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Abstract 

An algorithm has been developed to compute particle tracking, including self- 

consistent space charge effects for synchrotron accelerators. In low-energy synchrotrons 

space charge plays a central role in enhancing emittance of the beam. The space 

charge effects are modeled by mutually interacting (through the Coulombic force) N 

cylindrical particles (2-&dimensional dynamics) whose axis is in the direction of the 

equilibrium particle flow. On the other hand, their interaction with synchrotron lat- 

tice magnets is treated with the thin-lens approximation and in a fully 3-dimensional 

way. Since the existing method to treat space charge fully self-consistently involves 3-D 

space charge effect computation, the present method allows far more realistic physical 

parameters and runs in far shorter time (about 1/20). Some examples on space charge 

induced instabilities are presented. 
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1 Introduction 

The synchrotron is the latest circular accelerator in a long evolution of particle accelerators. 

It consists of modular units of magnets which can be flexibly designed and modified and has 

superior beam optical properties because of various higher-order multipoles at our discretion. 

For these reasons many (or most) of high energy accelerators of nonradiative particles, as 

well as many lower energy accelerators of late, are synchrotrons. The latter includes examples 

of low-energy injectors/boosters to high energy synchrotrons and medical synchrotrons. 

There are many subtle effects and instabilities that can affect the performance of high 

energy synchrotrons (see surveys in [l], [2], [3]), some of which arise due to the higher-order 

nonlinearities of magnets and their cumulative effects. On the other hand, lower energy 

counterparts tend to have less elements (such as magnets) and may suffer from less subtle 

higher-order resonances, while they suffer more from space charge effects. This is because 

the space charge electric field, E,) due to the beam charges , is partially compensated by 

the current carried by the beam as E, - vzBB/c = l/-y2E,, where y is the relativistic 

factor. Because of the space charge effect’s strong ?-dependence, it can heavily influence 

nonrelativistic portions of the synchrotron operation. The best known detrimental effect is 

the emittance degradation (the emittance is a quantity that measures the phase space volume 

of the beam). B&ause of this emittance degradation, when we try to increase the current 

(and thus the amount of space charge) in the low-energy synchrotron, the space charge effect 

either degrades the beam badly or even disrupts it, leading to the threshold current above 

which the synchrotron does not operate. It is thus very important to understand the process 

of this emittance degradation. However, because of its collective nature and highly nonlinear 

physics, it is not well understood. 

To gain more understanding, it is necessary to develop a fully self-consistent numerical 
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simulation code that is both accurate within an affordable computational resource and suffi- 

ciently flexible to probe physical parameter dependences and the mechanism for this process. 

In a synchrotron the design (i.e. desired equilibrium) orbit is a perfect coasting curve (such 

as a circle, if the machine is circular). Particles that are slightly away from the design orbit 

will oscillate around this orbit (called the betatron orbit) due to the restoring magnetic field 

of the synchrotron magnets (often called the “lattice” of magnets). The oscillation frequency 

is referred to as the tune (v). 

An example of problems we are interested in is the phenomenon of resonance of particle 

dynamics between the betatron oscillation and the “external” (i.e. other forces, such as space 

charge noise) drivers. When the beam tune is equal to a half-integer (0.5, 1.0, 1.5, etc.) a 

resonance can be created between the betatron oscillation and an error (non-designed field) 

in the magnetic structure. This is similar to a harmonic oscillator in resonance with a small 

driving force causing in increase in the oscillator amplitude. Traditionally, this effect was 

believed to occur exactly at the half-integer tune, but further theoretical work published by 

Richard Baartman suggests that the resonance should occur at a point slightly below the 

half-integer [4]. 

There are two principal groups of forces that can govern the particle trajectories: the 

external, or machine-induced forces and the internal, or space charge forces. The first, and 

stronger set, is from the electric and magnetic fields created by the synchrotron elements 

which accelerate the beam (RF cavities), bend the beam (dipole magnets), and focus the 

beam (quadrupole magnets). The fields are determined by the machine design and are 

independent of the beam characteristics. When these are the only forces acting on the beam 

particles, an analytic solution to the beam’s progression can be obtained. This solution 

would include the beam tune and the time evolution of the beam emittance. 

The second set of forces which may act on the beam particles is the electric and magnetic 

interaction forces between the beam particles, or space charge force. This force is dynamic 
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in nature, as it is determined by the relative positioning of the beam particles while they 

move through the lattice. As this force becomes important in the particle trajectory, it is 

no longer possible to obtain a simple analytical solution for the beam evolution. Even an 

approximate solution for the beam envelope equation is complex [5]. For this reason it is 

necessary to study the beam evolution through numerical simulation. 

The traditional method of beam tracking is to approximate the beam with a set of non- 

interacting macro-particles occupying the six-dimensional beam phase space. As the macro- 

particles advance through the elements in the synchrotron lattice, appropriate momentum 

kicks are applied [6]. For models where space charge is important, at given time intervals the 

space charge fields are determined with a three-dimensional PIC (Particle in Cell) algorithm. 

These fields are then us : to calculate the momentum change of each particle 171. 

Memory and time constraints introduce two related, drawbacks to this method. The 

first is the limitation on the number of macro-particles. However, for the dynamics of the 

charged particles in a synchrotron to be essentially collisionless, the plasma parameter, g, 

must be much less than unity. The plasma parameter is given by g = (nAb)-’ where n is the 

particle density and AD = ( ? 7 / 4 ~ n i e ~ ) ~ / ~  with T’ as the temperature around the equilibrium 

momentum. In a coarse 3-D simulation (e.g. using around 1000 macro-particles) this number 

becomes larger than unity, while it is much smaller than unity in a realistic machine. The 

second problem is the computational time restraint on the number of grids allowed in the 

space charge calculation. In a PIC simulation [SI, the space charge force is obtained by 

solving Poisson’s equation with a Fast Fourier Tkansform (FFT) on a three-dimensional 

grid. The computation time required to perform the FFT is proportional to M d  lnMd where 

M is the typical number of grids and d is the number of spatial dimensions. Since most of 

the simulation run time is used in the FFT, the number of grids is severely limited in a 3-D 

simulation. 

To study the instabilities in the low-energy synchrotron through numerical simulation, 
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we needed to develop a simulation model which would accurately track the particles through 

the synchrotron lattice, include the space charge perturbations, and run at a fast enough 

rate to be computationally reasonable. We have developed such a model and' have encoded 

it into program SYN2D. This paper presents our model and its region of validity, describes 

our code, and demonstrates through a comparison of data from theory, a previous tracking 

model, and SYNZD that our model provides reasonable outcome. 

2 Description of Model 

We consider a positively-charged ion beam propagating through a synchrotron accelerator. 

The beam coordinates are aligned with the z-coordinate as the direction of beam propaga- 

tion, the x-coordinate as the outward horizontal direction (orbital bends are in the negative 

z-direction), and the y-coordinate as the vertical direction. Its transverse size, a, and a,, is 

much smaller than its longitudinal length S (i.e. it is cigar shaped) and is much smaller than 

the synchrotron's radius of curvature. With these requirements at any position in the syn- 

chrotron, for the purpose of calculating space charge effects, the beam can be approximated 

as an infinitely long, straight, uniform beam. Space charge of the beam is then independent 

of the s-coordinate and may be calculated in 2-$-dirnensions, similar to the case examined 

by Chen, et al. [9]. 

Our model approximates the beam as a set of Np cylindrical macro-particles of finite 

radius, a, and a, (where a, << a, and a, << a,). The macro-particles are aligned parallel to 

the s-axis, with a length which is long compared to the beam radius, such that they can be 

considered infinitely long in the space charge calculation, yet shorter than the synchrotron 

dimensions, such that they can pass quickly through the synchrotron elements. Each macro- 

particle has a dimensionless velocity (ox, &, &), transverse position (5, y), and longitudinal 

reference point (s) with respect to the lattice of magnets. 
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2.1 Dimensionless Equation of Motion 

Since the two sets of forces that act upon the macro-particles (external synchrotron magnetic 

and electric and the internal space charge) are electromagnetic in nature, the equation of 

motion can be obtained from the Lorentz force equation: 

dp - = e[E +,8 x B], dt  

where P is the macro-particle’s momentum, e is the macro-particle’s charge, and E and B 

are the transverse electric and magnetic fields at the macro-particle. 

To remove the dimensionality of Eq. (1) we introduce the following dimensionless param- 

eters for. time, electric field, and magnetic field: 

7 = wpt, (2) 

eE 

eB c=- 
wpmc ’ 

(3) 

(4) 

where m is the macro-particle’s rest mass, and wp is a reference plasma frequency. Replacing 

the momentum P by its constituent factors of mass, relativistic Lorentz factor, and velocity 

(P = mrflc), we can rewrite Eq. (1) in dimensionless form 

The 

and 

electric and magnetic fields can be split into two parts: the synchrotron component, 

the space charge component, 

(7) 
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The macro-particles feel a continuous radial force from the space charge. However, the 

components from the synchrotron elements are zero, except when the particle’s reference 

point passes through an element. Because of this, the macro-particle’s equation of motion 

can be divided into two regions: with and without external fields. In the next subsection 

we solve the equation of motion as the macro-particle passes through the element and in the 

following we solve for the equation of motion in the drift regions. 

2.2 Equation of Motion With Non-zero External Field 

The synchrotron elements can be treated as thin elements [6]. Then we take the time to pass 

through one much smaller than the timestep used in the space charge calculation. These 

77kicks77 can then be treated as impulses, changing the instantaneous velocity, but not the 

instantaneous position. This technique has been developed by Schachinger and Talman and 

used in their code TEAPOT [6J. 

Synchrotron elements include two types: RF cavities, which have a longitudinal electric 

field and no magnetic field, and magnetic multipole elements, in which the electric field is 

zero. 

The macro-particle’s equation of motion as it passes through an RF cavity is given by: 

Finite differencing these equations to first order in ,LIZ/,&, P,/ps, and t S d r / P s  yields 
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where the "+" denotes the quantity just after the element and the "-" just before the 

element. 

The equation of motion as the macro-particle passes through a magnetic element is given 

as 

where the magnetic field C is calculated from its multipole components as 

with a, and b, as the n* skew and straight multipole factors of the lattice element. Finite 

differencing the equation of motion with dr  equal to the time spent inside the lattice ( d ~  = 

r&/l+ S where 1 + S is the fractional difference between the macro-beam's momentum and 

the beam's design momentum) and solving for the particle velocities after the magnet, we 

Cz and cg are obtained from Eq. (15). The longitudinal velocity change, Eq. (18)) is obtained 

from the identity that a magnet does not alter the particle energy (i.e. y is constant). The 

code SYN2D applies these velocity shifts, Eqs. (13) and (16)-(18), to the macro-particles as 

their reference points pass through the elements. The exact method is described later. 
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2.3 Equation of Motion Without External Fields 

While the macro-particles pass between the magnetic elements (an area known as the drift 

region which makes up a vast majority of the synchrotron ring) the electric and magnetic 

fields in Eq. (5) have only a space charge component. Since the space charge electric and 

magnetic fields are related as C = p x <, Eq. (5) can be rewritten as 

By extracting the factor y from the derivative and evaluating Eq. (19) to first order in ,&/Ps 
and &/PS and with ts = 0, the components for the equations of motion become: 

When finite differenced, Eqs. (20)-(22) become 

3 Particle Backing Code SYN2D 

We have developed a tracking code, titled SYN2D, for tracking the macro-particles around 

a synchrotron accelerator ring, using our 2-$-dimensional model for the space charge calcu- 

lations. SYN2D uses two main input files. The first, giving the lattice characteristics, is ob- 

tained from an output file produced by Talman and Schachinger's tracking code TEAPOT [SI, 

9 



which reads in a standard synchrotron lattice file and converts it into a thin element lattice 

file containing the magnitudes and positions of each thin lattice element. The second input 

file is defined by the user and lists the simulation parameters (timestep, particle number, 

number of turns, etc.) and the beam characteristics (emittances, current, initial distribution, 

etc). 

The code, SYN2D, reads in the two input files, creates the initial particle distribution, 

tracks the particles (as outlined below), and records the desired diagnostics (currently, the 

beam emittance and tune-shift at the end of each turn). 

The particle tracking is accomplished using Eqs. (13), (16)-(18), and (23)-(25). First, 

each of the particles is advanced in space according to 

where the hats denote the dimensionless quantities: 

and zg is the simulation gridsize. For convenience we will no longer explicitly write the hat, 

but they will be implied. 

If the macro-particle passes through a lattice element during this timestep, the beam is 

advanced in space using Eqs. (26)-(28) with AT replaced by Are, which is the time for the 
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particle to reach the element. The velocities are then shifted, using Eqs. (13) or (16)-(18)’ 

and the beam is advanced again using the remainder of the timestep (AT -  AT^). At the 

end of the timestep the electric fields are calculated from Poisson’s equation with an FFT 

algorithm. The electric fields are used in Eqs. (23)-(25) to give the new macro-particle 

velocities. This process then repeats for the next timestep. 

At the end of each complete cycle around the lattice the macro-particle’s phase space 

positions are recorded and used to calculate the fractional part of the tune and the beam 

emittance. 

4 Testing of the Code 

We define the operating regimes of the code and test the code against the theoretical and 

other computational results. In selecting the simulation parameters of macro-particle number 

and timestep we needed to select values that were sufficient enough not to affect the data, 

yet not overpowering to make the code inefficient. It was decided to perform several test 

runs using a current of 1.0 amps (which is relatively large for this code) and observe the 

impact of varying the macro-particle number and timestep for runs of 25 turns. We then 

used the optimal parameters and compared run times with the 3-D code. The results are 

given below. 

4.1 Regimes of Simulation Parameters 

To measure the effect of the number of macro-particles on the beam tune and emittance, 

a series of simulations were performed with a current of 1.00 Amps, energy of 10 MeV, 

horizontal emittance of 50 7r mm-mrad, vertical emittance of 10 T mm-mrad, and timestep 

of 0.2. Each simulation had a different number of macro-particles ranging from 16 to 4096. 

Figure 1-a shows the average vertical tune-shifts and relative vertical emittances (average 

rms emittance divided by initial rms emittance) over each 25 turn run with error bars giving 



the rms fluctuation of these values. The horizontal tune-shifts and relative emittances are 

sufficiently similar to their vertical counter parts that only the vertical ones are shown. 

As can be seen, in simulations with 512 macro-particles or more, the tune-shifts remain 

constant with only small fluctuation and the relative emittance is also constant with only 

slight fluctuations. To keep the simulation time efficient and without major variations in 

emittance or tune-shifts, we have opted to use 1028 macro-particles in most simulation runs. 

The next important parameter we tested was timestep (AT). Since the simulation run 

time is inversely proportional to the timestep we need to make AT as large as possible. 

However, in the derivation of the equations of motion we used the approximation that Ar 

was sufficiently less than 1.0. To determine the optimal timestep, we performed several 

simulation runs while varying the timestep from 0.05 to 1.6. In each of these runs we used 

a current of 1.00 amps, energy of 10 MeV, horizontal emittance of 50 71 mm-mad, vertical 

emittance of 10 T mm-mad, and 1024 macro-particles. The resulting vertical tune-shifts 

and relative vertical emittances are shown in Fig. 1-b. The horizontal and vertical data 

produced similar results so we only present the vertical data. As can be seen, for timesteps 

less than or equal to 0.8 the tune-shifts remain fairly constant with only small fluctuations, 

as they should. For timesteps less than 0.4 the relative vertical emittance remains constant, 

as expected, with little variance. We have chosen to run our code using a timestep of 0.2. 

The table below lists several of the simulation parameters for a typical run on our code. 

-'he column on the left gives the dimensionless parameters, with N, being the number of 

timesteps per complete turn. The column on the right has the parameters in SI units. 
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I = 1.0 amps, E = 10 MeV, eZ = 5 0 ~  mm-mrad, 

E =  1120 

ay = 0.5 d r  = 1.41 x s 
cTz = 4.7 

N, = 52.4 

zg = 0.0189 m 
a, = 0.5 

cTy = 2.1 

= 1.42 x 107 H~ 

X = 2.25 x lo-" C/m 

We performed runs with the same parameters on our SYN2D and SIMPSONS [7] (a 3-D 

PIC code for synchrotron space charge calculations) to compare run times. In both cases, 

identical lattices and beam parameters were used and both were run on the same CRAY-2 

machine. The code SIMPSONS completed tracking 1024 particles for 100 turns in 2350 CPU 

seconds. SYN2D completed the simulation in 105 CPU seconds. This is an improvement by 

more than a factor of 20. Our code, therefore, makes more simulation runs and longer runs 

possible. 

4.2 Comparison of Theory and Simulation 

In this section we compare the tune-shifts obtained from our code with those from a theo- 

retical equation, and with those obtained from the 3-D code SIMPSONS. We first show the 

derivation of the theoretical equation. Then we present graphically a comparison between 

that equation and the simulations for varying current, energy and emittances. 

4.2.1 Theoretical equation 

The theoretical equation we employ is a modification of the Laslett tune shift formula [lo, 111 

which gives the tune shift as a function of beam energy, emittance and intensity. To derive 

this equation, we consider a beam of constant, uniform density with an elliptical transverse 
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cross-section such that the beam surface can be written as 

.-+-= x2  Y2 1. 
a2 b2 

Or, in other words, a beam with density 

(33) 

x2 y2 for - + - 5 
a2 b2 1' 

(34) 
x2 y2 for- + - > 1 
a2 b2 

We require that the transverse beam size (a ,b )  be much smaller than the synchrotron 

circumference such that the beam can be approximated as an infinitely long straight beam 

(para-axial approximation). We also require that the longitudinal velocity (p8)  be much 

greater than the t r s  x s e  velocities @,&). 

To obtain the spaL huge effect, we use the density of Eq. (34) to solve Poisson's equation 

(V2a0 = -eno/toi) for the scalar electric potential Q0. The solution for x2/u2 + y2/b2  < 1 

is [5] 
eno bx2 aY2 a0(z,y) = -- 2 ~ ,  [ u + b + x ] '  - (35) 

Inside the beam the electric field is given by the gradient of the scalar potential 

en0 E ( x , ~ )  = -V@ - ( b x G  + ayZy), 
O - Eo(U + b)  

and the internal magnetic field is given by the cross product of the beam velocity and the 

electric field 

enODs (-ap& + bzEY). 
1 
C eo(a + b)c 

B ( z , ~ )  = -p x E (37) 

Using Eqs. (36) and (37), we get the space charge force as 

The space charge effect on the transverse particle dynamics in the presence of the lattice 

magnets is now expressed in the following form. With the force from the quadrupole magnetic 
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where hsyn(s) is the quadrupole magnetic moment at the position s, the combined space 

charge force and quadrupole force give rise to the equation of motion as 

The total tune vz,y is defined as the number of transverse (x or y direction) oscillations 

the beam particles make as they complete one longitudinal revolution 

(42) 
1 

vx,y = -- J P : ; Y K Z , ~ ( S ) ~ S ,  

where K ; % , ~ ( S )  is the quantity in brackets in Eqs. (40) and (41) and ,!3zy is the Courant-Snyder 

beta function [12] and is determined by the accelerator lattice design (i.e. it is independent 

of the beam parameters). 

47r s 

Since, in this approximation, K ( ~ , ~ ) , ~ ~ ~  and K ( ~ , ~ ) , ~ ~ ~  are independent of each other, the 

equation for the tune can be broken down into two parts: 1) the tune without space charge, 

u(,,~)~, and 2) the tune-shift due to the space charge A U ( , , ~ )  = u(,,~) - u(,,~)~. The total tune 

is 

Assuming that the values of a, b, no, and pCs vary only slightly from their average values, the 

integrals can be approximated to give 
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Defining the beam current (I) and beam RMS emittances as 

€ y =  -, 
4Pcs,y 

the tune-shifts can be obtained from Eqs. (45) and (46) as 

-ISe 
1 6 x 2 ~ 0 d P 2 y 2 ~ ,  (1 + fi ’ Au, = V, - v ~ , ~  = 

(47) 

(49) 

The tune-shift is one of the most important parameters to characterize the effect of space 

charge. In general the larger the space charge (and thus the current), the greater the tune- 

shift (in the negative direction) is. 

4.2.2 Comparison with Simulation 

D and SIMPS0 We performed four groups of simulation runs on SYN JS to see how the tune- 

shift depended upon the beam parameters (current) energy, horizontal emittance, and vertical 

emittance). In the first set of runs we varied the current from 0.0 to 2.0 amps while holding 

all other parameters constant. During these runs the energy was set to 10.0 MeV, and the 

horizontal and vertical emittances were set to 50 7r mm-mad and 10 7r mm-mrad respectively. 

Each run lasted for 25 turns. At each turn the beam’s horizontal and vertical tune-shifts 

were calculated and at the end of each run and the average tune-shift was recorded as well as 

the rms fluctuation in tune-shift over the run. Figure 2-a shows the average horizontal beam 
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tune-shifts as a function of current. The solid line on each graph represents the theoretical 

tune-shift obtained from Eqs. (50) and (51). The diamond point is the average tune-shift 

from our code and the horizontal dash is the average tune-shift from the code SIMPSONS. 

The error bars represent the rms fluctuation in tune-shift. Only horizontal tune-shifts are 

presented as the horizontal and vertical data show similar agreements. 

Next we compared the tune-shifts while varying the beam energy. During these runs the 

current was set to 0.1 amps and the emittances were set to 50 7r mm-mrad for the horizontal 

emittance and 10 7r mm-mrad for the vertical emittance. The energy was varied between 

1 MeV and 20 MeV. The runs went for 25 turns and the same technique was employed 

for obtaining the average beam tune-shifts. Figure 2-b shows the comparison between the 

theory, SYN2D, and SIMPSONS. 

Finally, we tested the effect of the beam emittances on the tune-shift. This was done in 

two sets of runs. In both sets the current was fixed at 0.1 amps and the energy was set to 

10 MeV. In the first set the vertical emittance was set to 10 7r mm-mad and the horizontal 

emittance was varied between 10 ?r mm-mrad and 50 7r mm-mad. The resulting tune-shifts 

are shown in Fig. 2-c. For the second set of runs the horizontal emittance was set at 1 0 ~  

mm-mad and the vertical emittance was varied between 10 7r mm-mrad and 50 7r mm-mrad. 

The resulting tune-shifts are shown in Fig. 2-d. 

Each of these figures have shown a good agreement between the theoretical tune-shift 

and our code. The figures have also shown that the tune-shifts are comparable with those 

obtained using the slower code SIMPSONS. 

5 Application to Synchrotron Dynamics 

We now demonstrate an application of the current code to a realistic accelerator physics 

problem: the question of emittance growth of the beam due to the resonances in the syn- 

chrotron caused by space charge. In all of the test runs done previously the emittance 

17 



remained constant during the run. However, if resonances occur, the emittance can grow. 

To find these resonances, we varied the vertical machine tune vyo (tune without space charge 

tune-shift) over a range of 0.85 to 1.3 for three given currents ( I  = 0.1, 0.5, and 1.0 amps). 

Each run consisted of 25 turns after which the relative emittance (final emittance divided 

by initial emittance) was recorded. Figure 3 shows theJresulting horizontal and vertical 

emittances. The dashed line gives the relative emittance for a current of 0.1 amps. For this 

case there are three resonances with the first two only in the vertical plane. This first is 

at an integer machine tune of 1.000. This resonance is very narrow, as for a tune of 0.998 

or 1.002 there is no emittance growth. The second resonance lies slightly above the integer 

machine tune. The total tune (v = v, + Av) for this case lies just below 1.0. The third 

resonance occurs near a machine tune vyo of 1.13 and a total tune vy of 1.12. 

The dotted line of Fig. 3 shows the resonances for a current of 0.5 amps. Here again we 

have the three resonances with only the third having any effect on the horizontal emittance. 

The first is directly on the integer machine tune, implying that this resonance is tune-shift 

independent. The second is at a machine tune vyo of 1.025 and a total tune vy of 0.98. The 

third resonance is at a machine tune v,, of 1.17 and total tune vv of 1.12. 

Figure 3’s dashed line represents the emittance growth for a current of 1.0 amps. Again 

we have the same three resonances. 

Several things to note about these resonances. The lowest resonance is current inde- 

pendent; it always occurs on the integral machine tune. The second resonance increases in 

magnitude with current, has a finite width, and only affects the vertical emittance. When 

total tunes vy are used in plotting the data, instead of machine tunes vyo this second set of 

resonance points all occur just below 1.0. The third resonance decreases in magnitude with 

increasing current, and is spread out such that when plotted against total tunes all three 

occur near a tune of 1.1. The first resonance has a very thin width; however, the other two 

have distinct widths that increase with current. 
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6 Conclusion 

In this report we have developed a model for tracking a long, ion beam through a synchrotron 

lattice. We have encoded the equations of motion for the macro-particles into the code 

SYN2D. Our model has been tested through comparison of its output against theoretical 

analysis and against the 3-D code SIMPSONS. We have further tested our model by showing 

that it is able to accurately track the beam at a rate more than twenty times faster than 

the conventional tracking method. We therefore argue that this new code is preferable to 

the standard 3-D code. It is more physically justifiable than SIMPSONS for measuring the 

space charge, as i t  has a larger concentration of particles per longitudinal unit length and 

can run with a finer grid. Finally, as it is cheaper to run, it is now possible to track the beam 

for an entire acceleration cycle (around 100,000 turns). The present tracking algorithm may 

be further improved by adopting the Gf-algorithm as in 1131. 

* 

We thank Dr. S. Machida for allowing us to use SIMPSONS. Part of the work was 

supported by Hitachi and DOE. 
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FIGURE CAPTIONS 

FIG. 1. Testing of simulation parameters. (a) Average vertical tune vs. number of macro- 

particles [Np = 16 to 40961. (b) Relative vertical emittance vs. number of macro- 

particles [Np = 16 to 40961. (c) Average vertical tune vs. dimensionless timestep 

[dr = 0.05 to 1.61. (d) Relative vertical emittance vs. dimensionless timestep [dr = 

0.05 to 1.61. [Unless otherwise specified above, the simulation parameters were: 

Turns= 25, I = 1.0 amps, E = 10 MeV, E ,  = 50n mm-mrad, cy = lox mm-mrad, 

V, = 1.75, vY = 0.85, d r  = 0.2, Np = 10241 

FIG. 2. Comparison of SYN2D with the 3-D code SIMPSONS and theory (a) Horizontal 

tune-shift vs. current [ I  = 0.0 to 1.9 amps]. (b) Horizontal tune-shift vs. beam 

energy [E = 1.0 to 20 MeV]. (c) Horizontal tune-shift vs. horizontal emittance [ E ,  = 

10 to 507r mm-mrad, cy = 10n mm - mrad]. (d) Horizontal tune-shift vs. vertical 

emittance [E, = 1On mm-mrad, ey = 10 to 5 0 ~  mm-mrad]. 

Solid line is the theoretical tune-shift. Diamonds represent data from our code 

(SYN2D). Dashes represent data from the 3-D code (SIMPSONS). Error bars denote 

rms fluctuation in tune-shift over the 25 turns. [Unless otherwise specified above, the 

simulation parameters were: Turns=25, I = 1.0 amps, E = 10 MeV, E ,  = 50n mm- 

mrad, and cy = 1 0 ~  mm-mrad, v, = 1.75, uy = 0.85, d r  = 0.2, Np = 10241 

FIG. 3. Space charge effect: emittance vs. vertical machine tune. (a) Relative horizontal 

emittance vs. vertical machine tune. (b) Relative vertical emittance vs. vertical 

machine tune. Solid line represents I = 0.1 amps. Dashed line represents I = 

0.5 amps. Dotted line represents I = 1.0 amps. [Simulation parameters: I = 

0.1,0.5,1.0 amps, E = 10 MeV, E, = 50n mm-mrad, and cy = 1On mm-mrad, 

U, = 1.75, uY = 0.75 -, 1.30, d r  = 0.2, Np = 10241 
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