fluctu- 
ations, taken from a previous simulation of forced incompressible turbulence, were 
superimposed on the flow induced by the heat release of the flame. Periodic bound- 
aries were imposed in the y and .z directions. Outflow boundary conditions, as 
described in Poinsot and Lele (1992), were employed in the x direction to allow for 
expansion due to heat release. In order to avoid unphysical generation of vorticity 
by the imposed outflow conditions, the velocity fluctuations were filtered to zero 
at the x boundaries. A two-step reduced chemical kinetic mechanism for methane 
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FIGURE 1. Grayscale plots of (a) Mixture-fraction, (b) Enstrophy, (c) Temperature 
and (d) Logarithm of scalar dissipation rate on an z - y plane in the DNS flow field 
at t = 15. 

was used with a further step added to approximate NO, chemistry. The maximum 
possible density ratio, based on the adiabatic flame temperature, was 7.4; the maxi- 
mum density ratio acheived in the simulation was 6.3. The global acoustic Reynolds 
number was Re, = 2000, and, for the case used here, the Schmidt number of all 
species was set to SC = 0.75. The ratio of specific heats was set to y = 1.3, and the 
scalar diffusivity was prescribed as the following function of temperature 

D = [b - 1)T]0’76 
ReSc ’ 

Figure la shows the mixture-fraction field on a slice in the three-dimensional 
domain after the flow had evolved for 15.0 acoustic time units. The gas on the 
right is fuel and the gas on the left is oxidant. The enstrophy field on the same 
slice is shown in figure lb. Figure lc shows the temperature field resulting from the 
exothermicity of the reactions. The scalar dissipation rate is shown in figure Id; it 
is clear that this field has structures associated with fine length scales. 

6. Results 
In the a priori tests, the DNS data were averaged onto a 24 x 12 x 12 point LES 

grid such that each LES grid cell was comprised of lo3 DNS data points. Ensemble 
averages were approximated by averaging in the homogeneous directions, i.e., over 
(y - z) planes. The model coefficient C was thus computed as a function of the 
inhomogeneous direction x and time t. 

Figure 2 shows the true and modeled values of C as a function of II: at four different 
times in the simulation. At t = 7.5, C is overpredicted. This is due to the fact that 
insufficient time has elapsed for a turbulent spectrum to have developed for the Z 
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FIGURE 2. Coefficient in model for px as a function of x and t from DNS OI 

temporal reacting mixing layer: l - DNS; o - assumed spectrum method. 

field. However, as time elapses, the model for C(z, t) becomes increasingly more 
accurate. Furthermore, it is encouraging that the model appears most accurate near 
the middle of the domain where the bulk of the reactions are occuring. The large 
oscillations in the DNS values of C(x,t) near the ends of the domain are due to 
the fact that Z(x,t) is nearly constant close to the boundaries, such that the scalar 
dissipation rates are very small. Computation of the DNS values for C near the 
boundaries involves taking the ratio of two very small numbers; hence, the results 
are subject to numerical noise. 

In figure 3, true versus estimated values of pi are plotted for every point on the 
LES grid. The model va_lues _were computed from (5) using C as shown in figure 1, 
i.e., mest = C(x, t)pD(T) v 2 * gZ. Th e results show good agreement between the 
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FIGURE 3. Estimated (est) versus true (DNS) values of pi, computed by filtering 
240 x 120 x 120 point DNS data onto 24 x 12 x 12 point LES grid. 

true and estimated values of pX. Linear correlation coefficients for mest and mDNs 
are: 0.911, 0.897, 0.898 and 0.913 for t = 7.5, 15, 30 and 40, respectively. 

7. Conclusions 

A model has been presented for the scalar dissipation rate in nonpremixed tur- 
bulent combustion. The model contains a coefficient which can be computed by 
assuming a form for the scalar energy spectrum, The scalar integral scale Zz and 
dissipation length scale qz appear as parameters in the assumed spectrum. The 
model was evaluated a priori using DNS results for a turbulent reacting m ixing 
layer. It was found that the assumed spectrum, when combined with local esti- 
mates for Zz and ~2, gave accurate predictions of the model coefficient, including 
its spatial and temporal variations. Furthermore, the tests revealed a high correla- 
tion between true and modeled values of the scalar dissipation rate, which appears 
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to validate the model for turbulent reacting flows in the presence of heat release. 
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