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Abstract 

A numerical algorithm to study the nonlinear, resonant interaction of fast parti- 
cles with AlfvBn waves in tokamak geometry has been developed. The scope of the 
formalism is wide enough to describe the nonlinear evolution of fishbone modes, 
toroidicity-induced AlfvBn eigenmodes and ellipticity-induced AlfvBn eigenmodes, 
driven by both passing and trapped fast ions. When the instability is sufficiently 
weak, it is known that the wave-particle trapping nonlinearity will lead to mode 
saturation before wave-wave nonlinearities are appreciable. The spectrum of linear 
modes can thus be calculated using a magnetohydrodynamic normal-mode code, 
then nonlinearly evolved in time in an efficient way according to a two-time-scale 
Lagrangian dynamical wave model. The fast particle kinetic equation, including 
the effect of orbit nonlinearity arising from the mode perturbation, is simultane- 
ously solved for the deviation, Sf = f - fo, from an initial analytic distribution 
fo. High statistical resolution allows linear growth rates, frequency shifts, resonance 
broadening effects, and nonlinear saturation to be calculated quickly and precisely. 
The results have been applied to an ITER instability scenario. Results show that 
weakly-damped core-localized modes alone cause negligible alpha transport in ITER- 
like plasmas - even with growth rates one order of magnitude higher than expected 
values. However, the possibility of significant transport in reactor-type plasmas due 
to weakly unstable global modes remains an open question. 

. 

. 

tPresent address: Institute for Fusion Studies, The University of Texas at Austin, Austin, T X  
78712, USA 

*Permanent address: Associa@o EURATOM/IST, Av Rovisco Pais 1096 Lisbon, Portugal 

17 December 1996 



I. Introduction 

A critical requirement for the design of a steady-state fusion reactor is good con- 
finement of the fusion-product alpha particles, with a substantial transfer of the 
alpha energy back into the bulk plasma. The design specification for the proposed 
ITER device [l] requires that the alpha particle loss be less than 5% of the total 
alpha particle energy. This is equivalent to an energy loss rate of less than 20 MW. It 
is already known that some fraction of the alpha particles will be lost due to toroidal 
field ripple, but for nominal ITER plasma currents and expected edge temperatures 
of 3-6 keV, the loss fraction has been estimated to be quite small (less than 1%). 
However, it was pointed out more than two decades ago [2-31 that the substantial 
free energy of the alpha particle population represents a mechanism for the excita- 
tion of Alfvkn waves. Various types of discrete Alfv6n eigenmodes (AE) have been ' 
predicted to exist in tokamak plasmas - for example, the global (GAE), toroidal 
(TAE), kinetic (KTAE), elliptic (EAE), noncircular (NAE) and beta (BAE) Alfvh 
eigenmodes. Most of the experimental and analytical effort has been devoted to the 
study of TAE modes, which have been clearly observed in a variety of experiments, 
either passively driven by neutral beam injection (NBI) [4-53 and ion-cyclotron- 
resonance heating (ICRH) [6], or actively excited by external antennae [7]. More 
recently, alpha-driven TAE activity has been observed in burning D-T plasmas [8]. 

The fear is that if these modes are driven unstable by resonant interaction with 
alpha particles in a reactor-type plasma, and if nonlinear saturation of the unstable 
spectrum loccurs at a sufficiently high amplitude, anomalous transport and/or loss 
resulting from the stochastic motion of the alphas may result. The first step in the 
systematic analysis of the alpha transport scenario has been the study of the linear 
aspects 'of the problem; namely, eigenmode structures and damping rates, in both 
large-aspect-ratio and general toroidal geometry. Further, perturbative and semi- 
perturbative calculations of the background damping due to thermal electrons and 
ions have been accomplished both analytically and numerically [9-121. It has been 
accepted for some time that for a large, high-field machine the range of toroidal 
mode numbers, n, for which TAEs are likely to be unstable can be very large. In 
particular, simulations using a linear boundary layer model [13] showed that for 
ITER-like plasmas [14], this range could be as large as 10 5 n 5 50 (cf, Fig. 1). 
The calculation of the linear mode structure as .well as the nonlinear evolution of such' 
a broad spectrum of high-n modes turns out, not surprisingly, to be substantially 
more complex than for a few low-n modes. 

In the present paper we summarize the underlying physical principles, as well as 
various technical aspects, of a new numerical technique to study the nonlinear phase 
of Alfvh wave evolution in tokamaks - including self-consistent anomalous fast-ion 
transport. Subsequently, we apply this model to an ignited ITER-like plasma. 

We emphasize that the approach is based largely on the methodology of Refs. 15- 
17, for which the relevant nonlinearity is the trapping of resonant particles in the 
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finite-amplitude Alfvkn wave field. This assumption has been discussed exhaustively 
in previous literature [18-201 for the TAE problem, and has also been validated 
by full gyro-kinetic-MHD hybrid simulations [20]. A necessary condition for the 
predominance of the wave-particle nonlinearity is a small fractional growth- rate 

Indeed, if this condition is satisfied, the wave will grow to a 
saturated state with negligibly small wave-wave nonlinearity. It is precisely this sort 
of weakly-unstable regime that appears to be characteristic of AE modes in ITER- 
like plasmas. The linearity of the background plasma response enables a substantial 
reduction of computational complexity, since the fluid modes can be taken directly 
from a h e a r  eigenvalue code such as CASTOR-CR [21]. . 

, (roughly yr;/w - 

As the fast particle pressure grows beyond a critical value, non-perturbative un- 
stable modes can exist [22]. These so-called energetic particle modes (EPM) are not 
considered in the present work, although it is known that they can have a strong 
scaling of y~ with the fast ion pressure, and thus a potentially large saturated am- 
plitude. 

An overriding complication of the linear theory is the strong sensitivity of the 
mode structure and damping rate to the plasma equilibrium - and in particular 
to the safety factor. This complexity will dictate our simulation methodology, as 
described in the sections which follow. 
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11. Fast Particle Motion 

A. Guiding center Hamiltonian’ 

Fast ion trajectories in an axisymmetric toroidal plasma can be approximated by 
the gyro-averaged motion of the particle guiding center so long as the gyro-radius, 
pf ,  is sufficiently small and the perturbing wave frequency, w ,  is low: 

- 4  

1 dB 
- -pj  << 1 and w <w,i 
B dr 

In Eq. (l), B is the magnetic field amplitude, r is the minor radius, and w,i is the 
ion cyclotron frequency. When the preceding conditions are satisfied, the resonant 
interaction between waves and particles is dominated by the transit motion of the 
guiding center in the TAE case, or the toroidal drift motion of the banana/potato 
center in the fishbone case. 

, 

The Hamiltonian for np guiding-center particles (index j) moving in a spectrum 
of n, fixed-amplitude Alfv6n waves (index IC) is 

where e and m are the particle charge and mass, respectively, and p j  = vZj/2Bj 
is the constant magnetic moment of the j t h  particle. Technically, we are interested 
in the flow of the fast particle canonical phase space, rather than the motion of 
individual particles themselves, so that we hereafter refer to the index j as the label 
of a “marker” in phase-space. While the two pictures are essentially equivalent in 
regards to the path traced by the j t h  phase point, the effective number of particles 
associated with each marker may change with time. 

B. Magnetic field representation 

The simple appearance of Eq. (2 )  is deceptive, in fact, as it contains no information 
about the equilibrium magnetic field structure, and makes no explicit reference to 
canonical variables. To make the Hamiltonian formulation explicit, we must first 
decide on an appropriate set of coordinates for the magnetic field representation. 

For an axisymmetric toroidal equilibrium, we begin with the standard form 
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where $ is the poloidal flux and < is the (physical) toroidal angle. Following the 
method presented in Ref. 23, to which the reader is referred for a complete derivation, 
we introduce the new (nonphysical) toroidal angle 

with 6 an undetermined angle in the poloidal cross-sedtion. The goal of the trans- 
formation defined by Eq. (4) is to choose the function v so that the field lines in the 
(e, cp)-plane are straight. With v suitably chosen [23] the magnetic field can then be 
written in the geometrically intuitive form 

B=V(cp-qB)xV$,  ( 5 )  

with the safety factor, 

constant on a magnetic 
remains, in choosing the 
to choose the Jacobian, 

surface, and x($) the toroidal flux. The freedom whicli 
poloidal angle B can be equivalently viewed as a freedom 
3, connecting toroidal coordinates to real-space variables. 

Note that while 3 depends on the choice of poloidal angle, it is independent of how 
we shift the toroidal angle (cf, Eq. (4)): 

It is shown in Ref. 23 that if the quantity 3B2 is chosen as a flux function then the 
covariant representation of the magnetic field becomes especially simple. Indeed, B 
takes the form 

with I ($)  independent of 8 for the specific choice 

Despite the appearance of the nonzero radial component of V$ in Eq. (8), it 
is clear from Eq. ( 5 )  that the magnetic field satisifes the obvious requirement that 
B.V$ = 0. This completes the specification of the coordinate system for the guiding 
center motion. With the magnetic field expressed as in Eq. (8), the Hamiltonian 
will depend only the quantities g, I, q, and B. For reference, we note that a vector 
potential corresponding to this field is A = xV0 - $Vy. 
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In Eq. (2), the indices on the magnetic- field strength B($, 6) and electrostatic 
potential a($, 6, cp) indicate that they are to be evaluated at the location (+j, 6j, cpj) 
of the j t h  particle. 

. 

C .  Structure of the perturbation 

Within the context of linear theory, a distinct toroidal eigenfunction (index k, 
mode number n k )  is written as a sum over all poloidal harmonics (mode number 
m). For a nonlinear simulation, however, only the dominant poloidal harmonics need 
be retained. In its most general form, then, the full potential at the j t h  particle 
position is written as sum over eigenfunctions with slowly varying amplitudes: 

n, m: 

(10) 
e 
m 
-@j = [Xk(t) cos @jkm f yk(t)sin@jkm] 6km($'j) 

k = l  m=m; 

where the phase angle, @jkm, is defined as 

The amplitudes Xk and Y k  - undetermined by linear theory - are to be determined 
by the nonlinear model. In Eq. (11) and in what follows, wk refers only to the real 
part of the frequency of the kth eigenmode. 

An adequate description of the spatial structure of the unstable modes can be 
realized by ,representing magnetic perturbations in the following restricted fashion: 

6B = V x (6A,,) + V x (aB) . (12) 

The perturbation is thus characterized by the pair (a, a),  which are both first-order 
quantities (although a 6 prefix has not been used). We emphasize that Eq. (12) is a 
convenient'description in that the parallel momentum (see Ref. 23) becomes 

Eq. (12) also gives an appropriate description of low-/3 shear AlfvBn waves, for which 
6E,, = 0 and 

. 

The connection between and 6A,, above implies that a in Eq. (12) is strictly 
determined by the functional form of @ for the low-fl case, In Eq. (14), b = B/B 
is the unit vector along the equilibrium magnetic field. For convenience, we choose 
the system of units shown in Table I, so that aj may be written 
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The canonical toroidal and poloidal angular momenta have the explicit; compact 
forms 

with p j  defined in terms of the perturbation aj (see Eq. (13)). Eliminating vl,j in 
Eq. (2 )  using Eq. (13) gives 

n P  

= x H j  
j=1 

such that p j  = pj(Pqj,Pej) and $ j  = $j(Pqj, Pej). Hamilton's equations, which 
follow at once from Eq. (17), are 

and 

The various partial derivatives of @ and CY are given explicitly in Appendix A. 

In practice, it is more convenient to integrate $ j  forward in time and then evaluate 
Pej explicitly using Eq. (16b), rather than evolve Pej forward and attempt to invert 
Eq. (16a) for $ j -  In terms of differential quantities, the equation for G j  is 
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D. Wave evolution 

A Lagrangian representation for the time-evolution of free (undriven) Alfvkn waves 
has been considered previously in Ref. 24. For the evolution of linear, fluid Alfvh 
waves - which are assumed to grow on a timescale asymptotically longer than the 
equilibrium - the structure of this Lagrangian is universal: 

Variation of &) gives the fluid eigenmode structure, whereas variation of L$) gives 
the slow time evolution of the mode. Time derivatives in subsequent formulae refer 
to the slow (wave growth) timescale 

y << wo . d 
d t  
- N  

Thus, in an operational sense, one fixes the spatial structure of the eigenmode and 
allows time variation of the amplitude - which is undetermined by linear theory. 
The nature of the approximation is analogous to the perturbative 6W formulation 
of Ref. 18, although the present formulation includes the wave amplitude and phase 
as  intrinsic dynamical variables. Hereafter we omit the superscript 1 from the per- 
turbed wave Lagrangian, which has the general form 

with E k  the inertial energy per unit amplitude of a shear-Alfvkn wave: 

/ c 1 V l d k ) l 2  [Gaussian units] . c2 m2 
8n e2 vA . 

E k  = -- 

The integral in Eq. (24) is defined completely by the linear eigenmode structure: 

m;t 

exp [i(nkcp - me)] dkm(+) . (26) 
m=m; 

I 

' We also note that in the large-aspect-ratio, constant density limit, one may simplify 
the expression for EI, substantially. To leading order dV N rRodr dcp de, so that in 
normalized units the wave energy is 
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with x r /u  the normalized minor radius. Here, ni is the thermal ion density, 
measured in units of l/Ri, and mi is the ion mass, measured in units of the fast 
particle mass. The interaction Lagrangian, which is already implicitly contained 
in the guiding-center Hamiltonian, Eq. (17), is 'also needed to determine the wave 
evolution. For a zero-p perturbation, this takes the form is 

-n: j=1 k=1 m=m; 

which has been discussed previously in Ref. 25. Variation of L i n t  + Ltv then yields 
the extrema1 equations 

where we have neglected second derivatives of x k  and y k  which arise from the first 
two terms of C, in Eq. (24). This simplification is consistent with the assumption 
of slow variation of the linear eigenmode amplitude. 

E. System Invariants 

At this point, we can derive conservation relations for both the energy and the 
momentum of the coupled wave-particle system. First, the rate of change of toroidal 
canonical momentum, P,j, as a sum over individual wave contributions is 

while the rate of change of. particle energy is 
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It should be mentioned that cross-terms which arise from the amplitude variation 

vanish when summed over particles. Further, it can be verified that 

Summing Eq. (33) over k and comparing with Eq. (31), yields the conservation of 
energy relation 

Here we have defined the wave energy, E,,,, as 

(34) 

(35) 

By a similar calculation, it is simple to show that momentum is also conserved: 

where the particle and wave momenta are, respectively, 

In the case of only one Alfv6n eigenmode (n, = l ) ,  the momentum and energy 
equations are formally degenerate, and differ only by the constant w / n .  
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111. Algorithm for Numerical Simulation 

A. Discretization of the kinetic equation 

normally written as 
'The differential element of phase space volume in straight-line field coordinates is 

dI'(p) = 27rv2 dv dX ,?d$ d p  dB , 

where X 3 v,,/v is the cosine of the pitch angle, and ,? is the Jacobian defined 
in Eqs. (7) and (9). The volume element associated with the Hamiltonian flow 
generate.d by Hgc is 

dF = (27rdp) (dP, d p )  (dP0 de) . (39) 

Note that r ( P )  - which refers to the physical phase space - is not in general equal 
to the invariant volume element'r associated with the flow Hgc. The transformation 
rule between the two is 

, 

where N is the determinant of the Jacobian matrix. 

This means that with regard to the guiding-center motion, r ( P )  is a weak function 
of time. In what follows we will therefore restrict our attention to the canonical 
element for purposes of numerical simulation, since exact time-invariance of the 
volume element is an algorithmic requirement. 

In the absence of a plasma wave (Xk = & = 0), the fast particle motion will 
conserve both the energy, Hgc, and toroidal momentum, P,. Additionally, the mag- 
netic moment, p, is exactly conserved, regardless of the size of the perturbation. The 
unperturbed distribution of fast particles is accordingly restricted to be a function 
of these motion invariants. 

It is well-known that the Gf-method is the most efficient technique to evolve the fast 
ion distribution forward in time. We employ the algorithm developed in Ref. 26, with 
the subtle modifications described below. Begin by writing the fast-ion distribution 
f in the form 
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f = fo(&, pp;  P )  + 6 f a ( r ,  t )  + J f n a ( r ,  t )  - --- 
equilibrium fluid-like kinetic 

where P and & are the unperturbed momentum and energy, respectively: -'p 

= Pp - crg 

& =  -++B v i  
and 2 

= H - @  
(43) 

The equilibrium part, fo,  which is to be specified analytically, defines the total 
number of particles through a simple moment: 

(44) . 

The adiabatic part, 6 fa ,  is responsible for the fluid-like contribution to the fast-ion 
response [27-281. 

For this reason, it is appropriate within thecontext of the two-time-scale formalism 
to consider t6e adiabatic response as accounted for in the fluid eigenmode structure, 
even if in practice it is neglected. Thus we are interested in the time evolution of 
bfna only. Substituting f ,  as written in Eq. (42), into the kinetic equation df / d t  = 0 
gives an evolution equation for the nonadiabatic response 

In order to represent 6fna numerically, we begin by specifying a 5-dimensional cube 
IA inside-of which markers are to be loaded in an asymptotically uniform way. This 
is done systematically with the use of a bit-reveral scheme described in Ref. 26. An 
element of volume in U is then related to the corresponding element in I? through 

d r = M d U ,  (47) 

where M' is the determinant of the Jacobian transformation matrix. It should be 
clear that the choice of IA is not unique and may be altered to suit a particular 
simulation. A simple but effective choice is 

dU = d $ d v d X d y d O .  
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For clarity, the relevant volume elements and Jacobian determinants are summa- 
rized in Table 11. We mention, also, that the loading defined in Eq. (48) is not 
necessarily optimal. For example, loading uniformly in +'I2, rather than in +, may 
result in faster convergence with increasing marker number. 

Once the space U is specified, we partition it into np' equal-volume hypercubes 
(with centers computed using the bit-reversal technique). Referring to Eq. (47), we 
find that the tirne-independent volume in I' corresponding to the j t h  U-hypercube 
is 

nrj = - Mj 
n P  

with (49) 

with the Jacobian M evaluated at t = 0 to reflect the invariance of N'j in time. The 
density of particles on each element A r j  satisifes the discrete version of Eq. (46): 

With the definitions presented above, we can change between integrals and particle 
sums according to 

where Snj(t) A r j  dfnaj(t). Eq. (51) clearly introduces a discretization error, but 
uniformly approaches the continuum limit as np + co. Finally, applying the trans- 
formation rule, Eq. (51), to the wave equations and introducing a linear background 
wave damping rate yd, we obtain 

(52b) . 

This completes the derivation of the nonlinear model. The result, which we summa- 
rize for completeness below, is a (5 x np + 2  x n,)-dimensional system of ordinary 
differential equations. 
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{ 81 ‘ j = 1, ..., np k = 1, ..., nw 

J.fj 

(53) 

This algorithm has been coded in FORTRAN, and compiled on a variety of plat- 
forms. It has been given the name FAC, for Fast particle, Alfven wave interaction 
Code. 

B. Orbit averaging method 

According to Eq. (42), we must specify the distribution as a function of ?,,, and E. 
Of course, analytical approximations to fo,  for both trapped and passing particles, 
are typically formulated in the zero-orbit-width limit (eg., Ref. 29), for which the 
poloidal flux is constant along a particle orbit. However, for particles with MeV- 
range energies, the excursion from a flux surface can be a substantial fraction of the 
machine size. Passing alphas in JET, for example, can have &,/a in excess of 1/4, 
where 4 6  is the orbit width. 

Consider, for example, the consequence of writing the equilibrium distribution as 
fo($, E ) .  Such a form would require Eq. (46) to be recast as 

, (54) 

Clearly, fo would not  be a stationary distribution in the limit Xk,& + 0, as 6fna 
would be modified according to the finite drift velocity 4. The essential point is 
that unless fo is expressed as a function of the true constants of motion, statistical 
noise in 6fna will not scale with the amplitude of the perturbation. Thus, it is an 
absolute computatidnal requirement that fo have the form indicated in Eq. (42). 
However, this is a rather inconvenient requirement, with the consequent form of the 
distribution rather unintuitive. Also, experimental measurments of quantities which 
determine the fast-particle profile - such as radial deposition profiles in the case of 
neutral beam injection - give results naturally in terms of the poloidal flux. Thus, 
we need to develop a general procedure to obtain a realistic distribution fo(P,+,, E ;  p)  
from a given reference zero-orbit-width distribution F($, E) .  

The goal is, quite simply, to obtain a reasonable expression for an averaged quantity 
($) that is a function only of constants of motion. From a physical standpoint, then, 
($) labels what is effectively the “orbit center” of a particle with given (E,P,,,,p) 
and arbitrarily large orbit excursion. ‘Using the equation defining P,,, in Eq. (43), 
we can write the averaging condition as 
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where B = B($, 0) and 0 is the sign of 21,~. For trapped particles, the parallel velocity 
changes sign at  the banana tip. The value of $ at this point is thus a good indicator 
of the orbit average: (9) = -P,,,. A simple map valid for all classes of particles in a 
large-aspect-ratio field is 

,/- - P,,, I > p (co-passing) 

-,/- - P,,, E > p (counter-passing) 
($) = &</i (56) 

More complicated forms can be derived by rigorous averaging methods, but the 
method described by Eq. (56) captures the essential effects of orbit excursion. Near 
the trapped-passing boundary, the form d e  may appear to be an especially poor 
approximation to the average indicated in Eq. (55). However, the region where the 
averaging is poor is precisely where the term is essentially negligible. 

Consider a passing particle with p = 0. Here, we find that the average value of $ 
becomes 

where vI1 = a. The correction to this expression is formally of 0(c2) if we take the 
average to be in poloidal angle. For the sake of illustration, let F($, E )  be a typical 
reference beam distribution: viz., exponential in poloidal flux and Maxwellian in 
energy. According to Eq. (57), the correspondence becomes 

The constant C in Eq. (58) may be straightforwardly related to the volume-averaged 
fast particle beta or the particle number by an integration over $ in the usual 
manner. The requirement that the functional form be in terms of constants of 
motion is required only for the numerical simulation. ' 

Finally, for illustrative purposes, we give an analytic calculation of the small-orbit- 
width linear growth rate in Appendix B. This derivation proceeds directly from the 
equations used by the numerical model, and should 'De particularly instructive for 
those not familiar with linear theory. 
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IV. Dynamics of Particle Trapping 

A. Wave- p ar t i c le resonance 

If one applies first-order perturbation theory to calculate, for example, the particle 
orbits in a wave field of the form.given by Eq. (lo), a resonant denominator will 
occur whenever [27] 

Re nop -!we - w = 0 (59) 

is satisfied. Here, we 3 (e )  is the poloidal oscillation frequency, and wp = ($) is 
the frequency of motion in the toroidal direction. Particles close to this point in 
phase space become become trapped in the wave potential well and execute local 
oscillations at the wave trapping frequency, wt. It is interesting t o  note that if one 
attempts to calculate to second order in the perturbation, new resonances become 
possible; these occur when 

such that both C, and C2 are integers. Thus, we can say equivalently that second 
order resonances occur when C in Eq. (59) is a half-integer. The general rule for an 
s th  order resonance may be similarly expressed by replacing C in Eq. (59) with C+r/s, 
where ! is any integer, and (T, s) are relatively prime. However, in the perturbative 
regime, the island size corresponding to a wave of amplitude A scales like As/2 ,  so 
that for a small perturbation, island width vanishes rapidly as s increases. 

For a realistic TAE mode scenario, energy exchange between waves and particles 
-. and thus the instability - will saturate as a consequence of particle trapping in 
the relatively large s = 1 islands. Stochasticity, if present globally, will likely be the 
result of overlap of s = 1 islands from diflerent modes, owing to the extremely small 
size of nonlinear islands for typical TAE saturation amplitudes. . . 

In the one-dimensional bump-on-tail problem [30], the motion of resonant parti- 
cles, which become trapped in the field of a single electrostatic wave, satisfies the 
nonlinear equatibn [31] 

Q+w;sinQ=O. with QEkx-wwt. 

Here, (k, w) are the wavenumber and frequency of the electrostatic mode. In this 
case, w; = ek&/m, where & is the electric field amplitude of the wave. The trapping 
frequency grows until the wave saturates, and in the undamped, collisionless limit, 
the saturated state satisfies 
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CYL =ut , 

where 7~ is the linear growth rate and c - 3.2 [30] is a universal constant. 

For the TAE problem, the principle mechanism which governs the saturation is 
similar, although the details become complicated by the higher phase space dimen- 
sion. For simplicity, consider a passing population of fast ions with ,LL = 0. In this 
case it is convenient to use the variable pair ( p ,  C), where 

P = R p ,  (634 
W 

C r&--Q,, . (63b) 
n 

In the above we have used the unperturbed variables ?, and E defined in Eqs. (42). 
In the field of a single toroidal eigenmode with mode number n, resonant particles 
on each constant47 surface satisfy an equation analogous to Eq. (61): 

Q+w,2e'(C)sinQ=O with Q r n c p - L . 9 - w t .  (64) 

for each value of L (discrete) and C which satisfy the resonance condition Re = 0. 
We remind the reader that 19 is not the poloidal angle but rather the angle conjugate 
to the unperturbed action 

' 

with Po the unperturbed poloidal momentum. A qualitative diagram of the three- 
dimensional island structure described by Eq. (64) is shown in Fig. 2. A formula 
which generalizes Eq. (62) has been developed to describe the saturated state in the 
TAE problem [33]; this requires an integration over the invariant surfaces {C} for 
each value of L: . 

with c* a constant analogous to c in Eq. (62). The integrands are to be evaluated 
at  the island centre - that is, at the value of p which gives Rt(C,p) = 0. Note that 
d F / d p  in Eq. (66) gives the usual instability drive: 

In Fig. 3 we plot both wte/Tr, and d F / d p  as functions of C for a passing particle 
population in an ITER-like plasma. We have attempted to calculate the integrals 
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in Eq. (66) in order to obtain a value for the constant c*. Initial estimates show 
c* - 5.0, although the accuracy of this estimate has yet to be established. Finally, 
we give an example of the island structure on the surface C = 3.5 MeV for a small- 
amplitude perturbation in Fig. 4, in terms of the radial variable s = [ $ ~ / $ ( u ) ] ' / ~ .  

When first-order islands associated with different values of C overlap, Eq. (66) 
breaks down - and in the limit where resonances due to many C values overlap, 
quasilinear theory becomes applicable. 

B. Resonant particle reconstitution 

Our kinetic description (see Eq. (46)) is at present somewhat restricted in that we 
have no physical mechanism to describe the replenishment of resonant particles into 
the vicinity of a given island. The various ways in which this replenishment takes 
place have been identified in Ref. 33. These are briefly summarized below. 

I 

1. frequency sweeping 

If the resonance condition changes adiabatically with time, that is 

then the (nonlinearly) trapped resonant particles remain trapped in the wave po- 
tential, but the island as a whole may change its position in phase spave. A strong 
local gradient in the distribution f is the result, and may lead to an enhancement 
in the particle-to-wave power transfer. This effect can be easily reproduced in the 
present code by prescribing the time dependence of w(t) .  

2. effective particle source 

Because of classical electron drag or pitch angle scattering, fast ions can be con- 
tinuously injected into the resonance region. This injection can be characterized by 
an egective reconstitution rate, veff which is approximately described by a term of 
the form 

added to the RHS of Eq. (46). When the rate v,ff is much smaller than both y~ -yd 

and yd, it can be shown that isolated pulses will occur with the height of each 
pulse no greater than the level predicted by particle trapping in the absence of the 
reconstitution. This is the regime that we will consider in our subsequent ITER 
simulation in Sec. V. When y ~ ,  yd and veff are comparable, the mode saturation 
and long-time dynamics become more complicated. 
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V. Tokamak Simulation 

A. Large-aspect-ratio equilibrium 

equilibrium [23]: 
For the examples presented in this paper, we'employ a zero-P, large-aspect-ratio 

r2 B = V v +  -V8,  
q 

This simple equilibrium minimizes initial coding difficulties, enables direct com- 
parison of numerical results with analytic formulae for the linear growth rate, and 
also provides a convenient benchmark for other numerical codes. The contravariant 
components of this field - as defined by Eq. (8) - are g = 1, I = r2/q and S = 0; 
the poloidal flux is x = r2/2, the parallel wavenmber is I C , , ,  = n - m/q, and the 
magnitude of B is 

, 
. 

B =  
1 +rcos8  

The choice of q is arbitrary within the context of this model equilibrium. 

B. The thermonuclear alpha distribution 

For the equilibrium distribution function we consider a simple product form: 

For anisotropic populations, or when profile effects on the energy dependence are 
important, Eq. (72) can be generalized accordingly. Presently, we wish to concen- 
trate on .a reactor-relevant alpha particle population, in which case the form of h2 
is determined by alpha particle drag arising from collisions with thermal electrons 
and ions. When reactants (thermal D and T ions) have a common temperature Ti, 
alpha particles will be produced with a roughly Gaussian-in-energy distribution, as 
shown by Brysk [34]. This implies an alpha particle source of the form 

with EO = 3.6h-2V anc A&[keV] = l 0 6 d m .  The steady-state c,,tribut,m of 
alphas can then be obtained by solving the Fokker-Planck(FP) equation with source, 
Eq. (73): 
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Ts- ah' = a (v3 + vz) h2 + T,S(V) = 0 . 
at v2 av 

The crossover velocity, vc, is given approximately by 

d m  
(mi/mH) 1'3 - v,[cm/s] - 1.7 x 10' 

For Eo >> A&, the solution of the FP equation is 

Erfc [(I - E o ) / M ]  
ha = 

v3+v,3 . * 

(74) 

(75) 

We remark that this form gives the correct spread in velocity around the 3.52MeV 
birth energy, and for burning plasma, indicates that there can be a substantial 
number of fast ions produced above the birth energy. Indeed, in a 25 keV plasma, 
18% of the alpha particles will have an energy above 4MeV [35] 

The form of hl depends sensitively on the plasma temperature and density profiles, 
and can be calculated directly from these profiles (and also the impurity concentra- 
tions). Although plasma density profiles in ITER H-mode are expected to be flat or 
even hollow, the temperature profile can be quite peaked in the absence of sawtooth 
activity. In this case a good representation for the radial alpha pressure profile is 

I 

hl=(l--$$) a , 
(77) 

with a an adjustable parameter. However, the appearance of sawteeth are expected 
to produce a repetitive flattening of the plasma temperature inside the sawtooth 
mixing radius (roughly ~ / a  - 0.55). Although we ignore the effect of sawteeth on the 
alpha orbits, we consider that the plasma temperature profiles can be significantly 
altered from the peaked pre-sawtooth values. The shape of these flattened profiles 
can be adequately described by 

where x f ($) - $0 and A measures the steepness of the alpha gradient at the 
mixing radius. ' 

C. Code benchmark 

We have benchmarked FAC (see discussion following Eq. (53)) in the linear regime 
against the linear 6W code CASTOR-K [36] for identical equilibria and the post- 
crash-like hl profile given by Eq. (78). A value of A in accord with expected ITER 

' pressure gradients was used. Also, $10 was taken at the q = 1 surface. For the radial 
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eigenfunction, we use the n = 10 core-localized mode shown in Fig. 5. This was 
computed by the ideal, incompressible MHD code M I S H K A ~  [37].for a simple equi- 
librium with circular flux surfaces and q-profile with an extended low-shear region. 
The two dominant poloidal harmonics, m = (8,9), are peaked just inside the q = 1 
surface. Our consideration of core-localized-modes is motivated by the important 
fact that they can be nearly undamped (with regard to continuum damping), and 
are thus good candidates for TAE instability. Previous analyses have indicated that 
high-n modes (10 5 n 5 40) are the most *dangerous for ITER [13-141, while low-n 
modes are typically stable, since wSa << w. 

A scan of the linear growth rate versus w was made with all other parameters kept 
fixed. Due to the (bf / f ~ ) ~  scaling of the particle noise reduction in the noise [38], 
simulations with very small wave amplitude can very accurately recover the linear 

'growth rate. The agreement between FAC and CASTOR-K results, shown in Fig. 6, is 
exceptionally good. 

D. ITER-like ignited plasma simulation 

Our primary goal in an ITER-relevant simulation will be to get a quantitative 
feeling for what saturation amplitudes and levels of anomalous diffusion are possible 
for strong local instability scenarios. Since we have found that global TAE modes 
typically suffer strong intrinsic damping (continuum plus radiation) by comparision 
with core-localized modes, we have restricted our attention to the latter type in this 
study. It will be necessary for a more conclusive study to consider both local and 
global modes, as well as drag and pitch angle scattering of the fast ions (as described 
in Sec. 1V.B.). We tentatively expect, however, that the saturated amplitudes cal- 
culated in this work will represent an upper-bound to the possible TAE amplitudes 
one is likely to find in an ITER-like plasma. 

. 

Using the M I S H K A ~  code, we computed a realistic set of weakly-damped, high-n 
eigenfunctions in the range 17 5 n 5 26. These modes have m = (n - 1, n - 2), and 
are thus localized around the q = (n-3/2)/n surface, as shown in Fig. 7. At present, 
the linear mode computation cannot be automated; rather, it is an extremely la- 
borious procedure. We remark that the q-profile used for the computation of these 
modes had q(0) = 0.87, which is a reasonable value for the pre-sawtooth phase. 
Also, it was' not as flat as for the benchmark. Since the existence of core-localized 
modes does not require q(0) < 1, we expect that simliar modes will exist even when 
q on axis rises .above unity. 

' 

Initial linear simulations showed that all such modes are stable to (flattened) post- 
gawtooth crash profiles even in the absence of background (i.e., , thermal electron and 
ion) damping. This is a consequence of the stabilizing term d fold€ - which is known 
to be particularly strong for an isotropic, slowing-down population. Subsequent 
simulations, however, demonstrated that the same modes are unstable to a peaked 
distribution, Eq. (77), with a = 4, since it has a shorter gradient scale length than a 
post-crash profile inside q = 1. We proceeded with this form, using the parameters 
listed in Table 111. First,. we ran all modes together in a single simulation with a 
large value of the fast ion pressure ( (p j )  = 0.8%) and no thermal ion damping. 
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The time evolution of 6B and 6w for each mode is given in Fig. 8, with a su- 
perposition of the evolution of every 6B/B shown in Fig. 9. For the core-localized 
modes we have computed, CASTOR-K finds that the dominant damping mechanism, 
ion Landau damping, is roughly -yd/w - 2(&) for = 15 keV, where (pi).is the 
volume-averaged thermal ion beta. This result is fairly insensitive to mode structure 
and small changes in equilibria. For the typical value (pi) - 1%, then, -yd/w - 2%. 
We re-ran the previous simulation including this value of the damping. The re- 
sult was that growth rates and saturation amplitudes were reduced accordingly, as 
illustrated in Fig. 10. 

Next, we examine the fast particle response to the unstable spectrum. In Fig. 11, 
the density perturbation as a function of radius and time is plotted. Particles are 
moved outwards by the unstable modes, and the time-evolved distribution is thus 
locally flattened. This is consistent with the usual physical picture of the instability; 
viz., , that the free-energy associated with the unstable distribution in the vicinity of 
s - 0.3 is tapped and converted to wave energy. A similar picture - for the density , 
perturbation as a function of energy and time - is given in Fig. 12. The region of 
velocity resonance is very broad, extending well below lMeV, with the strongest 
interaction in the 3 - 4MeV range. 

Recent studies indicate that when wave-particle resonance regions overlap, a sub- 
stantial enhancement of the particle-to-wave energy transfer may occur. The process 
by which this occurs has been dubbed the domino eflect [33], according to the way 
in which adjacent‘ regions of local flattening appear to “topple” onto one another. 
To quantify such an enhancement in the present case, we calculate the total particle- 
to-wave energy transfer for all modes, and then rerun the simulation for each of the 
10 modes seperutely and sum the individual energy transfers. The result, shown in 
Fig: 13, indicates that the,power transfer in this case is not enhanced by the effect 
of multiple modes. 

Finally, we address the most pressing question regarding the nonlinearly evolved 
state, namely, the overall anomalous diffusion of the alphas. In Figs. 14 and 15, 
we, plot the initial and final density of guiding centers; Fig. 14 shows the result 
for no background damping, and Fig. 15 for 2% ion damping. Clearly, even for the 
most unstable case - where the growth rates of the modes are likely fur in excess 
of expected values - the profile modification is minimal. In fact, the resilience of a 
machine to diffusion/loss caused by fast-particle instabilities seems to be generally 
indicated by the size of the parameter Ab/u. 

’ 

It is worth mentioning that we have performed preliminary nonlinear simulations 
for fishbone modes (the beam-driven n = 1 internal kink) in PDX and JET. Exper- 
imentally, PDX was observed to lose up to 20% to 40% of perpendicular beam ions; 
this orde? has been reproduced self-consistently by FAC. As well, simulation of JET- 
like-plasmas produce large redistribution with negligible losses; again in agreement 
with experiment. The diffusion for all ITER scenarios we have studied is extremely 
benign compared with the fishbone-induced losses in these smaller, weak-field ma- 
chines. 
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VI., Summary 

In this paper a method to calculate the linear growth and nonlinear saturation of 
Alfv6n eigenmodes in general, axisymmetric toroidal geometry has been described. 
The model has been fully benchmarked with an independent numerical code in the 
linear regime.. The nonlinear evolution of an unstable spectrum of ten core-localized 
modes - restricted to the radial domain 0.2 5 T/U 5 0.4 - in a simplified circular 
geometry was also considered, under otherwise general ITER-like conditions. The 
simulations indicate that for relevant values of n, such a radially localized group 
of modes leads to rather insignificant'anomalous alpha-particle redistribution even 
in worse-than-expected conditions. The possibility of significant redistribution via 
interaction with more radially extended modes (and with the inclusion of collisional 
effects) is a question that remains the subject of ongoing research. 
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Appendix A: Terms in Equations of Motion 

The partial derivatives of the electrostatic potential which appear in the guiding- 
center equations take the form 

Next, derivatives of the function Q can be expressed as 

- 6 ' ~  j 
Q o j  =Bjw 
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The partial time derivatives of 6 and a, given in Eqs. (A4) and (A8), are required 
to compute the time derivative of Hgc: 
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Appendix B: Linear Growth Rate 

For a preliminary validation of the code, we must choose some relevant limiting 
case for which analytic results can be obtained, and then reproduce these results 
numerically. A particularly simple regime is the large-aspect-ratio, large field (i.e., 
thin orbit) limit - for which it is straightforward to calculate an analytic expression 
for the linear growth rate. We begin with a single-helicity perturbation, 

This this form results in no loss of generality should be evident. Also, the radial part 
#m may be arbitrarily broad; that is, we shall make no assumptions regarding radial 
localization of the mode. In the interest of simplicity, we have fixed the wave phase 
by directly setting Y = 0. This neglects the small frequency shift which occurs in 
the presence of a perturbation. 

The derivation of the growth rate is exceptionally simple if one considers fo to 
depend on the perturbed constants of motion - in contrast to the formal structure 
of the numerical model. Since the perturbation can be taken to be arbitrarily small, 
the result for the linear growth is unaffected. Using Eqs. (18a) and (A9) to obtain 
the rate of change of energy and canonical momentum, respectively, we can write 
the fast-particle kinetic equation as 

with 

af 0 af 0 f& = - 
d& and f p = %  - 

We remark that the time derivative operator, when applied to the perturbation @, 
becomes. 

The first term on the RHS of Eq. (B4) refers to the zero-order field line motion, 
which will define our integration characteristics, while the second gives the deviation 
from this motion. In a strong magnetic field, the latter, or "drift", motion is much 
slower than the former. A formal integration of the kinetic equation, along with a 
substitution using Eq. (B4), gives 
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Now, the term associated with the total time derivative in the integrand gives the 
adiabatic particle response. This does not contribute to the wave growth and is 
subsequently ignored. The task at hand, then, is too calculate an explicit expression 
for the drift velocity VD in the equilibrium given by Eq. (69). For simplicity, a 
beam-like population of particles is considered (case (i)), for which ,u = 0 and vI1 
is constant. An inspection of the equations of motion .reveals the fast and slow 
timescales (expressed' in terms of unnormalized variables) 

Expanding Eqs. (18c)d) and (21) according to this ordering, we find for the fast 
. motion: i o  = 0, 80 = vl,/q and +O = vI1. Some algebra then gives the slow terms as 

2 il = - vll sine 

+1 = - vllr2 cos e 

These results for the drift velocity imply 

VD - VQ = -vt [ sin e . a r  - am - i cos e (:+3m]. 
Concentrating on the resonance w - k l l ~ m ~ ~ ~ v l l  = 0 (which will be relevant for co- 

passing particles), we then evaluate the integral in Eq. (B5) along the unperturbed 
trajectories (PO(T)  = vI17, eo(7) = v , , ~ / q  at constant radius to find 

where 

I -  

For the amplitude evolution, we use the continuous version of Eq. (51a): 

Integrating by parts and once again ignoring the reactive contribution gives a final 
expression for the fractional growth rate y ~ / w :  
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with u = ~ / k , ~ ( ~ - ~ ~ ( r ) .  In this result, the distribution is evaluated at  the resonant 
velocity ulI = u. Finally, writing fo as a function of the averaged poloidal flux ($) as 
defined by Eq. (57) of Section 3.2, we can transform back to the ($,I) representation 
akcording to 

n dF m-  l .dF 
f&+ -fp -+ - - -- . 

W a& qw a$ 

Thiseresult illustrates clearly a point which is the source of some confusion, and has 
been mentioned recently in a paper by Fulop et al. [39]. Fundamental considerations 
show that the instability drive (through fp) is proportional to the toroidal mode 
number'n. However, calculations in the ZOW limit have shown that the drive scales 
with the poioidal mode number m rather then n. The difference is explained by 
the dependence of Pq on the particle energy. This effect, when combined with the 
evaluation of ull at  the resonant velocity ~ / k ~ ~ ( ~ - ~ ~ ( r ) ,  gives a scaling of the drive 
term with m rather than n. 

30 INSTITUTE FOR FUSION STUDIES REPORT IFSR-773 



Table I 
Simulation Units 

~~ 

Dimension Unit Description 

mass m fast-particle mass 
length RO major radius 
time l/w, inverse, on-axis gyrofrequency 

magnetic field Bo on-axis magnetic field 

Table I1 
Volume Elements- 

dLI 
d r  

dr(P) 

dv dX d$ d y  dB 
2 n p  dP, dP8 d p  dB 

27rv2 dv dX Jd$ d y  dB 

M 2n v2D/B2 
N J B 2 / D  

Table I11 
' ITER Transport Simulation 

6 x 10i3cm3 
2.5 (D-T) 
280 cm 
800 cm 
5.8 T 
15 keV 

. 15 keV 
4 (4 
0.8 % 
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Figure Captions 

[l] High-; linear instability window for TAE modes in an ITER-like plasma, calcu- 
lated using a large-aspect-ratio, boundary layer code. The background damping 
is the sum of electron and ion Landau damping, collisional electron damping, and 
radiative/continuum damping. 

[2] Illustration of the wave-particle resonant island structure as a function of C, which 
labels the continuum of PoincarB surfaces-of-section, and p ,  which labels successive 
contours on each surface. The phase variable is Q ncp - CO - wt. 

[3] Variation of the trapping frequency (solid line) and instability drive (dashed line) 
for a range of surface levels, C, in an ITER-like plasma. The passing particle . 
resonance ( p  = 0) is driven by an C = 9 island resulting from the (n, m) = (10,lO) 
component of a core localized mode with saturated amplitude 6B/B = 4 x 
The instability drive has been averaged to yield the unperturbed value. 

[4] The C = 9 island structure on the surface C = 3.5 MeV. The parameters are 
the same as in Fig. 4, but the amplitude of the eigenmode has been increased to 
SB/B = 3.25 x 10-4. 

[5] Plot of the m = (8,9) poloidal harmonics for an n = 10 core-localized-mode in an 
ITER-like circular equilibrium. All other harmonics are negligible. 

[6] Benchmark linear growth rate comparsion between the nonlinear FAC code and the 
linear CASTOR-K code for the mode shown in Fig. 1. Identical circular equilibria 
are used. Considering that there are differences in the method used to compute 
equilibrium orbit averages (see Eq. (51)), the agreement is excellent. 

[7] Upper core-localized TAE modes in the m = (n - 1; n - 2) gap. 

[8] Plots of 6B/B (smooth curves; log scale with range 5 6B/B 5 2 x and 
. 6w/w (noisy curves; linear scale with range -0.2 5 6w/w 5 0.2) for each toroidal 
eigenmbde. In this case the modes %e interacting and there is no background 
wave damping. 

[9] Superposition of the time evolution of 6B/B. for the modes shown in Fig. 8. 

[lo] Same as Fig. 9, except with background ion Landau damping r d / w  = 2% for each 
mode. This value, sensitive only to ion temperature, is characteristic- for plasmas 
with Ti = 15 keV at the TAE location. 

[ll], Time evolution of the fast ion density perturbation as a function of radius. This 
was obtained by numerical integration of 6fna over all degrees of freedom except 
radius. 

[12] Time evolution of the fast ion density perturbation as a function of energy, which 
shows strong'interaction beyond 3.5 MeV. 
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[13] A comparison of the total particle-to-wave energy transfer as a function of time. 
The solid curve is the result for interacting modes (see Fig. 9), while the dotted 
curve was computed by simulating each mdde individually. In this case, a collective 
enhancement of the energy transfer does not occur. 

[14] The self-consistent anomalous alpha diffusion caused by the strong instability sce- 
nario for 10 upper-core-localized TAE. The vertical dotted lines correspond to 
those in Fig. 7. Diffusion is rather small and well-localized to the region contain- 
ing the eigenfunctions, even though the most unstable mode had a growth rate 
y ~ / w  - 8% - which is at least one order of magnitude above expected values. 

[15] Same in Fig. 14, but with yd/w = 2%. 
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