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We present a brief review of recent experimental and theoretical time resolved studies of the evolution 

of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg 

states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. 

The properties of the wavepackets are probed using a second HCP that is applied following a variable 

time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions. 
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I. INTRODUCTION 

The interest in creating coherent atomic states dates back to early attempts by Schrodinger [l] to 

construct a non-dispersive minimum uncertainty wavepacket similar to coherent oscillator eigenstates. 

The latter follow Newton’s laws of classical mechanics while the width in position and momentum remains 

at the minimum consistent with the Heisenberg uncertainty principle. The early attempts failed for 

electronic states in atoms because of the non-equidistant spacing of energy levels which leads to rapid 

dephasing. Subsequently, the production a of more general class of wavepackets have been studied which 

consist of a dispersive coherent superposition of atomic states and do not satisfy the minimum uncertainty 

condition. Examples of signatures of coherences associated with the electronic time evolution in atomic 

collisions include, from very old ones to very recent ones: Stiickelberg oscillations [2], Stark beats [3], and 

swapping oscillations [4]. Only in recent years it has become possible to generate transient quasi-classical 

wavepackets which remain well localized for a long period of time. This has been accomplished by using 

Rydberg states with large principal quantum numbers, n, for which the deviation from equidistant levels 

decreases as n-l and for which the wavepacket evolution resembles the one for the harmonic oscillator. 

These so-called Rydberg wavepackets are nonstationary states consisting of a coherent superposition of 

nearby atomic eigenstates. 

In the last decade there has been increasing interest in the timwesohed study of atomic wavepackets 

by means of newly developed short electromagnetic pulses. They frequently display novel dynamical 

behavior that mimics the classical motion of the excited electron thereby providing a bridge between 

quantum and classical physics. Rydberg wavepackets were first created by photoexcitation of ground- 

state atoms using ultrashort laser pulses whose bandwidth exceeded the level spacing in the final Rydberg 

manifold [5-81. Since photon absorption occurs when the electron is close to the core ion, the wavepacket 

is initially strongly localized in the vicinity of the core. As time advances, the wavepacket expands and 

contracts radially very much like a classical particle in a Kepler orbit. This behavior is then monitored 

using a second ultrafast probe pulse which ionizes the atom. 

2 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or implied, or assumes any legal liabili- 
ty or responsibility for the accuracy, completeness, or usefulness of any  information, appa- 
ratus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessar- 
ily state or reflect those of the United States Government or any agency thereof. 



Portions of this documat may be illegible 
in electronic image products. fmaees are 
produced from the best avaiiable original 
document. 



Here we discuss a more recent approach to the generation of wavepackets starting with a stationary 

Rydberg atom and using the so-called "half-cycle pulses'' (HCPs) [9-201. In contrast to short laser pulses 

which extend over several optical cycles, HCPs are characterized by a strong unidirectional electric field 

F ( t )  confined to a short time interval, Tp, corresponding to only a fraction of a cycle. These characteristics 

make HCPs very similar to the transverse electric field pulse generated by the passing-by projectile in a 

fast ion-atom collision. Thus, the study of the dynamics of Rydberg atoms subject to HCPs provides the 

building block of problems of practical importance such us the transport of fast ions and atoms through 

solids [21]. Recent experiments have reached the regime in which the duration of the pulses, Tp, is shorter 

than the classical electron orbital period, Tn, = 27rn;, associated with the stationary initial state with 

principal quantum number ni (atomic units are used throughout). This has been accomplished using 

subpicosecond pulses and moderately low ni - 30 Rydberg levels [9] or, alternatively, using nanosecond 

pulses and very high ni - 400 states [lo]. In this work we focus on the latter. 

The effect of a HCP on an atom differs significantly from that generated by an ultrashort laser pulse 

because the integral of the applied electric field is finite. In the limit of ultrashort HCPs, TO = Tp/Tn, << 1, 

the HCP simply delivers a "kick" or impulsive momentum transfer 

Do 

A$= -Lm ?(t)  dt 

to the electron [ll]. This is, in fact, the result of the sudden or impulse approximation, well known in 

atomic collisions. The momentum transfer leads directly to excitation to higher lying states and can, 

for sufficiently strong pulses, even induce ionization (i.e. for momentum transfers of the order of the 

orbital velocity of the electron in the atom: Ap 2 pn, = n;'). In the ultrashort pulse limit, the energy 

transferred to a classical electron with momentum p" is given by 

n 

Depending on the projection of the electronic momentumin the direction of the HCP, the energy transfer 
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can be positive or negative and can lead to ionization. Therefore, HCPs provide a tool to study the 

timeevolution of the momentum of the electron. 

11. PRODUCING AND PROBING WAVEPACKETS 

Consider an electron whose dynamics is governed by a timeindependent Hamiltonian Ho with or- 

thonornal eigenvectors and eigenenergies Ixa) and ea, respectively. The wavefunction of the electron 

evolves in time according to 

a 

which is a "fully coherent') wavepacket (i.e. a pure state at each instant of time). The mean value of an 

observable 0 is given by 

and oscillates in time with frequencies w a , ~  = ea - €0, usually referred to as "quantum beats". 

A wavepacket can be created through a time-dependent perturbation which acts as a "pump". Subse- 

quently, a quantum beating frequency w k i  can be observed using another time-dependent perturbation 

(a "probe") with a time duration Tp such that Tp 5 (2n/w,,p). Figure 1 shows two possible schemes for 

producing and probing wavepackets from an initially stationary Rydberg state using a timedependent 

unidirectional electric field F(t). The field profiles in the figure are actual experimental data. In the 

scheme of Fig. l(a), both the pump and the probe are short HCPs. The time evolution of the wavepacket 

can be studied by analyzing the survival probability of Rydberg atoms as a function of the time delay 

between the two HCPs. In this case, Ho = Hat (Le. the free atomic Hamiltonian). 

The pump in Fig. l(b) is given by a "field step') which, in fact, corresponds to the rapid rise of a very 
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long "rectangular" HCP. This field step establishes a "DC" field, Foe, such that Ho corresponds here 

to the Hamiltonian of an atom in a static electric field and, therefore, inducing Stark beats. The time 

evolution of such wavepacket can be studied by superposing a very short HCP after a given time delay. 

In the following subsections we analyze in more detail the dynamics of the atoms for the two schemes of 

Figure 1. 

A. Experimental setup 

Our experimental setup has been briefly described elsewhere [17,10]. The initial stationary Rydberg 

atoms are created by photoexciting potassium atoms using the focussed output of an intracavity-doubled 

CR699-21 dye laser. Excitation occurs near the center of an interaction region defined by three pairs 

of planar electrodes that are biased to locally reduce stray electric fields to 5 50,uVcm-I. To minimize 

motional electric fields, the magnetic field is reduced to 5 20 mG by use of p-metal shields. Measurements 

are conducted in a pulsed mode. The laser output is formed into a train of pulses of N 4ps duration with 

a pulse repetition frequency of - 10 kHz. (The probability that a Rydberg atom is formed during any 

pulse is small, ;S 0.01, and data are accumulated following many laser pulses.). 

A few hundred ns after the end of the laser pulse the first RCP is applied. The HCPs in the scheme 

of Fig. l(a) are created by applying voltage pulses to a circular copper disc. The pulses were produced 

using an Avtech model AVI - V pulse generator. The output of the generator is split into two pulses 

of approximately equal amplitude by a matched resistive power divider. One of the resulting pulses 

is delayed using a length of RG 402 cable and9he two pulses are then recombined using a matched 

power combiner and transported to the HCP electrode by rigjd coaxial cable. The individual pulses 

can be attenuated and/or inverted by connecting fixed broadband attenuators and/or an inverting pulse 

transformer in series. Since we are able to measure the shape and absolute fields of our pulses, they can 

be used in the simulations without involving any adjustable parameters. The number and excited-state 

distribution of Rydberg atoms remaining in the excitation region is determined, after a time delay of 6 
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B. Momentum wavepackets 

Consider the application of an ultrashort HCP (e.g. the pump in Fig. l(a)) to a stationary Rydberg 

state loj) = Injljmj) with well defined spherical quantum numbers nj, l i ,  mi. The resulting coherent 

wavefunction is 

,us, by selective field ionization (SFI). Measurements in which no HCPs are applied are interspersed at 

routine intervals during data acquisition to monitor the number of Rydberg atoms initially produced by 

the laser. The Rydberg atom survival probability is obtained by comparing the Rydberg atom signals 

observed with and without HCPs present. 

The "rectangular" voltage pulse providing the field step in Fig. l(a) has a duration of several microsec- 

onds and a rise time adjustable down to - 10 ns. Because the pulse must be AC coupled (to remove 

DC offsets present in the output of the pulse generator), its amplitude (and that of the applied field) 

decreases by - 10% over a typical measurement period of 500 ns. The probe HCP is superposed on 

the "DC" pulse using a power combiner. Possible systematic errors associated with uncertainties in the 

applied field amplitudes are estimated to be 5 &lo%. 

and corresponds to a Galilei boosted initial state shifted in momentum space in AC. The corresponding 

expectation values of the energy and momentum are 
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where Hat is the atomic Hamiltonian and r’ and p’ are the electron position and momentum operators, 

respectively. Note that (nZmlflnZm) = 0 and, therefore, (E)t=o = en, + ( A P ) ~ / ~  where En, is the energy 

of the initial Rydberg state. Classically, the application of a HCP to an electron with momentum $ 

and energy E,, changes its energy according to Eq. 2. The classical average of A E  over an ensemble of 

phase-space points representing the initial quantum state 14j) agrees with the quantum mechanical result 

A E =  ( ~ % p ) ~ / 2 .  

The electronic wavefunction after the kick can be expanded in terms of field free eigenstates as 

and encompasses a broad distribution of angular momentum states, including high-1 states. We choose a 

quantization z-axis in the direction of the HCP and, therefore, m is a constant of the motion. 

Figure 2 displays the excitation function (or energy distribution) after the first HCP for different 

Rydberg states with nj = 417 and well defined angular momenta. Calculations employing the classical 

trajectory Monte Carlo (CTMC) approach are included for both an ultrashort pulse (Tp/Tn, = 0) and 

a pulse of - 2 11s duration (Tp/Tn, = 0.18) as used in the experiments. The HCP leads to population 

of a range of higher n states centered around nf = ,/- N 493 with a width An 2: 20. Since 

1 << An << nj, the convergence of the quantum evolution (Eq. 8) to the classical limit can be treated 

in detail. The peak in the energy distribution is completely equivalent to the well-known Bethe ridge in 

atomic collision physics [22]. Remarkably, this structure also exists in the density of bound states after 

a short HCP. The ”period” of a Kepler orbit with the peak energy is given by 

0% 

. 

Tnt N Tn, [l - ( A P ~ ) ~ ] - ~ ’ ~  

where Ap-, = (Ap/pni) = niAp. The width of the Bethe ridge is determined by the linear term F -  Ap in 

7 



Eq. 2 and depends on the quantum number (and the geometry) of the initial state. This width determines 

the width An of the " wavepacket". 

The evolution of such a classical wavepacket, i.e. of the phase space density which initially mimics a 

quantum circular state (ni = 417, Z j  = mi = 416) is illustrated in Fig. 3. At t = 0 the wavepacket is 

well localized in the (p,  z )  plane ( p  = d m )  and the HCP delivers a kick towards the positive z axis. 

For t > 0 the wavepacket approximately follows the trajectory of an electron initially in a circular orbit 

contained in the (xly) plane. The spreading of the wavepacket originates in the energy distribution (Fig. 

2) which, in turn, results from the initial distribution of eccentricities and orientations used to mimic the 

initial quantum state. At t = Tn,/2 the wavepacket is moving towards the z < 0 direction ( p ,  < 0). If a 

second HCP with Apt > 0 is applied at this time, the linear Ap contribution to the energy transfer (Eq. 

2) tends to decrease the final binding energy and stabilizes the atom. Similarly, for a second HCP with 

Ap, > 0 applied at  t = Tn,, the two sequential momentum transfers Ap add up leading to an increase of 

energy and an enhanced ionization probability. 

A comparison of the calculated survival probability of K(417p) as a function of the delay time between 

two HCPs with our experimental data is shown in Fig. 4. The survival probability oscillates as a function 

of the delay in between the two HCPs reflecting the time evolution of the wavepacket which, in turn, 

follows the time development of the expectation value of the z component, p , ,  of momentum of the 

electron after the first HCP (see ( p , )  on the right hand side axis). Fig. 4 contains data for the probe 

HCP parallel and antiparallel to the pump HCP. The oscillations in the two data sets are phase shifted 

by which is an obvious consequence of the quasi-classical "orbital" motion of the wavepacket. The 

amplitude of the oscillation decreases steadily with time, however, because a distribution of final states is 

excited that evolve differently in time leading to dephasing. The experimental data for both configurations 

agree well with the calculations. Furthermore, calculations for potassium and for hydrogen are found to 

be indistinguishable. This is due to the fact that the electron in the initial Rydberg state is most of the 

time away from the K+ core and that after the first HCP large angular momentum states are populated. 
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The very good agreement between theory and experiment demonstrates that classical dynamics can 

reproduce the ”quantum beats” observed in the data and moreover that the classical evolution mimics 

the quantum evolution. On general grounds [23], one expects the quantum and the classical evolution 

to depart from each other at a characteristic “break” time t ,  2: 27r/Ac, where Ac is the smallest level 

spacing. For Rydberg states, the level spacing cn+l - en 2: n’3 and t ,  corresponds to the classical Kepler 

orbital period Tn = 27rn3. Remarkably, classical-quantum correspondence extends for times well beyond 

t,. This extended classical-quantum correspondence can be traced to the particular properties of the 

Coulomb-Kepler problem and of the HCP-generated wavepackets. The energy differences in the Rydberg 

series determining quantum beats are given to second order in 6n/nj  by 

where lbnl 5 A n / 2 .  To leading order, the spectrum compares locally to that of a harmonic quantum 

oscillator, with wn, = 2n/Tn, being the classical orbital frequency. For a harmonic oscillator, quantum 

and classical expectation values agree [24] which explains the presence in the classical simulation of beats 

with the mean orbital period. The damping of the beats is caused by the “anharmonic” correction. 

Dephasing (by T) or damping occurs over a time N 4nj/3(An)’Tnj N 2Tn, in agreement with 

the observations. The fact that classical dynamics can accurately reproduce even the dephasing results 

because, when A n  is large, the approximation of a large but discrete set by a continuous distribution is 

valid. Classical dynamics will fail, however, at times approaching the revival time t R  of the wavepacket. 

Complete revival requires t R  2~ ( n f / 3 ) T n ,  [5] which, for the values of n f  of interest here, is quite long 

and out of reach of the experiment. 

h 

Fig. 5 shows expectation values (p , )  calculated using both classical and quantum methods following 

application of an ultrashort pulse providing a momentum transfer Ap/pn,  = 0.53 to hydrogen atoms 

initially in the ni =loo, Zj = 0 state . nj M 100 (nr 2: 118) is currently our upper limit for which the 
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necessary matrix elements (Eq. 8) can be computed with sufficient accuracy. The width of the band 

populated by the HCP is An = 16. The classical and quantum results agree up to N 6Tn,, Le. six times 

the quantum breaktime t , .  Classical-quantum correspondence breaks down completely for longer times 

where revivals occur which are absent in classical dynamics. Such revivals have been observed in HCP 

studies at ni - 25 [IS]. Revival of the wavepacket can be treated semiclassically [5].  

C. Stark wavepackets 

Consider now the application of a field "step" (e.g. the pump in Fig. l(b)) on a stationary Rydberg 

state. If the rise time of the "DC" pulse is very short, I\E(O)) N l#i) in Eq. 3, and ea and Ixa) are the 

eigenenergies and eigenvectors of HO = Hat + ZFDC. In this case, however, only states with a narrow 

distribution of n values (An 5 4) centered at n 2: ni contribute significantly to the summation in Eq. 3. 

Expressed in parabolic quantum numbers, the eigenenergies for hydrogen in a DC field are given to first 

order by 

The relevant energy differences (beating frequencies) governing the time development of the wavepacket 

are approximately given by 

A€ 2: w,,& + w s k  ; k = 0,1 ,...,( ni- Irnl - 1) 

The constant energy differences are reminiscent of two harmonic oscillators, one with the classical orbital 

frequency, wort, = n;', and one with the so called Stark frequency, ws = 3 n i F ~ c .  Classically, a simple 

quasiperiodic evolution of the wavepacket with frequency ws is expected to occur corresponding to the 

precession of the the pseudospins 
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with respect to the electric field 1251. In this equation L' is the angular momentum and A' = p'x E- (.'/T) is 

the Runge-Lenz vector, which points towards the perihelion of a Kepler orbit. To first order, &,2 precede 

in time according to 

3 

/ b c %  

The corresponding geometrical picture of the time evolution 'is illustrated in Figure 6. The precession 
J 

of the pseudospins leads to a periodic fluctuation of L' anh'x as shown in Fig. 6(b) (i.e. a periodic 

fluctuation of the eccentricity and the orientation of the electronic orbit, cos(0) = A,/A = Const./A). 

At t = 0 the vectors and ;2 lie in the y-z plane pointing in opposite directions (jl, > 0, j 2 ,  < 0), 

IzI is at its minimum and IAl is at its maximum (i.e. A2 +, qlHatlL2 = 1). After half a Stark period, 

t = Ts/2 = T / W S ,  the pseudospins lie in the x-z plane with ne ative projections along the x-axis, and ILI 

,acquires its maximum value. At t = Ts = 2a/ws, and 1 2  li5)in the y-z again but with jlY < 0, j Z y  > 0, 

and reaches its second minimum. The quantum evolution of Rydberg atoms in DC fields follows the 

j ? 

8 

- t  

4 

' 9  

same periodic pattern [18]. s I 
' I  

For potassium and the present DC field strengths Eq. 12 bieaks down because many Stark manifolds 

overlap and mixing occurs. In this regime, the Stark map for potassium is characterized by a large number 
" :x 

of avoided crossings with a nearest neighbor energy level statikcs close to a chaotic Wigner distribution. 

It is therefore not obvious apriori that any simple beat pattern would emerge. We have found, however, 

that in the high-a limit the weighted quantum statistical distribution of eigenenergies in Eq. 3 is such 

that a single dominant Stark dominates, closely Pesembling the result for hydrogen [19]. 

k; 

;-" 

1 

Data obtained for K(388p) with a "DC" field of N 5 rnVcrn-l and 10 ns rise time are presented 

in Fig. 7, which shows the survival probability as a function of the time delay between application of 

the "DC" and HCP pulses for different HCP amplitudes apd polarities. Sizable periodic oscillations 

(quantum beats) in the survival probability are evident whiqh, measurements show, continue for at least 

1.5 ps. Figure 7 includes results obtained with a "DC" field of N 10 rnVcm-l which demonstrate that 

_ - *  

'2 

I 
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the quantum beat frequency is proportional to the magnitude of the "DC" field. Results of CTMC 

calculations reproduce well the observed beats. The small differences in magnitude and period can be 

attributed to the uncertainty inherent in determining the valueof the "DC" and HCP fields. The classical 

survival probability clearly exhibits the two quite dissimilar Stark, ws, and orbital, wotb, frequencies. For 

ni - 388 and FOC = 5(10) mVcm-l, the Stark period Ts - 134(67) ns, is close to the values measured 

experimentally. The experimental data contain only a hint OT the high frequency fluctuations associated 

with watt,, possibly as a result of small field inhomogeneities in the experimental region. 

The positions of the maxima and minima of the survival probability depend on the size and the polarity 

of the HCP. Using Eq. 2, this can be explained in terms of the time evolution of the E component, p ,  , of 

the momentum of the excited electron. Figure 8 shows the calculated distribution of the scaled electron 

momentum, nip,, as a function of time following the application of the "DC" pulse. At early times, 

the distribution is sharply peaked at small negative values dp,. As time advances, the distribution 

broadens. The peak moves toward more negative values and decreases in size before finally disappearing. 

A small peak then appears in the distribution at positive values ofp, which grows and moves toward 

pz = 0 as the distribution narrows. Ultimately the peak c r m  to negative values of p z ,  and the whole 

cycle repeats. If a short HCP is used to probe the complex dynamics of the Stark wavepacket, only 

electrons with A E  > -En, become ionized. Using Eq. 2, this impliesp,Ap, > --En, - ( ( A P ~ ) ~ / ~ )  which 

is equivalent to making a cut of the momentum distribution in Figure 8. The result of this cut depends 

on the,strength and the direction of the HCP through the linear term in Ap,. 

111. CONCLUSIONS 

In summary, the present work demonstrates that very-high-n Rydberg wavepackets can be created using 

HCPs. The motion of the wavepackets is quasiperiodic with periods that can be directly measured using a 

probe HCP. The resulting survival probability of atoms exhibib pronounced oscillations (quantum beats) 

that persist for a long period of time. The very good agreement between classical results and experiment 
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demonstrates that, for the range of times studied experimentally, classical-quantum correspondence holds. 

This is a consequence of the fact that in the limit of large principal quantum numbers energy levels become 

nearly equidistant. 

Since the first order Stark energy levels are equidistant, very little dephasing is observed in the Stark 

beats. Only a very small amount of dephasing has been found to occur due the finite size of the K +  core. 

This suggests that it might be possible to observe external damping induced by dephasing in coIIisions 

with a target gas. If so, such studies would provide a new tool for investigating elastic electron-molecule 

scattering at electron energies down to a few microelectronvolts. 
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I Figure Captions 

Fig. 1. Experimental pulse profiles used to produce and probe Rydberg wavepackets: (a) the pump 

and the probe are given by short HCPs separated by a time delay; (b) the pump and the probe are 

given by a field step and a short HCP, respectively. 

Fig. 2. Probability density to find the electron with a given binding energy following the application 

of: an ustrashort HCP with Apo = Ap/p,, = 0.53 to H(417p) and H(nj = 417, Z i  = mi = 416) and 

a pulse of 2 ns duration (Tp/T,, = 0.18) on K(417p). The energy axis is scaled to the energy of the 

initial state, i.e., EO = E/le,,I. 

Fig. 3. Time evolution of a circular state, H(ni = 417,Ii = mi = 416), which at t = 0 is subject to an 

ultrashort HCP with Apo = 0.53. The dots represent a scatter plot of the probability density of 

the wavepacket. The thick solid line is the trajectory followed by an electron in a perfectly circular 

orbit initially in the (x,y) plane. The cylindrical coordinates of the electron are scaled to the initial 

orbital radius: i.e., zo = z / n f ,  PO = p/nf 

Fig. 4. Rydberg atom survival probability (left scale) following application of two HCPs in (a) the 

same and (b) opposite senses to K(417p) atoms as a function of time delay. symbols, experimental 

data; solid lines, results of CTMC calculations. Multiples of T,, are marked by arrows. The insets 

show the pulse profiles. dash line (right scale), time development of the scaled expectation value 

(pz)/pn. = ni(pz) following application of the first HCP. From Ref. [20] 

Fig. 5. Short (a) and long (b) time development (expressed in units of T,,) of the scaled expectation 

value (pz)/pn, = ni(pz) following application of a HCP to hydrogen atoms in the 100s state. The 

scaled momentum transfer Ap/pn, = 0.53. F'rom Ref. [20]. 

Fig. 6. Stark precesion of (a) the classical pseudospins & and (b) the Coulomb orbit about the electric 

field. 

Fig. 7. Rydberg atom survival probability as a function of time delay between application of the "DC" 
and half-cycle pulses for "DC" fields with ClO ns rise time and amplitudes of a), b) 5mVcrn-I and 

c) 10 rnVc7n-l. In a) the "DC and HCP fields are in the samedirection, in b), c) opposite directions. 

solid circles, open circles, open triangles, experimental data obtained with HCP amplitudes of - 80, - 170, and - 290 rnVcm-' respectively: solid lines , results of the CTMC calculations. From Ref. 

1191. 

Fig. 8. Time evolution of the probability density of the z component, p,, of the electron momentum, 

plotted its nipz in a field step of (5mV/cm). From Ref. 1191. 
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