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Abstract 

Unlike the thermodynamic equipartition of energy in conservative systems, turbu- 
lent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent 
plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize 
the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic 
flux, entropy, or combination thereof, in order to  derive new, turbulent quasi-equlibria. 
These TEP equiIibria assume various forms, but in general they sustain Spatially in- 
homogeneous distributions of the usual thermodynamic quantities such as density or 
temperature. This mechanism explains the effects of particle and energy pinch in toka- 
maks. The analysis of the relaxed states caused by turbulent mixing is based on the 
existence of Lagrangian invariants (quantities constant along fluid-particle or other or- 
bits). A turbulent equipartition corresponds to  the spatially uniform distribution of 
relevant Lagrangian invariants. The existence of such turbulent equilibria is demon- 
strated in the simple model of two dimensional electrostatically turbulent plasma in 
an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent 
transport is assumed to  be much stronger than the classical collisional transport. The 
simplicity of the model makes it possible to  derive the equations describing the relax- 
ation to  the TEP state in several limits. 

*Permanent address: Fusion Research Center, The University of Texas at Austin, Austin, TX 78712. 
t Permanent address: Russian Research Center “Kurchatov Institute,” 123182 MOSCOW, Russia. 
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1 Introduction 

The term “equipartition” broadly refers to the ergodic property of multi dimensional Hamil- 
tonian systems, which tend to distribute uniformly over the phase-space surface of constant 
energy. The conservation of energy plays the fundamental role in classical equilibrium ther- 
modynamics. Often, equipartition is also understood in the narrower sense of the same 
energy, T/2, per each degree of freedom, as follows from the ergodic property and the 
quadratic energy dependence on velocities. The term “turbulent equipartition” was in- 
troduced by Yankov (1994b) in order to describe the turbulent relaxed state, in which the 
system assumes a uniform distribution on the surface of constant invariants respected by the 
turbulence. 

In plasma physics, the best known example of a turbulent equipartition is the quasilinear 
plateau of the distribution function caused by the nonlinear Landau damping of plasma 
waves . In a toroidal turbulent plasma, the relevant invariants are given by the frozen-in 
law (in the fluid limit) or the adiabatic invariants p = mvL2/(2B) and J = $rnvl$$ and 
the Liouville theorem (in the collisionless limit), both limits derivable from the more general 
Poincare invariant . The plasma mixing by low-frequency electrostatic modes in a tokamak, 
subject to these conservation laws, results in the inhomogeneous density and temperature 
profiles peaked at the center even in the absence of particle and energy fluxes, thus presenting 
the underlying mechanism of the pinch effect and the profile consistency in tokamaks 

Accounting for both turbulence and particle collisions for relevant tokamak parameters is 
a complicated problem, and the theoretical predictions of the tokamak density profiles have 
varied and also suffered uncertainties in their limits of applicability. For this reason, it is 
desirable to study in some detail the processes of turbulent relaxation in a simplified geom- 
etry, thereby avoiding the toroidal complications and making it possible to allow for both 
turbulent and collisional effects in a regular fashion. We therefore restrict ourselves to the 
two-dimensional plane geometry, x = (5,  y), a/& = 0, where the parallel kinetic effects are 
unimportant, and it is possible to construct a fluid-type system describing the evolution of 
plasma density n(x, t )  and temperature T(x,  t ) .  The turbulence will be assumed electrostatic, 
with the potential 4(x, t )  specified non-self-consistently, although certain self-consistency 
constraints on 4 will be discussed. The collision frequency u will be assumed much greater 
than relevant turbulent mixing rates so that the Maxwellian distribution function is s a -  

ciently accurately maintained for the given species. More simplified 2D TEP models were 
discussed by Yankov (1995a) and Isichenko and Petviashvili (1995). There are also real sys- 
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tems, which demonstrate turbulent equipartitions in essentially two dimensions, for example, 
an ion diode with an externally applied magnetic field (Gordeev and Grechikha, 1995). 

Our goal is to demonstrate a nontrivial turbulence-mixed state with inhomogeneous 
density and temperature. For this to happen, we need an inhomogeneous magnetic field 
B = B,(z, y). To avoid the discussion of plasma currents and equilibrium, one can think 
of external currents creating the field, but this is not essential, because the inhomogeneity 
can be due to the cylindricity, as in the z-pinch geometry. The TEP density profiles in 
z-pinches were described by Sasorov (1990) in the framework of magnetohydrodynamics and 
by Yankov (1994a) in kinetics. 

The article is organized as follows. In Sec. 2 we discuss the role of the Liouville theorem 
and the Lagrangian invariants in turbulent mixing and present the simplest derivation of 
a turbulent equipartition in two dimensions. In Sec. 3 we review the integral Poincare 
invariant and show how a kinetic frozen-in law can be derived and applied to the problem 
of 2D drift convection of guiding centers in the collisionless case. In Sec. 4 we introduce the 
formal drift-kinetic collisional description, which is used in Secs. 5 and 6 for low- and high- 
frequency (compared to the collision frequency) turbulence. The results are summarized in 
Sec. 7. 

2 The role of Lagrangian invariants in turbulent mix- 
ing 

In this section we show that the Liouville theorem underlying Hamiltonian dynamics warrants 
at least one Lagrangian invariant, and the turbulent mixing drives this invariant to a uniform 
state, which is an attracting equilibrium. 

The motion 6 = w(s,t) in an arbitrary phase space s can be always described by the 
Liouville (or continuity) equation for the phase-space density f(s, t): 

where the velocity w generally depends on the distribution f via self-consistent fields render- 
ing the problem (1) nonlinear and chaotic. If the motion is Hamiltonian, such that s = (p, q) 
and w = (-dqH,apH), where H(p,q,t) is the Hamiltonian, the phase-space flow velocity 
w is incompressible, as - w = 0 (the Liouville theorem), and the density f is a Lagrangian 
invariant : 

d f / d t  = (at + w - as ) f  = 0. (2) 
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Equation (2) states that f is conserved along the phase-space orbit. Since in a chaotic 
situation the orbits show a mixing behavior and can densely fill the whole accessible phase 
space volume, the density f assumes an asymptotically uniform distribution. The validity 
of such a general statement cannot be universal and requires several assumptions. 

1. The phase space must be sufficiently multi dimensional. In low dimensions, the mix- 
ing is inhibited by KAM tori (Meiss, 1992). The lack of spatial dimensions can be 
filled by a complicated explicit time dependence of the Hamiltonian: Adding another 
incommensurate frequency to this dependence is equivalent to adding half a degree of 
freedom. 

2. The accessible phase-space volume should be fmite. This is usually warranted by an 
exact or an approximate conservation law. For example, the conservation of energy 
E for the multi-particle mechanical Hamiltonian H(p,q) = p2/(2rn) + V(q) with a 
confining potential V specifies a closed surface H(p, q) = E on which the motion takes 
place. 

3. When so, the mixing of f does not occur globally, but it takes place independently on 
each conservative manifold. In the case of conserved energy, one arrives at the one- 
parameter microcanonical distribution f(s, t + 00) = S[H(s) -E] on each iso-energetic 
surface. The Boltzmann-Gibbs exponential distribution for a small subsystem then 
follows, furnishing the basis of the classical thermodynamics. 

4. Equation (2) implies that the values of f are not changed, but only displaced. This 
seems to contradict the conclusion that f takes on a single, uniform value. For this 
to happen, one has to introduce a small amount of dissipation, or, equivalently, a 
small coupling of the system to another, even larger, Hamiltonian system. This will 
result in additional small diffusion-type terms in Eq. (2), which will smooth out the 
exponentially growing (Ott and Antonsen, 1989) phase-space gradients of f and thus 
complete the mixing. Otherwise, if one is interested in a coarse-grain (locally averaged) 
distribution function, the argument of small dissipation is redundant. 

. 

Thus the classical equilibrium statistical mechanics with the equipartition of energy is a 

consequence of the Lagrangian invariance of the phase-space density subject to the conserva- 
tion of the total energy. In strongly non-equilibrium systems with sources and sinks energy 
may not be a good integral of motion; however, there quite may be other integral and/or 
Lagrangian invariants. 
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Probably the most famous example of a turbulent equipartition is the convectively tur- 
bulent atmosphere (Fermi, 1937). The conductive heat flux is small in comparison with the 
convective energy flux, which makes the specific entropy of the two-atomic gas (N2 or 0,) 
s = ln(T5/2/n) a good Lagrangian invariant. Here T is the temperature and n the gas par- 
ticle density in the air. Then, within the range of heights where the vertical convection is 
important, one concludes that s is a spatial constant. Together with the average hydrostatic 
equilibrium condition, d(nT)/dz = -mng, where m is the average molecule mass and g the 
gravity, we find the average vertical temperature gradient dT/dz = -(2/7)mg N -9.8OC/km. 
The steady temperature gradient indicates the absence of thermal equilibrium and is a simple 
example of a turbulent equipartition. Various additional effects, such as water condensation 
and radiation transport, introduce corrections to the isentropic atmosphere model, which, 
nevertheless, remains a starting point much better than the model of an isothermal atmo- 
sphere. 

A somewhat more complicated example of turbulent equipartition is found in the theory 
of zonal winds on the Jupiter (Marcus, 1993), in which the Lagrangian invariant of potential 
vorticity assumes a step-like structure with several zones of good turbulent mixing, which 
corresponds to the zonal wind pattern close to the observations. 

In collisionless plasmas, the quasilinear plateau results from the turbulent mixing of the 
particle distribution function f(x, v), which is a Lagrangian invariant of the Vlasov equation. 
A more complicated example of quasilinear plateau with an inhomogeneous plasma density 
in an electrostatically plugged magnetic mirror was studied by Pastukhov (1980). 

Our specific interest lies in the turbulent transport in tokamaks. The tokamak density 
and temperature profiles have been experimentally found to be peaked at the axis and s a -  

ciently resilient to the attempts to alter the profiles by external perturbations. The empirical 
paradigm of the “profile consistency” (Coppi, 1980) is conspicuously similar to the exam- 
ple of isentropic atmosphere. The largescale trapped-ion modes (Tang and Rewoldt, 1992) 
can play the role of the convective turbulence. The concepts of turbulent diffusion, con- 
strained by adiabatic invariants and the Liouville theorem, and resulting inhomogeneous 
profiles have long been used for the Van Allen radiation belts in the Earth’s magnetosphere 
(Dungey, 1965; Birmingham et al., 1967). However, apart from a few notable exceptions, 
(Hasegawa, 1987; Kadomtsev, 1995), this connection has been largely missing from the fu- 
sion theory literature. Also, in a tokamak, the situation is more complicated because of the 
presence of both the poloidal and the toroidal magnetic fields and also due to the important 
role of collisions. 
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For plasma transport, the simplest prototypical model demonstrating the physics of tur- 
bulent equipartitions is the 2D E x B drift motion of charged particles in a steady inhomo- 
geneous magnetic field B = B,(z,y): 

(3) 
C v = --V+(z,y,t) x 8, 
B 

where +(x, y, t )  is the electrostatic potential, and the magnetic drift is neglected. The con- 
tinuity equation &n + V - (nv)  = 0 for the particle density n can be written 

C n (a, - BV+(x,y,t) x 2. v) - B = 0. (4) 

We thus find that the ratio n / B  is a Lagrangian invariant, and the E x B turbulent mixingof 
particles will result in the turbulent equipartition in which the particle density is proportional 
to the magnetic field. 

In the following sections, we gradually add to this simple picture several additional effects, 
such as magnetic drifts and particle collisions. As we do so, we introduce new concepts and 
techniques. 

3 

In 

Poincare invariant, frozen-in law, and collisionless 
“p-hydrodynamics” of guiding centers 

his section we review the relation between the relative integral Poincare invariant and 
the frozen-in law in a charged fluid and collisionless kinetics and re-establish the turbulent 
equipartition n(x, y) /B(x,  y) = const from a more general standpoint. 

The Lagrangian invariant n/B discussed in the previous section reminds the frozen-in 
law in ideal magnetohydrodynamics (MHD), where magnetic field is not fixed but allowed 
to evolve. Therefore, the result obtained by a calculation for a particular case could be 
a consequence of a more general conservation law. Let us briefly review the argument 
(Yankov, 199513) pertaining to the general Hamiltonian origin of the frozen-in laws in hydro- 
dynamics. 

Consider the particle motion with the Hamiltonian H(p, q, t )  defining the phase-space 
flow as follows: 

fi = -&H, = 8pH. (5) 

Since the flow (5) is incompressible in each phase plane (p i ,  q i ) ,  the area within any contour 
ri(t), moving with the flow in the plane, is conserved: 

I; = s6,, p;dqi = const. 
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If the contours y; ( t )  are the 2D projections of a single 6D contour y ( t )  moving with the flow 
(5), the summation of the constants (6) yields the integral Poincare invariant (Arnold, 1978): 

Consider a charged fluid in which one can introduce the local fluid momentum p(q) = 
mv+ (e/c)A, m and e being the mass and the charge of the fluid element and A the vector 
potential. The “one point-one momentum,’’ or p = p(q) approximation is the key property 
of usual hydrodynamics. In this case the Poincare invariant (7) reduces to the integration 
around a contour in the 3D space of q and can be rewritten by the Stokes lemma into a flux 
of the (generalized) vorticity 

SZ = V x p = V x mv+ (e/c)B (8) 

through the contour moving with the fluid: 

I = /p(q) - dq = / s t .  dS = const. (9) 

In a differential form, this frozen-in law has the familiar form (Buneman, 1952; Braginskii, 1965; 
Lynden-Bell, 1967; Sudan, 1979) 

indicating that the vorticity field SZ is frozen into the fluid and hence conserves topology. 
In the absence of the magnetic part of SZ, this is equivalent to the Kelvin theorem for ideal 
fluid; the opposite limit is the MHD freezing-in of the magnetic field lines into the fluid. 

The above derivation assumed that the motion of a fluid element is described by a Hamil- 
tonian equation. This is not always the case. Consider the momentum balance equation 

e VP + -v x B - -. 
C n 

If the pressure p is a function of the density n, then the pressure term can be represented as 
the gradient of enthalpy w = Jdp(n)/n and thus included in the electrostatic potential 4. 
Then the fluid element obeys the Hamilton equation with the Hamiltonian 

If the pressure is not a function of density, the pressure force contains a solenoidal com- 
ponent, which makes the fluid element motion not Hamiltonian in the usual sense. This also 
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breaks the Poincare invariant (7) and introduces the topology breaking term in the vorticity 
equation (10). Upon applying curl to Eq. (ll), we obtain instead of (10): 

1 a,s2 = v x (v x s2) - v- n x vp. (13) 

The topology breaking term Vn x Vp is important in both fluid and plasma dynamics. In 
fluids, it describes the vorticity generation by buoyancy. In plasmas, it is known as thermal 
EMF or battery effect, a mechanism of the magnetic field generation. 

In some cases, however, the loss of the topology and of Lagrangian invariants is only 
partial, and the invariants can be recovered in a new form, because of the flexibility offered 
by the Poincare invariant. For example, one can use a contour drawn on a surface of constant 
specific entropy s. Then, the solenoidal part of the pressure term in (ll), &p(n, s) Vs, is per- 
pendicular to the surface, and we have a “reduced” Hamiltonian motion of the fluid element 
on the surface s = const. The Poincare invariant (9) is newly recovered in which the vorticity 
component parallel to Vs only remains. For the case of the Lagrangian invariance of the 
entropy s (no viscous dissipation or heat conduction), this leads to the new Lagrangian in- 
variant L = s2 - V s / n ,  a statement known as the Ertel theorem (Landau and Lifshitz, 1987). 
A different example of non-trivial Lagrangian invariants is presented in Sec. 5. 

In a collisionless’Vlasov plasma, the Poincare invariant also exists, but it is not in general 
reducible to a 3D form, and the contour of the integration remains in 6D. A simplification 
(Yankov, 1995b) is achieved in the drift approximation by imposing the conservation of 
the adiabatic invariant p = mvL2/(2B) and ignoring three more variables: the gyro angle 
ctp and, in a 2D geometry, the coordinate z and the velocity 0,. Then the contour can 
be placed on the remaining (6 - 4) = 2 dimensional manifold at constant p, where both 
the magnetic flux J Sdsdy (the mechanical part of the vorticity 0 is small compared to its 
magnetic part) and the number of particles J f(s, y, p)dsdy inside the contour are conserved. 
Here f ( s ,y ,p)  denotes the guiding center density with the given p. We thus arrive to the 
more general Lagrangian invariant L,(s, y, t )  = f(s, y, p, t ) /B(z ,  y, t) ,  which is valid for any 
2D collisionless plasma motions conserving the adiabatic invariant p. The presence of the 
invariant L, makes the 2D drift; kinetics akin to a hydrodynamic description, which we call 
“p-hydrodynamics.” We thus infer the turbulent equipartition, in which L, is spatially 
uniform: 
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The integration over p results in the density profile 

as found in Sec. 2 for a cold plasma in a time-independent magnetic field. The thermal 
effects do not modify the turbulent equipartition, because the magnetic drifts occur along 
the lines B(z,y) = const and do thus not alter the distribution (15). 

Since during the relaxation process the density, the temperature, and the magnetic field 
are generally not functions of each other, a fluid equation like (13) would suggest that 
there is no frozen-in law, whereas we saw the existence of the Lagrangian invariant L = 
f (5, y, p, t ) / B ( z ,  y, t).  This apparent contradiction is resolved by noting that L is conserved 
along orbit moving with the guiding center velocity, which is different from the fluid velocity. 
In other words, the “topology breaking” term in (13) can be absorbed into the “topology 
preserving” term by renormalizing the velocity v. 

Since we now have a TEP prediction for the distribution function f, the profile of the 
perpendicular temperature 2 ’ ~  = ( p B )  is also readily available: 

TL(z, y, t --+ oo)/B(z, y) = const. (16) 

As no collisional coupling between the perpendicular and the parallel velocities is present in 
this model, the parallel temperature TI = (mv112/2) is a Lagrangian invariant by itself and 
hence assumes the uniform distribution 

T ~ ( z , y , t  + 00) = const. (17) 

In a collisional plasma, we expect a turbulent equipartition with an isotropic temperature 
showing an intermediate behavior between (16) and (17). The effect of collisions is addressed 
in the remaining sections. 

4 Drift kinetic equation 

In this section we establish the collisional drift kinetic equation to be used in Secs. 5 and 6. 
Ignoring. the gyro-angle degree of freedom, we use the drift kinetic equation for the 

distribution function f ( z ,  y, v11, p, t )  understood as the guiding center density in the space of 
(x, “11, p).  The collisionless motion in the phase space being given by 
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the drift kinetic equation takes the form: 

Here [A, B] = VA x VB B is the Jacobian in the (5,  y) plane and C( f )  is the collision 
operator for the guiding centers: 

where the coefficients of diffusion Dij and of dynamical friction U' are linear integral oper- 
ators on f (Hazeltine and Meiss, 1992). The collision operator turns to zero if and only if 
the distribution function is a Maxwellian: 

Strictly speaking, the equilibrium density and the temperature in (22) must be uniform 
for the condition C( f )  = 0 to hold exactly. However, the spatial component rx of the 
collisional flux signifying the classical collisional transport is much smaller than the velocity- 
space fluxes: 

where rclass N X2/Dc~asa is the classical diffusion time through the characteristic scale X 
with the diffusivity Dclass - p2v, p is the gyro radius and v the collision frequency for the 
given species. Therefore, on the time scales v-l << t << rdass7 we have a local Maxwellian 
with slowly varying n(x,t) and T(x , t ) .  In the next section assume that the electrostatic 
turbulence +(x , t )  acts on these time scales and thus governs the evolution of the plasma 
density and temperature. 

5 Plasma convection in the low-frequency turbulence: 
w << v 

In this section we derive the equations describing the slow drift convection of magnetized 
plasma and find a new kind of Lagrangian invariants, which are hybrids of the frozen-in 
quantity n/B and the entropy s. 

10 



To derive the equations for n and T ,  we use the particle and the energy conservation laws 
in the form 

where the classical collisional particle and energy fluxes rclass and qc~ass, respectively, are 
negligible with respect to their turbulent counterparts. 

The desired equations can be obtained by integrating Eq. (19), or 

over 1-1 and 2111, weighted by 1 and (pB + mv1l2/2). Using the fact the distribution function is 
very close to the local Maxwellian (22), so that 

we obtain: 

c 1  
afn + c [m, p ]  - [ z , n T ]  = 0, 

58fT+ 3 [q5,1nT] T3i2 - e CT [,,ln(nT7/2)] 1 = 0. 

Since the magnetic drift term in (27) is different for the electrons and the ions, the quasi- 
neutrality constraint ne = ni = n reads that the.total plasma pressure be constant on the 
lines of constant B: 

[n(Te + Ti), B] = 0. (29) 

For a self-consistent description of the turbulent potential, one needs to take into account 
the ion inertia (polarization drift), which will result in a small angle between the contours of 
plasma pressure and the magnetic field. In the following analysis, we assume that the electric 
field is small enough so that the inertial corrections are important only in the equation for 
4, but can be neglected in the evolution of n and T ,  as was done in Eqs. (27) and (28). 
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The realizability of this approximation is not clear; however, the results obtained below are 
compatible with the assumption. 

Upon introducing the fluid velocity, 

1 cnT ~ 

u(x, t )  = (-;v (4 + EB)  x 2) - ;V= x z = -2 B (V4+  v(nT)) en x 8, (30) 

consisting of the average guiding center drift velocity and the diamagnetic velocity, Eq. (27) 
and (28) can be rewritten in terms of the Lagrangian derivative dt = at + u - V. Introducing 
the quantities potentially suspicious for conservation, r = ln(n/B) and the entropy s = 
In( T3I2/n), we obtain: 

C 
dtr = -- [T,s], 

dts = ---[T,r]. 

eB 

5 c  
2 eB 

Since we stay in a highly collisional regime, the above equations should be directly deriv- 
able from the Braginskii (1965) fluid equations. By neglecting inertial terms in Braginskii’s 
momentum balance equation and viscous entropy production, in the limit of w,r >> 1, 
Eqs. (31) and (32) indeed follow. The only Braginskii transport term relevant in this limit 
is the skew thermal flux qAT = (5/2)(cnT/eB)VT x 2 resulting from the diamagnetic flow 
of particles. The formally much greater parallel flux vanishes in our geometry because of 
a/dz  = 0; however, if a finite parallel inhomogeneity scale LII were allowed, the parallel 
transport would be smaller than diamagnetic (skew) transport for LII >> wcrLl ,  where LI  
is the inhomogeneity scale in the (z,y) plane and r = l /v  is the collision time. The last 
applicability condition corresponds to the neglect of gyro viscosity in comparison with the 
retained diamagnetic fluxes; this results in L l  >> (p2)’l2, where p = ‘UT/W, is the gyroradius 
and I = VTT is the parallel mean free path. 

The meaning of Eq. (31) is the generation of the vorticity (or the frozen-in quantity r )  
by the non-parallel gradients of density and temperature. Due to the magnetic drifts, we no 
longer have the usual fluid picture of “one point-one velocity,” and in (32) there also appears 
the entropy generation term VT x VB. Thus the entropy s is no longer a Lagrangian 
invariant as it was in the atmosphere. However, the underlying kinetic frozen-in law (Sec. 3) 
indicates that the invariants are likely to be modified rather than destroyed. 

In the considered model, this is indeed the case. The symmetry of Eqs. (31) and (32) 
suggests the ansatz L = OLT + s: 

C 

12 
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By choosing CY = 5/(2a), or CY = zt@, we infer the new Lagrangian invariants 

*m 
L* = ztmr + s = In (7 ) (34) 

conserved along the new trajectories with the velocities 

These velocities are neither the guiding center nor the fluid velocities, but rather Riemann- 
like characteristics. 

Thus the turbulent relaxation can be described in terms of the mixing of the two Riemann- 
type invariants L*. The turbulent equipartition then corresponds to the spatially homoge- 
neous distribution of L*. In terms of the density and the temperature, this means 

Result (36) was presented in (Yankov, 1995a) without derivation. 
For the purpose of 2D gyro-advection, where the turbulence energy is drawn upon the 

same pool of the plasma thermal energy, a necessary (yet hardly sufficient) self-consistency 
condition implies that the mixing does not produce any new energy. Combining Eqs. (27) 

the energy balance is written 

Conditions like (29) and (38) will be automatically met for a self-consistent system involv- 
ing both the plasma and the turbulence dynamics. Since the relaxed state (36) is consistent 
with the quasineutrality condition (29) and the energy conservation (38), one can hope that 
the principal features of the plasma relaxation to the TEP distribution (36) will survive for 
a reasonably general self-consistent turbulent evolution. 

6 Plasma diffusion in the high-frequency turbulence: 
w >> v 

In this section we address the limit in which the effect of plasma turbulence can be described 
by the collisionless physics of the action-space diffusion, yet the collisions remain important 
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on a longer time scale. We derive equations for nonlocal transport, which have nontriv- 
ial steady-state solutions, but we are not able to identify new invariants whose turbulent 
equipartition corresponds to the found solutions. 

Now suppose the turbulence frequency is greater than the collision frequency. Then the 
instantaneous Maxwellian plasma response (27)-(28) to the turbulent mixing is no longer 
valid, and one needs another simplification. This one comes in the form of the action 
diffusion (Birmingham et al., 1967; Liu et al., 1971; Kaufman, 1972; Morozov et al., 1988; 
Isichenko et al., 1995), which is set on the time scale longer than the turbulence correla- 
tion time 1/w but shorter than the collision time l/v. 

By introducing the magnetic Clebsch variables a G (a,p) such that the Jacobian 
of the transformation is [a,p] = B and the new distribution function F ( a , p , p , q )  = 
f(z, y, p, q ) / B ,  we infer that the effect of the turbulence on the smoothed distribution func- 
tion F is pure diffusion in the a plane (Isichenko et al., 1995; Isichenko and Petviashvili, 1995): 

I 

Returning back to the Cartesian coordinates, Eq. (39) is written 

Here again we assume that the the turbulent transport time scale X2/DXX is much shorter 
than the classical transport time but much longer than the collision time. Then f is close 
to a local Maxwellian, and we can apply to Eq. (40) the same procedure that was used for 
Eq. (19). 

The particle and energy moments of Eq. (40), 

depend on assumptions about the diffusion tensor D = Dxx. In general, the diffusion tensor 
depends on both x and p, and the result of the integration is not explicit. The integrals can 
be solved by Taylor expanding the difisivity: 
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Then the transport equations can be written as 

atn = -VT, 

= -v*q+Q, 
3 
Ta'("T) 

where the particle flux I?, the energy flux q and the source Q are as follows: 

(44) 

(45) 

The quantity Q in (44) can be interpreted as the energy exchange between the particles 
and the turbulence; however, as there is very little energy in the turbulence itself, we have 
a self-consistency condition similar to (38) ,  

J Qdxdy = 0 (49) 

This energy exchange appears as a nonlocal energy transfer via turbulence by emission and 
absorption of waves (Mattor and Diamond, 1994). Note that the definitions of the energy 
flux q and the energy exchange Q are not unique, and one may use any gauge conserving 
the local rate of the energy change, Q - V - q .  Our choice of the gauge is such that Q = 0 
for a homogeneous magnetic field. 

a weak function of p, and only Do can be considered different from zero. Then we have 
In the limit when the E x B drift is much faster than the V B  drift, the diffisivity D is 

n r = - B D ~ . v -  B' 

In this limit, the TEP density distribution remains the same as in the case of a low- 
frequency turbulent convection: the particle flux (50) is zero for the profile n / B  = const. 

15 



The energy balance (44) implies that the temperature profile is determined non-locally by 
the condition 

Q-Vq=O (53) 

involving both the magnetic field B(x, y) and the turbulence distribution via &(x, y). 
The meaning of Eq. (53) can be two-fold. On the one hand, one can consider Eq. (53) as 

a condition on the turbulence profile for the given plasma profiles. It is, however, unlikely 
that an arbitrary temperature profile can be steadily sustained by means of the turbulence 
adjustment to the profiles of B and T ,  because the turbulence distribution is determined by 
the profiles via additional equations for the electric field, which we did not derive nor analyzed 
here. On the other hand, Eq. (53) can be interpreted as a condition for the temperature 
profile for the given or the temperature-profile-dependent turbulent diffusivity tensor Do. 

The self-consistent case is nonlinear and difficult to analyze, so we make the somewhat 
arbitrary assumption that the diffusivity is homogeneous and isotropic. Then the relaxed 
temperature profile satisfies 

3V2T - VT * V h  B - 2 T V 2 h  B = 0. (54) 

Due to the nonlocal energy transfer, the steady-state temperature profile T(s ,y)  is deter- 
mined by the magnetic field non-locally. A qualitative feeling of the effect of the magnetic 
geometry on the temperature can be obtained for the simplified case of an exponential mag- 
netic field profile, 1nB = kx, k = const. Then Eq. (54) has two solutions: T = const and 
T cx B1I3. The former seems to be an artifact of the exponential B profile, whereas the latter 
shows the adiabatic-type plasma heating with T cc n1I3; however, the rate of this heating 
is slower than in the turbulent equipartition (36) characteristic of the slow turbulent drift 
convection. 

Although the entropy is no longer a good invariant for the high-frequency turbulent 
mixing, and it is difficult to indicate which invariants support the steady-state temperature 
profile, these invariants may exist for various collisional regimes defining non-trivial turbulent 
equipartitions like (54). 

7 Conclusion 

The analysis of the behavior of complex systems, such as turbulent fluids and plasmas, re- 
mains a challenge for theory, and one needs to look for either global or local conservation 
laws which are of a great help in such an analysis. The presence of invariants other than 
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energy suggests that the system can relax to a state determined by the equipartition on the 
surface to which the system motion is constrained by these invariants (turbulent equiparti- 
tion). More specifically, the turbulent equipartition is determined by the spatially uniform 
distribution of the applicable Lagrangian invariants. In terms of various thermodynamic 
quantities, such as density, temperature, and equilibrium flow, the TEP states need not be 
uniform; in the discussed examples of atmosphere, Jovian winds, and magnetized plasmas, 
these quantities were found inhomogeneous, with the profiles sensitive to the external fields 
such as gravity, inhomogeneous Coriolis force, or inhomogeneous magnetic field. 

While being an effectively paradigm for several problems in geophysics and solar physics, 
the method of turbulent equipartition has only recently appeared in the context magnetic 
fusion, where the inhomogeneous density and temperature profiles in the absence of sufficient 
particle and energy sources has long been empirically described in terms of pinch effect and 
profile consistency. The pinch effect in tokamak is associated with the trapped particles 
strongly affected by both plasma turbulence and collisions in a regime with no apparent 
Lagrangian invariants, a situation similar to the one discussed in Sec. 6. This makes the 
problem sufficiently complicated, and these authors do not agree on some theory details of the 
of tokamak pinch effect (Yankov, 1994a; Isichenko et al., 1995; Nycander and Yankov, 1995), 
although the importance of the physics of turbulent equipartitions is quite clear. 

In this work, we have specialized in the simpler example of 2D turbulent plasmas, which 
demonstrated the TEP density distribution n cx B(z,y), due to the conservation of the 
frozen-in invariant(s) in various regimes of collisionality. The question of the turbulent 
equipartition of plasma temperature is related to the second Lagrangian invariant identical 
to or derived from the specific entropy s. The existence of such invariants was shown for 
the case collisionless plasma and in the regime of very frequent collisions (higher than the 
turbulence frequency). This resulted in the TEP temperature profiles 2'1 cx B(s,y) and 
T cx B2/3(z,y), respectively. In the intermediate regime, when the collision frequency is 
smaller than the turbulence frequency, a kinetic formalism was developed which predicted 
less universal steady-state temperature profiles depending on the magnetic field non-locally. 
It is not clear whether or not this result represents a true turbulent equipartition supported by 
underlying local invariants. These invariants could exist, and the formalism of the Poincare 
invariant and the associated kinetic frozen-in law may prove useful in the search for applicable 
constraints for this and more complicated systems. 
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