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Abstract 

c n u m e r i c a l  simulation of a kinetic instability near threshold shows how a hole and 

clump spontaneously appear in the particle distribution function. The hole and clump 

support a pair of Bernstein, Greene, Krusld (BGK) nonlinear waves that last much 

longer than the inverse linear damping rate while they are upshifting and downshifting 

in frequency. The frequency shifting allows a balance between the power nonlinearly 

extracted from the resonant particles and the power dissipated into the background 

plasma. These waves eventually decay due to phase space gradient smoothing caused 

by collisionality. 

PACS Nos.: 52.35-g, 52.35.Mw, 52.40.Mj 
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Recently it was observed that a single mode driven unstable by resonant particles can 

grow explosively to a level that is independent of the closeness to instability threshold set by 

background dissipation.'l2 In this problem the wave taps the free energy of a smooth energet- 

ically inverted distribution function. Specific examples of this effect include the bump-on-tail 

instability3 and the excitation of Alfvkn waves in plasmas of interest in fusion re~earch.~ 

An important intrinsic feature of the explosive growth is that the mode frequency shifts 

(both up and down) from its value at the instability threshold. By the time the amplitude 

grows to a level where the particle nonlinear trapping frequency Wb becomes comparable to 

the linear growth rate (without dissipation) 7 ~ ,  the frequency shifts are comparable to y ~ .  

At this point the explosive behavior described in Ref. 1 is no longer correct, and the mode 

is expected to saturate. We have developed a simulation code that confirms the expected 

saturation level, but also reveals s surprise effect: the sideband frequencies continue to shift 

upward and downward by an amount much larger than 7~ after saturation is reached. 

Here we will present the results of the simulation and explain the underlying mechanisms 

for this effect. We will see that the explosive phase leads to the formation of a phase space 

h ~ l e ~ ~ ~ - c l u m p ~ - ~  pair. In the bump-on-tail instability the hole produces an upshift of the 

frequency and the clump a downshift of the frequency. We also observe that a hole-clump 

pair does not emerge far above instability threshold, i.e. when yd, the linear damping rate 

from background dissipation is roughly less than 0.47~. 

, 

To develop the nonlinear theory we start from a formalism described in Ref. 2, where 

the nonlinear response of a single mode is considered and the particle orbits in the absence 

of perturbations are integrable and periodic, so that an action-angle formalism" can be 

used. The linear mode, with an eigenfrequency WO, interacts most strongly with particles 

that nearly satisfy the resonance condition wo = R, where R(1) is the frequency of the 

unperturbed motion for a particle with action I ,  and the resonance condition is satisfied at 

& 
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I = IT.  For nearly resonant particles, one can always choose an action I and conjugate angle 

t in such a way that the perturbed Hamiltonian becomes one-dimensional and reduces to 

the form, 

exp [i (5 - wo t)] . 1 
The distribution function, f (R,c, t) ,  and the mode amplitude C(t) satisfy the equations, 

af af -++- -2Re  
dt at 

where dr is the six-dimensional phase space volume element and IC12Gu is the wave energy 

per wavelength. The diffusive term represents collisional effects from a Fokker-Planck oper- 

, for R-values far from ator. We solve Eq. (2) subject to the condition that - 
resonance, where fo is the equilibrium distribution when C(t) = 0. 

withyL = - 2n2wo 1 <rl (pq2g) 

element "orthogonal" to ( I ,  t). 

df@> +- afo(R) 
dR dR 

The linear solution of Eqs. (2) and (3) yields a linear growth rate given by y = y~ yd 

where drl is the 4dimensional phase space volume 
R-40 

GW 

Here we investigate the behavior of the system when the nonlinear frequency shift of 

the mode, 6w = w - wo, can be much larger than y ~ .  The formal structure of the theory 

limits this presentation to cases where 6w/wo << 1, so that dfo/dR and V(1) do not change 

significantly, and R(I) = R(IT) + ( I  - IT)dR(IT)/dI.  Observe that without collisions, the 

trapping frequency, wb, of a deeply trapped particle in a constant amplitude wave is.given by 

w i  = 21C V dR/dIl. It is convenient to define the field amplitude as A'= 2C V dR/dI, at I 

set equal to a convenient reference choice of the action I = I*. In terms of A, the equations 

for all physical systems are quite similar. 

To simplify the analysis, we now restrict our discussion to a paradigm, the electrostatic 

bump-on-tail instability. The phase space is then two-dimensional, with t = ka;, I = mv/k, 
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V = q / k  where k is a selected quantized wavenumber, v is the particle velocity, and q 

and m are the particle charge and mass respectively. The quantity v& is roughly given by 

v& = vcwz, where v, is the pitch angle scattering rate. The frequency wo can be taken equal 

to the electron plasma frequency which gives G, = 1. 

Equations (2) and (3) allow A(t) to be real, and this case was taken in the numerical study. 

Figure 1 shows the solution for A ( t ) / y i  as a function of yLt for yd/y~ = 0.7 and v&/yi = 

.001. Initially, the amplitude increases exponentially in time, and then goes into the explosive 

phase described analytically in Ref. 1 (see below for more details). The explosive solution 

leads to saturation at a level A(t ) /y i  M 1. It was expected that the instability drive would 

deplete because of plateau formation in the resonance region, which would then leave only 

the damping mechanism to absorb the wave energy in a time N l/yd. Instead the envelope of 

the mode amplitude remains roughly constant in a time interval 1 << 7 ~ t  << ( y ~ / v ~ f f ) ~ ,  and 

the amplitude oscillates with increasing frequency. Figure 2 shows the upshifted frequency 

.I 

spectrum, Sw = w-  WO, as a function of time; an equal strength downshifted spectrum, -Sw, 

also forms. The most intensive component is the one with the largest frequency shift, but 

appreciable satellite bands are also generated. 

In Fig. 3a we observe the spatially averaged distribution function as a function of time. 

The depression (enhancement) of the average distribution, function coincide with the up- 

shifted (downshifted) frequency Sw, which suggests that phase space structures in the form 

of holes (upshift) and clumps (downshift) have been spontaneously created. This inference 

is verified in the phase space contour plot shown in Fig. 3b, where the different shades cor- 

respond to different values of the distribution f .  We see that the values of the distribution 

at the hole and clump are nearly the same as the value of the creation point. Only later in 

time, when v,3tft/yi M 1 does the value of the distribution at the hole and clump begin to 

change. 

The numerical results can be understood as follows: In Ref. 2 it was found that a s a -  
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ciently small real amplitude A(t) satisfies the nonlinear equation 

d q ( t  - T)~A(T)A(TI)A(T + 7-1 - t )  exp [-& T3(7-, T ~ ,  t)] (4) 
dA 
at 2 
- - y A  _ _  

0 0  

where y = y~ - yd, and T3(7-,7-1,t) = (t - T ) ~  ($(t - r )  +r - 7-1). In the explosive phase 

where y and veff can be neglected in Eq. (4), the solution is of the form, A ( t ) / y i  = B{ff + 
exp (ic~ In (1 - t / t o ) )  + c.c.}/[~~(to - t)I5I2, with a, P, c~ and to appropriate constants. The 

<< IAI << 7:. In linearly unstable cases, domain of validity of this solution is 

when veff 5 y, the explosive solution always develops. It can also develop when v , ~  2 y 
(including the linearly stable case y < 0) if a large enough seed fluctuation arises that 

satisfies the stated inequality. Observe that at the point of breakdown of validity of Eq. (4), 

(veff + Irl)"l" 
1/2 

YL 

the frequency spectrum has both upshifted and downshifted by an amount Sw - yL. 
The, numerical simulation shows that the initial frequency shift that appears during the 

explosive phase, continues after the mode saturates at a level IAl N 7;. The upshifted and 

downshifted frequencies correspond to the phase space hole and clump respectively. The 

frequency shift Sw increases slowly to values much larger than y ~ ,  with - Sw << yi ,  which 

allows the use of bounce averaging methods to describe the evolution of the system. 

d 
d t  

The solution to the problem can then be viewed as a superposition of two BGK waves, 
t 

with each one represented as Re A(t)e-i"Ot+iE = - Wb(t)COS$; $ = 5 - wot - /dt16W(t'). 
0 

<< w; N 72) the perturbation of the passing particle distribution << - In the limit - 
dt  

is negligible compared to that of the trapped particle distribution. Then we can bounce 

average the trapped particle distribution and use that the distribution is continuous at the 

separatrix between passing and trapped particles, at the value f = fo(wo+Sw). We introduce 

the following action variable for the trapped particles, 

d W b  dSw 
d t  

(R - wo - Sw)2 - w; cos $, 
2 J = 4 6  / -i-[E( J )  + w; cos$]'/2, where E ( J )  = 

7r 
0 
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with 

satisfy 

= cos-'(-E/w;). The equation for g f(J) '- fo(w0 + Sw), is then found to 

- 8 W b  
Initially g = 0, and the boundary conditions are g = 0 at J = - and 

d J  
with T = - 

dE' 7r 

8s 
d J  

r J -=OatJ=O.  

To complete the formulation of the reduced problem, we need in addition to Eq. (5 ) ,  two 

relations to determine 6w(t) and Wb(t). One relation comes from the lowest order form of 
d 
dt 

Eq. (3), where Td and -6w are neglected (Le. when we view the wave as a steady BGKll 

mode). We find ' ,  

To next order we take into account 'yd and dswldt. The formal procedure is equivalent 

to the following energy argument.12 The energy absorbed in a time At by the background 

plasma, 2ydGwICI2At, is balanced by the energy released by the moving phase space struc- 

I 

ture, woAIN, where AI is the change of the resonant action due to frequency sweeping, 
, .  

and N [ dr(f - fo) is the number of particles in the phase space structure. Then using 
d I  Jdsw 

A I  = - -At, we find 
dR d t  

Equations (5)-(7) can be written in parameter free form, by defining, 

The result is 

6 



- with J = - 2Jz 1 d+ [R(J^)   COS+]^/^, 0 < J ^ <  8/n, G(J^= 8/n) = 0, and J -BG(J^= 0) - 
*max 

aJ n n  " 
wb 16 6w 

0. At early times, G=S6, and then Eqs. (6) and (7) have the solution, - = - - = 
YL 3n2' YL 

, which agrees fairly well with the simulation results (see Fig. 2.). 
16 Jz( ~ d t )  V2 

3&2 

For this reduced formulation the calculation of wb(t) and the frequency shift Sw(t) remains 

to be performed by numerically solving Eqs. (8)-(10). From dimensional arguments it is 

already clear that the maximum change in Sw is y~ (E) 1/2 (E) 3/2, or wo (whichever is 

less), and that the pulse with wb - y~ lasts for a time t - ~i/v&. We have verified in the 

simulation results that the decay of the mode is only a function of v& t / y i .  

In conclusion we have found a spontaneous frequency sweeping effect in numerical simu- 

lations of a single mode in a weakly unstable system. We have also presented the theory of 

this process. The early evolution of the mode is described by a previously found explosive 

solution to the point where particle trapping is important. This solution initiates frequency 

shifts that continue after the mode amplitude saturates. An upshifted phase space hole and 

downshifted phase space clump emerge at the end of the initial phase. Then as the hole 

and clump evolve adiabatically, the depth of the hole and the height of the clump increase 

during a major part of the frequency shifting cycle, allowing the frequency to continue to 

change. Ultimately collisional diffusion leads to the disintegration of the hole-clump pair on 

a time scale, ri/v&. The wave then damps since a weaker phase space structure reduces 

the frequency sweeping rate, that in turn reduces the rate of free energy extraction from the 

particle distribution. The mode amplitude must decrease to  allow the power dissipated to 
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match the free energy extraction rate. 

When yd/y~ 5 0.4, spontaneous hole-clump pair formation is not observed. We note 

that if y d  is too small, one cannot satisfy the inequality ( v , ~  + Iyl)5/2/yi’2 << [AI << y;, 

needed to achieve the explosive solution of Eq. (4). Without this explosive phase, the hole 

and clump apparently do not separate, and the distribution function just flattens in the 

resonance region, locally depleting the instability drive, so that the wave damps in a time 

72’ after saturation. 

In this paper we considered only a single mode. However, if there are other linear modes in 

the system, holes and clumps will induce “trapped particle” instabilities13J4 when Sw -+ Aw,  

where Aw is the frequency separation of the linear modes. One can easily show that the 

expected instability rate, Ysb, due to the interaction of the phase space structure with an 

adjacent mode is as large as ysb N (5) lI3 y ~ .  As this growth rate appreciably exceeds 

wb, interesting questions arise about the integrity of the phase space structures when other 

modes can be excited. This topic needs further study. 

The chirping mechanism described here may have an important application to energy 

channelling15 in a fusion system. Even in subcritical regimes, where phase space structures 

do not spontaneously arise, they can be excited with a relatively small perturbation if the 

system is not too far from the instability threshold and if the collisionality is sufficiently 

small. Thus one might be able to extract energy out of energetic charge fusion products 

in a controlled way, with only a modest input of external power. This interesting potential 

application needs further study. 
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FIGURE CAPTIONS 

FIG. 1. Time evolution of normalized mode amplitude for yd/y~ = 0.7, and ( V , R / Y L ) ~  = 

0.001 (these parameters apply to subsequent figures). 

FIG. 2. Contour plots of the evolving Fourier spectrum of IA(w)I2 vs. time using a Gaussian 

time window exp ( - (t - to)2/A2),  with A = 30yL1. Dotted line is the theory 

prediction, for early time. 

FIG. 3. Particle distribution function with holes and clumps. (a) The spatially averaged 

distribution as a function of time and R - WO. (b) A gray-scale image of the dis- 

tribution function in phase space at 7 ~ t  = 120. White corresponds to the smallest 

va1ues;of f and black the largest values. The original resonance is located in the 

gray area at the mid-line. ,The islands, corresponding to holes and clumps, are also 

gray although they are surrounded by other shades of the ambient phase space fluid. 
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