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ABSTRACT 

Making use of an extension of a recently proposed, relatively simple, approximate method of analysis, 
a critical evaluation is made of the response to horizontal ground shaking of flexible walls retaining a 
uniform, linear, viscoelastic stratum of constant thickness and semiinfinite extent in the horizontal 
direction. Both cantilever and top-supported walls are examined. Following a detailed description of 
the method and of its rate of convergence, comprehensive numerical solutions are presented that 
elucidate the action of the system and the effects of the various parameters involved. The parameters 
varied include the flexibility of the wall, the condition of top support, and the characteristics of the 
ground motion. The effects of both harmonic base motions and an actual earthquake record are 
examined. Special attention is paid to the effects of long-period, effectively static excitations. A 
maximum dynamic response is then expressed as the product of the corresponding static response and 
an appropriate amplification or deamplification factor. The response quantities examined include the 
displacements of the wall relative to the moving base, the dynamic wall pressures, and the total wall 
force, base shear and base moment. 

' I  

... 
111 





TABLE OF CONTENTS 

Section Page 

ABSTRACT .............................................................. iii 

TABLE OF CONTENTS ...................................................... v 

LIST OF TABLES. .......................................................... vii 

LIST OF FIGURES ......................................................... ix 

EXECUTIVESUMMARY ................................................... xi 
... ACKNOWLEDGMENT. .................................................... xiii 

1 INTRODUCTION ....................................................... 1-1 

2 SYSTEM CONSIDERED ................................................. 2-1 

3 METHODOFANALYSIS ................................................ 3-1 

3.1 Problem Formulation ................................................ 3-1 

3.2 Evaluation of Generalized Forces ...................................... 3-2 

3.3 Equations of Motion ................................................. 3-5 

3.4 Problem Parameters ................................................. 3-7 

4 STATICRESPONSE.. ................................................... 4-1 

4.1 Convergence of Solutions ............................................ 4-1 

4.2 Wall Pressures ..................................................... 4-2 

4.3 Wall Forces ........................................................ 4-2 

4.4 Wall Displacements ................................................. 4-3 

5 HARMONICRESPONSE ................................................. 5-1 

6 TRANSIENTRESPONSE ................................................ 6-1 

7 EFFECT OF WALL INERTIA ............................................. 7-1 

8 CONCLUSIONS ........................................................ 8-1 

9 REFERENCES ......................................................... 9-1 

10 APPENDIX. NATURAL MODES AND INNER PRODUCTS ................... 10-1 
1 1  NOTATION ............................................................ 11-1 

V 

' - I 





LIST OF TABLES 

Table Page 

4.1 Normalized ‘static’ values of total wall force P,, , centroidal height h,, 
base shear (Vb)st base moment (M,,),, and of displacement factors c1 and c2 
for clamped-free (C-F) and clamped-hinged (C-H) walls ......................... 4-5 

10.1 Dimensionless factors hj and aj in expressions for natural modes of vibration of 
clamped-free (C-F) and clamped-hinged (C-H) flexural beams ................... 10-3 

vii 





LIST OF FIGURES 

Figure Page 

Soil-wall systems considered ............................................... 2-2 2.1 
D 

3.1 Modeling of system ...................................................... 3-9 

4. I Convergence of wall displacements and pressures for statically excited systems with C-F 
walls; d, = 20, p, = 0 ,  v = 1/3. .......................................... 4-6 

4.2 Convergence of base shear and base moment in wall of statically excited systems; 
C-F walls of different flexibilities, p, = 0,  v = 1 /3 ............................ 4-7 

4.3 Convergence of base shear and base moment in wall of statically excited systems; 
C-H walls of different flexibilities, p, = 0,  v = I /3 ............................ 4-8 

4.4 Distributions of wall pressures for statically excited systems with different wall flexibilities; 
p, = O ,  v =1/3 ........................................................ 4-9 

4.5 Normalized values of total force per unit of wall length and of centroidal height 
for statically excited systems with different wall flexibilities; p, = 0,  v = 1 /3 ...... 4-10 

4.6 Normalized values of base shear and base moment per unit of wall length of 
statically excited systems; C-H walls of different flexibilities, p, = 0 ,  v = 1 /3 ...... 4-1 1 

4.7 Distributions of wall displacements relative to base for statically excited systems with differ- 
ent wall flexibilities; p, = 0 ,  v = 1 /3. ...................................... 4-1 2 

4.8 Coefficients c ,  and c2 in expressions of maximum wall displacements relative to 
base for statically excited systems with different wall flexibilities; p, = 0, v = 1 /3 . . 4-1 3 

5. I Frequency response curves for base shear per unit of wall length of harmonically 
excited systems; C-F walls of different flexibilities, p, = 0,  6, = 0.04, 
v =1/3, 6 =0.1 ........................................................ 5-3 

5.2 Maximum amplification factor for total force in wall of harmonically excited systems 
with different wall flexibilities; p, = 0,  6, = 0.04, v = 1 /3, 6 = 0.1 .............. 5-4 

ix 

. I  



6..1 Normalized values of maximum total force per unit of wall length for systems with 
different wall flexibilities subjected to El Centro earthquake record; p, = 0,  
6 , = 0 . 0 4 , ~ = 1 / 3 , 6 = 0 . l  ............................................... 6-3 

6.2 Amplification factors for total force in wall of systems with different wall flexibilities 
subjected to the El Centro earthquake record; p, = 0, 6 ,  = 0.04 . v = 113, 6 = 0. I . . .  6-4 

6.3 Average amplification factors for total force in wall of systems subjected to El Centro 
earthquake record; p, = 0 , 6, = 0.04, v = 1 /3 , 6 = 0.1 ; AF averaged over period 
range T, = 0.1 to 0.5 sec ................................................. 6-5 

6.4 Normalized centroidal heights for systems with different wall flexibilities subjected to 
El Centro earthquake record; p, = 0 ,  6, = 0.04, v = 1 / 3 ,  6 = 0.1 ................ 6-6 

7.1 Effective wall mass for statically excited systems with different wall flexibilities; 
~ = 1 / 3  ............................................................... 7-2 

X 



EXECUTIVE SUMMARY 

The study reported here is the sixth in a series of investigations of the response to ground shaking of 
retaining walls and deeply embedded vertical cylindrical structures. The objectives of these studies 
have been to provide insights into the dynamic responses of these systems and to formulate rational 
but simple methods for their analysis and design. The previous studies were described in Brookhaven 
National Laboratory reports 52357,52372,52402,52444 and 52502. 

Excepting limit-state analyses, in which the wall is considered to displace sufficiently at the base to 
mobilize the full shearing strength of the backfill, past analyses of the dynamic linear response of 
retaining walls dealt primarily with non-deflecting, rigid walls. In a recent contribution by the authors, 
it has been shown that, for walls that are rigid but elastically constrained against rotation at their base, 
both the magnitudes and distributions of the dynamic wall pressures and forces are quite sensitive to 
the flexibility of the base constraint and that, for realistic base flexibilities, these effects may be 
significantly lower than those computed for non-deflecting, rigid walls. Comparable effects also are 
expected for walls that are themselves flexible. 

. 

The purpose of this study is twofold: (1) to formulate a method of analysis with which the response to 
horizontal ground shaking of flexible walls retaining a uniform, linear viscoelastic stratum may be 
evaluated reliably and simply; and (2) to make a critical evaluation of the effects of wall flexibility on 
the magnitudes and distributions of the resulting wall pressures, forces and displacements. 

The retained stratum in the reported solutions is considered to be of constant thickness and infinite 
extent in the horizontal direction, and the walls are considered to be fixed against both deflection and 
rotation at the base and to be either free or simply supported at the top. The support points of the wall 
and the base of the soil stratum are presumed to be excited by a space-invariant horizontal motion. In 
addition to the wall flexibility, the factors investigated include the properties of the stratum, and the 
characteristics of the base excitation. Both harmonic and earthquake-induced ground motions are 
examined. Special attention is paid to the effects of long-period, effectively static excitations. A 
maximum response for the dynamically excited system is then expressed as the product of the 
corresponding long-period, static response and an appropriate amplification or deamplification factor. 
After describing the method of analysis and discussing the rates of convergence of the resulting 
solutions, comprehensive numerical data are presented which elucidate the underlying response 
mechanisms and the effects and relative importance of the parameters involved. 
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The principal conclusions of the study may be summarized as follows: 

1. With the method of analysis and the numerical data presented, the dynamic response of the class 

2. 

3. 

4. 

5. 

of flexible retaining walls examined may be evaluated readily and with high degree of accuracy. 
The method, which makes use of Lagrange's equations of motion in combination with a recently 
proposed model for the action of soil-wall systems, is expected to prove of value in the analysis 
of a number of other problems as well. 

The magnitudes and distributions of the wall displacements, wall pressures and associated forces 
induced by horizontal ground shaking in the systems examined are quite sensitive to the flexibil- 
ity of the wall. Increasing this flexibility reduces the horizontal extensional stiffness of the 
retained medium relative to its shearing stiffness, and this reduction decreases the proportion of 
the soil inertia forces that gets transferred to the wall and, hence, the forces developed in it. 

For realistic wall flexibilities, the total wall force or base shear for cantilever walls may well be 
less than one-half of that obtained for fixed-based, rigid walls, with the reduction in the base 
moment being even larger. Because of the greater effective stiffness of top-supported walls, the 
corresponding reductions for such walls are significantly smaller than for the cantilever systems. 

Even for the 1940 El Centro earthquake ground motion record, the maximum wall displacement 
relative to the moving base for cantilever walls of realistic flexibilities is found to be less than the 
values of 0.1 to 0.4 percent of the wall height normally accepted as the minimum required to 
develop a limit state in the backfill material. 

The comprehensive numerical solutions presented and their analysis provide not only valuable 
insights into the effects and relative importance of the numerous factors that influence the 
response of the systems examined, but also a sound framework for assessing the behavior of even 
more complex soil-wall systems. 
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SECTION 1 

INTRODUCTION 

Despite the multitude of studies that have been carried out over the years, the dynamic response of 
retaining walls is far from being well understood. There is, in particular, a paucity of conclusive 
information that may be used in design applications. 

Excepting limit-state in which the wall is considered to displace sufficiently at the base 
to mobilize the full shearing strength of the backfill, past analyses of the dynamic linear response of 
such systems dealt primarily with non-deflecting, rigid Only exploratory studies have been 
made of flexible cantilever  wall^,^*^ and the limited numerical data presented by Sun and Ling are 
believed to be in error. In particular, in their expressions for the pressures induced on rigid walls, the 
factor e3 should appear without the exponent. More detailed accounts of previous analytical and 
experimental studies of retaining walls have been presented by Nazarian and HadJan," Prakash,' 
Whitman,12 and Veletsos and Younan.13 

In a recent contribution by the authors,14 it has been shown that, for walls that are rigid but elastically 
constrained against rotation at their base, both the magnitudes and distributions of the dynamic wall 
pressures and forces are quite sensitive to the flexibility of the base constraint and that, for realistic 
base flexibilities, these effects may be significantly lower than those computed for non-deflecting, 
rigid walls. Comparable effects also are expected for walls that are themselves flexible. 

The purpose of this study is twofold: (1) to formulate a method of analysis with which the response to 
horizontal ground shaking of flexible walls retaining a uniform, linear viscoelastic stratum may be 
evaluated reliably and simply; and (2) to make a critical evaluation of the effects of wall flexibility on 
the magnitudes and distributions of the resulting wall pressures, forces and displacements. 

The retained stratum in the reported solutions is considered to be of constant thickness and infinite 
extent in the horizontal direction, and the walls are considered to be fixed against both deflection and 
rotation at the base and either free or simply supported at the top. The support points of the wall and 
the base of the soil stratum are presumed to be excited by a space-invariant horizontal motion. In 
addition to the wall flexibility, the factors investigated include the properties of the stratum and the 
characteristics of the base excitation. Both harmonic and earthquake-induced ground motions are 
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examined. Special attention is paid to the effects of long-period, effectively static excitations. A 
maximum response for the dynamically excited system is then expressed as the product of the 
corresponding long-period, static response and an appropriate amplification or deamplification factor. 
After describing the method of analysis and discussing the rates of convergence of the resulting 
solutions, comprehensive numerical data are presented which elucidate the underlying response 
mechanisms and the effects and relative importance of the parameters involved. 
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SECTION 2 

SYSTEM CONSIDERED 

The systems examined are shown in Figure 2.1. They consist of a sem.iinfinite, uniform layer of 
viscoelastic material that is free at its upper surface, is bonded to a non-deformable, rigid base, and is 
retained along one of its vertical boundaries by a uniform, flexible wall. The wall is considered to be 
fixed against both deflection and rotation at the base and to be either free or hinged at the top. The 
clamped-free and clamped-hinged systems are identified with the symbols C-F and C-H, respectively. 
The free boundary is representative of cantilever retaining walls, whereas the hinged or simply 
supported boundary is more nearly representative of the support condition for basement walls. The 
support points of the wall and the base of the soil stratum are presumed to experience a space- 
invariant horizontal motion, the acceleration of which at any time t is xg(t) = xg . Material damping 
for both the medium and the wall is considered to be of the constant hysteretic type. 

The properties of the soil stratum are defined by its mass density p , shear modulus of elasticity G , 
Poisson's ratio v , and material damping factor 6,  which is considered to be the same for both 
shearing and axial deformations. The factor 6 is the same as the tan6 factor used by the second 
author and his associates in studies of foundation dynamics and soil-structure interaction15p16 and 
twice as large as the percentage of critical damping p used by other authors in related ~ t u d i e s . * ~ * ~ ~  
The properties of the wall are defined by its thickness t, , mass per unit of surface area p,, Young's 
modulus of elasticity E, , Poisson's ratio v, , and damping factor 6 ,  which, like 6 ,  is twice as large 
as the corresponding percentage of critical damping. 

. I  

The wall displacements relative to the moving base and the resulting wall pressures and forces for a 
base-excited system can be shown to be identical to those induced in a force-excited system for which 
the base is stationary and the stratum and wall are subjected to lateral body forces of intensity 
-p x&t) and -p, x&t), respectively. For excitations with dominant frequencies that are very low 
compared to the fundamental frequency of the stratum, the action of a force-excited system may be 
easier to visualize than that of the base-excited system. 
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SECTION 3 

METHOD OF ANALYSIS 

The method of analysis employed is an extension of that used in previous studies by the  author^.'^ 
Fundamental to this method is the assumption that, under the horizontal excitation considered, no 
vertical normal stresses develop anywhere in the medium, i.e. oy = 0. It is further assumed that there 
is complete bonding between the wall and the retained medium, and that the horizontal variations of 
the vertical displacements of the medium are negligible so that the horizontal shearing stresses zxy 
can be expressed as zxy = G* ( W a y )  , where u is the horizontal displacement of an arbitrary point of 
the medium relative to the moving base, G* = G( 1 + i s )  is the complex-valued shear modulus, and 
i = n .  

3.1 Problem Formulation 

The instantaneous value of the wall displacement relative to the moving base,w(q, t) , is expressed as 
a linear combination of the natural modes of vibration of an appropriately supported, uniform, flexural 
beam as 

where q = y/H is a dimensionless measure of the vertical distance y from the base; @j(q) is thejth 
natural mode of vibration of the beam; qj(t) is a generalized coordinate defining the degree of 
participation of thejth mode, $j(q) , at any time t; and J is the total number of modes considered. For 
a wall that is free at the top, $j(q) refers to thejth mode of a C-F beam, whereas for a wall that is 
simply supported at the top, it refers to the corresponding mode of a C-H beam. The expressions for 
these modes are given in the Appendix. 

The equations of motion for the system are obtained by repeated application of Lagrange's equation*' 

j = 1,2, ..., J (2) 

where T, is the kinetic energy of the wall; V, is its strain energy; Fj is the jth generalized force 
induced by the soil pressures on the wall; and a dot superscript denotes a differentiation with respect 
to time. The kinetic and strain energies are given by 
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1 T, = 5 1 pwHf(xo+w)2dq 

0 
(3) 

in which xg is the instantaneous value of the ground velocity; w is the corresponding wall velocity 
relative to the moving base; a prime superscript denotes a differentiation with respect to q ; and 
D$ = D,( 1 + 3,) is the complex-valued flexural rigidity of the wall, with D, given by 

3 
E, tw 

12( 1 - v,) 2 D, = (5) 

On substituting equations (3) and (4) into equation (2) and making use of equation (l), Lagrange’s 
equations reduce to 

j = 1,2, ..., J 

in which (a, b) denotes the integral over the interval [O,l] of the product of the two bracketed 
functions. 

3.2 Evaluation of Generalized Forces 

The as yet undetermined generalized forces Fj are the coefficients in an expansion of the variation of 
the work done by the soil pressures, S W  , by variations in the generalized coordinates 6qj , i.e., 

J -  

SW = Fj6qj (7) 
j = l  

These forces are determined as follows. First, the normal pressures exerted by the soil ,on the wall, 
o(q, t) , are expressed as the sum of two components as 

where (T, represents the component associated with a non-deflecting rigid wall, and of represents the 
component associated with the wall flexibility. The work W may then be expressed as 

Inasmuch as the pressure component or is considered to pre-exist and is independent of the wall 
displacement, the factor 112 is not needed in front of the first term. The sign convention for pressures 
and displacements is that used in theory of elasticity. Specifically, displacements are considered to be 
positive when inward, i.e., when directed along the positive x-axis, and normal stresses are positive 
when tensile. On taking the variation of W , recalling that or is independent of w, and making use of 
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equation (8), the jth generalized force Fj is expressed as 

The stress components in the above expressions are evaluated by application of the model for the soil- 
wall system proposed earlier by the a~th0rs . l~  Shown in Figure 3.1, the wall in this model is 
considered to be connected by a set of springs and dashpots to a cantilever shear-beam having the 
properties of the retained medium. The shear-beam represents the action of the soil stratum at the far- 
field while the springs and dashpots, which have frequency-dependent properties, simulate the 
restraining action of the medium between the far field and the wall. Strictly speaking, the model is 
used to evaluate the response of the system to a harmonic excitation. The response to an arbitrary 
transient excitation is then determined by application of Fourier transform techniques. 

For a harmonic base motion with an acceleration 

x,(t> = X,eiUt 

in which X, is the acceleration amplitude and o is the circular frequency of the motion, the 
horizontal displacement of the shear-beam relative to the moving base at an arbitrary elevation and 
time, u,(q, t) may be expressed as 

N 
u,(T, t> = c u n v n ( q )  eiot 

n = l  

where v, is the nth natural mode of vibration of the shear-beam, given by 

U, and on are the corresponding participation factor and circular natural frequency, given by 

16 pXgH2 1 1 un = -- - 
3 n G (2n - 113 1 - ( o / ~ , ) ~  + i6 

and 

(2n - 1)n VS - 
2 H  0, = 

respectively, v, = is the shear-wave velocity for the medium, and N is a sufficiently large 
integer representing the total number of modes considered. If the displacement of the wall is 
expressed similarly in terms of the natural modes of the shear-beam as 
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N 

n = l  

where W, are participation factors that remain to be determined, then the total dynamic wall pressure 
o(q, t) may be computed from14 

The quantity K, in this expression represents the complex-valued impedance or dynamic stiffness of 
the spring-dashpot combination when both the shear-beam and the wall vibrate in the nth shear-beam 
mode vn(q) , and it is given by 14 

Incidentally, the sum of the terms in equation (17) involving the factors U, represents the pressure 
component or for a rigid wall, whereas the sum of the terms involving the factors Wn represents the 
pressure component of associated with the wall flexibility. 

It is important to note that the expansion defined by equation (16) is used only for the evaluation of the 
wall pressures, the wall displacements being determined from equation (1). This expansion is possible 
because the shear-beam modes constitute a complete set of functions in the interval [0,1] and may, 
therefore, be used as a basis for the representation of any function in that interval?' 

The participation factors W, in equation (16) are determined by expanding thejth mode of vibration 
of the wall Qj(q) in terms of the shear-beam modes yn(q). On making use of the orthogonality 
property of the latter, one obtains 

and on noting that for the harmonic response considered, the generalized coordinates qj are of the 
form 

equation (1) may be written as 

or as 
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where aj, is the Kronecker delta 

j # k  
j = k  

Finally, { Q} is the vector of the amplitudes of the genedized coordinates Qj , and {A} is a vector 
of normalized exciting forces with elements 

With the vector { Q} determined from the solution of the system of algebraic equations (28), the 
generalized coordinates qj  are determined from equation (20), the wall displacement are determined 
from equation (l), and the wall pressures are determined from equation (8) by making use of 
equations (24) and (25). The total dynamic wall force, P(t) and the moment of this force about the 
base, M(t) , are finally determined by appropriate integrations of the wall pressures and associated 
inertia forces. The results are 

J 
- ywXgHei"' + 02p,H c (Qj 7 1) Qj eiot 

j = 1  

J 1 
2 w  

- -p X H2eio' + a2pwH2 c (Qj , q) Qj eiot 
j = l  

For a clamped-free wall, the force P(t) is clearly equal to the base shear in the wall, vb(t) , and the 
overturning base moment M(t) also equals the corresponding wall moment, Mb(t) . For the clamped- 
hinged wall, the base wall moment is determined by differentiation of the wall displacement, i.e., from 

and the corresponding base shear is computed by considering the equilibrium of moments about the 
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hinged support, i.e. from 

1 V,(t) = P(t)-  - [M(t)-M,(t)J H (35) 

The latter expression converges faster than that obtained by triple differentiation of the wall 
displacement. Shears and moments are considered to be positive when induced by positive normal 
pressures. 

The beam modes $j(q) for the two sets of boundary conditions examined and the expressions for the 
various integrals of these modes in the equations presented are given in the Appendix. 

3.4 Problem Parameters 

The primary parameters affecting the response of the system are the relative flexibility of the wall and 
retained medium, defined by 

GH3 d, = - 
DW 

the support condition of the wall at the top, and the characteristics of the base motion. For a harmonic 
excitation, the response is controlled by the frequency ratio o/ol , where o is the circular frequency 
of the base motion and of the resulting steady-state response, and o, is the fundamental circular 
natural frequency of the stratum when it is considered to act as an unconstrained, vertical cantilever 
shear-beam. For an arbitrary transient excitation, the relevant stratum property is its fundamental 
cyclic frequency f ,  = o,/27r , or its corresponding period TI = l / f ,  = 2n/o, ,  given by 

4H TI = - 
V, 

(37) 

Additional parameters are Poisson’s ratio and the damping factor for the soil, v and 6 , the damping 
factor for the wall 6 ,  , and the ratio of mass densities for the wall and the retained medium p,/pH . 

As a measure of the range of d, values that may be encountered in practice, consider a concrete wall 
with E, = 3 x 10 psi, v, =0.17 and a height-to-thickness ratio H/t, = 10 retaining a soil for 
which the unit weight y = pg = 100 lb/ft3. On noting that 

6 

2 G H  d, = -= GH3 12(1 4,) - (-7 
DW E, tw 

and that G = pv,” , one finds that d, varies from 3.35 for a soil with v, = 200 Wsec to 30.2 for a 
soil with v, = 600 Wsec . ’ 

For the solutions presented in the following sections, the wall, unless otherwise indicated, is 
considered to be massless (Le., p, = 0); Poisson’s ratio for the soil is taken as v =1/3 ; and the 
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damping factors for the soil and wall are taken as li = 0.1 and ti, = 0.04 , respectively (i.e., as 5% and 
2% of critical damping). The frequency ratio o/ol for harmonic motions is varied over a wide range, 
and so is the natural period T, of the stratum for the earthquake ground motion. 
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SECTION 4 

STATIC RESPONSE 

It is desirable to begin by examining the responses obtained for excitations the dominant frequencies 
of which are extremely small compared to the fundamental natural frequency of the soil-wall system 
(i.e., for values of o/o, + 0 or f ,  + - ). Such excitations and the resulting effects are referred to as 
‘static’ and are identified with the subscript st. This term should not be confused with that normally 
used to represent the effects of gravity forces. In the equivalent, force-excited version of the problem 
referred to previously, the static excitation is represented by horizontal body forces of intensity -p X, 
for the retained medium and -p,Xg for the wall. A maximum dynamic effect for an arbitrary 
transient excitation is then expressed as the product of the corresponding static effect and an 
appropriate amplification or deamplification factor. 

4.1 Convergence of Solutions 

The accuracy of the solutions for the method of analysis presented clearly depends both on the 
number of flexural beam modes J and on the number of shear-beam modes N considered. Part (a) of 
Figure 4.1 shows the heightwise variations of the wall displacements computed for a cantilever (C-F) 
wall with d, = 20 for several different combinations of J and N, and part (b) shows the variations of 
the corresponding wall pressures. Displacements are normalized with respect to pX,H2/G and 
pressures with respect to pXgH . The wall in these solutions is presumed to be massless and Poisson’s 
ratio for the retained medium is taken as v = 1/3. Unless specifically otherwise indicated, the same 
conditions are presumed for all solutions that follow. 

It is clear from Figure 4.1 that the number of shear-beam modes required for convergence is 
considerably larger than that of the flexural beam modes. Additionally, this number is much larger for 
wall pressures than for displacements. Considering that the exact distribution of wall pressures, unlike 
that of displacements, is so much different from that obtained with J = N = 1 , this result should not be 
surprising. The precise definition of the actual, smoothly varying wall pressures for the conditions 
examined here requires no more than 3 beam modes and no less than 50 shear-beam modes. The 
solutions in the following sections were obtained with this, or a somewhat larger, number of modes. 

The upper part of Figure 4.2 shows the rates of convergence of the total wall force per unit of wall 
length, PSt , or base shear per unit of wall length, (V& , for cantilever (C-F) walls having several 

I 
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different values of the relative flexibility factor d, . A normalized measure of this force is plotted as a 
function of the number of flexural beam modes J and selected numbers of shear-beam modes. The 
corresponding information for the overturning base moment (Mb)st is displayed in the lower part of 
the figure. 

It is observed that the rates of convergence for these forces, particularly for the base moment, are 
much more rapid than for the wall pressures. Additionally, these rates decrease with increasing wall 
flexibility, and even for the largest values of d, considered, excellent results for both base shear and 
base moment are obtained with as few as 2 or 3 beam modes and 5 to 10 shear-beam modes. 

Although strictly applicable to cantilever walls, the indicated trends also hold for walls that are simply 
supported at the top. This is demonstrated in Figure 4.3, which shows the corresponding plots for the 
base shear and bise moment of top-constrained systems. 

The convergence rates in the foregoing discussion were for a long-period, effectively static excitation. 
For dynamic excitations of the type associated with earthquake-induced ground motions, the 
convergence rates would be expected to be even better as the responses are likely to be influenced less 
by the contributions of the higher modes of vibration than are the corresponding static responses. 

4.2 Wall Pressures 

Figure 4.4 shows the precise distributions of the wall pressures for systems with values of d, in the 
range between zero and 40. The plots on the left are for cantilever walls, whereas those on the right 
are for walls that are simply supported at the top. The other parameters for the systems examined are 
the same as those identified earlier. 

It is observed that both the magnitudes and distributions of the pressures are quite sensitive to the 
flexibility of the wall and substantially different for the two sets of support considered. Increasing the 
wall flexibility reduces the horizontal extensional stiffness of the medium relative to its shearing 
stiffness, and this reduction, in turn, increases the proportion of the inertia forces transmitted by 
horizontal shearing action to the base, and decreases the proportion transmitted to the wall. For rigid 
walls (d, = 0 ), the pressures increase almost & a quarter-sine from zero at the base to a maximum at 
the top, whereas for the flexible walls, there is a sharp change in the intensity of the pressure near the 
top, with the pressure increasing for the top-constrained system and decreasing and chadging signs for 
the cantilever system. 

4.3 WallForces 

In the upper part of Fi,oure 4.5, the static values of the total wall force, Pst , for both cantilever and top- 
supported walls are plotted as a function of the 'wall flexibility factor d, . As might have been 
anticipated from the information on wall pressures presented earlier, an increase in wall flexibility 
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reduces the wall force, the reduction being significantly larger for cantilever walls than for top- 
constrained walls. Considering that the effective flexibility of a cantilever wall of a specified value of 
d, is substantially larger than that of a top-constrained wall of the same d, value (for a pressure that 
increases as a quarter-sine from base to top, the ratio of the two flexibilities is 27), the latter trend 
should not be surprising. 

In the lower pait of Figure 4.5, the centroidal height, hSt , defined as the distance from the base to the 
point of application of the resultant wall force, is plotted normalized with respect to the height of the 
medium H for each of the two support conditions considered. Note that, whereas for cantilever walls, 
the hSt/H ratio decreases from 0.6 for a rigid wall to less than 0.3 for walls of high flexibility, for the 
top-constrained walls, it has practically the constant value of 0.6. 

For the cantilever walls, PSt also represents the 'static' value of the base shear in the wall (vb),, , and 
h,, also represents the height by which P,, must be multiplied to yield the 'static' value of the base 
wall moment (M&. These relationships do not, of course, hold true for top-constrained walls. In 
Figure 4.6, the base shear in the wall of such systems is plotted normalized with respect to the total 
wall force Pst , and the corresponding base moment is plotted normalized with respect to P,.H. 

Normalized values of Pst, (Vb),, and (Mb)st for both cantilever and top-supported walls are also 
listed in Table 4.1, along with the corresponding centroidal heights h,. . 

4.4 Wall Displacements 

In Figure 4.7, the displacement configurations for cantilever and top-constrained walls are plotted 
normalized to a unit peak value for values of the relative wall flexibility factor d, between zero and 
40. It is observed that, within this range of d, values, the displacement configurations, particularly 
those for the top-supported walls, are insensitive to the value of d, involved. As d, + 0 , the 
configurations naturally approach those obtained for a beam subjected to the pressures induced on a 
non-deflecting, rigid wall. 

The maximum values of the wall displacements may be expressed either in terms of the wall 
properties as 

or, more conveniently, in terms of the properties of the retained medium as 

where c and c2 are dimensionless coefficients that are functions of the flexibility factor d, , and are 
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interrelated by 

These coefficients are plotted in Figure 4.8 and are also listed in Table 4.1. It is noteworthy that the 
ratio of these coefficients for the cantilever and top-supported walls range from 25.6 for rigid walls 
(d, = 0) to 3.65 for walls with d, = 40. This large variation is due partly to the difference in the top 
support conditions and partly to the significantly different distributions of wall pressures in the two 
cases (see Figure 4.4). 

For some insight into the magnitude of the maximum displacements that may be encountered in 
practice, consider a concrete wall of height H = 15 ft and thickness t, = 1.5 ft retaining a medium 
with v, = 400 Wsec and subjected to a ground motion with X, = 0.3g , where g is the gravitational 
acceleration. With E, = 3 x 10 psi , v, = 0.17, and a unit weight for the soil of y = pg = 100 lb/ft?, 
d, is determined from equation (38) to be 13.4. This leads to c2 = 0.427 for the cantilever wall and to 
c2 = 0.063 for the top constrained wall. The corresponding maximum displacements, determined 
from equation (6), are 0.039% of the wall height for the cantilever wall and only 0.006% of the wall 
height for the top-constrained wall. Even with a dynamic amplification factor of 2.0 which, based on 
information presented in the following sections, represents a reasonable maximum for intense 
earthquake ground motions, these values are below the 0.1% to 0.4% range widely accepted as 
representing the displacement ratios required for the development of a limit state in the backfill 
material.2l 
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Table 4.1 : Normalized 'static' values of total wall force Psf , centroidal height h,, base 
shear ( Vb)st base moment (k?b)sr and of displacement factors c1 and c2 for 
clamped-free (C-F) and clamped-hinged (C-H) walls. 

- - 
0 
1 
2 
3 
4 
5 
10 
15 
20 
25 
30 
35 
40 - 

Pst 

pXgH2 

C-F 

0.940 
0.838 
0.770 
0.721 
0.683 
0.653 
0.56 1 
0.51 1 
0.477 
0.45 1 
0.43 1 
0.413 
0.399 

C-H 

0.940 
0.93 1 
0.922 
0.914 
0.906 
0.898 
0.864 
0.834 
0.808 
0.785 
0.765 
0.747 
0.73 1 

hst - 
H 

C-F 

0.599 
0.553 
0.5 17 
0.488 
0.463 
0.443 
0.375 
0.336 
0.3 10 
0.292 
0.279 
0.268 
0.259 

C-H 

0.599 
0.600 
0.601 
0.602 
0.604 
0.605 
0.6 10 
0.615 
0.620 
0.624 
0.628 
0.63 1 
0.635 

('b)st 

Pst 

C-H* 

0.528 
0.526 
0.524 
0.522 
0.520 
0.5 18 
0.508 
0.499 
0.49 1 
0.483 
0.476 
0.470 
0.464 

C-H* 

0.127 
0.126 
0.125 
0.124 
0.123 
0.122 
0.118 
0.1 14 
0.1 10 
0.107 
0.104 
0.101 
0.099 

* For C-F walls, ( Vb)st = Pst and (Mb)st  = Pst hs, 
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Displacement Factors 

C1 c2 
I 

C-F C-H C-F 

0.1572 
0.1394 
0.1254 
0.1 140 
0.1047 
0.0968 
0.07 1 1 
0.0568 
0.0477 
0.0414 
0.0367 
0.033 1 
0.0303 

0.00614 0.0000 
0.00609 0.1 169 
0.00604 0.193 1 
0.00598 0.2465 
0.00593 0.2859 
0.00588 0.3161 
0.00564 0.3991 
0.00542 0.4355 
0.00521 0.455 1 
0.00502 0.4669 
0.00485 0.4745 
0.00468 0.4796 
0.00453 0.4832 

C-H 

0.0000 
0.0057 
0.01 11 
0.0 164 
0.0215 
0.0264 
0.0487 
0.0678 
0.0842 
0.0986 
0.1113 
0.1225 
0.1325 
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Figure 4.1 Convergence of wall displacements and pressures for statically excited systems with C-F walls; d, = 20, pbv = 0, v = 1/3. 
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Figure 4.2 Convergence of base shear and base moment in wall of statically excited systems; 
C-F walls of different flexibilities, CL, = 0, v = 1/3. 

4-7 



0.6 

0.4 

0.2 

0 

0.12 

(Mb)st  
p X g H 3  

0.08 

0.04 

0 
1 2 4 5 3 J  
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SECTION 5 

HARMONIC RESPONSE 

For the results presented so far, the dominant period of the excitation was considered to be long com- 
pared to the natural period of the retained material. In this section, the steady-state response of the 
system to a harmonic excitation of an arbitrary frequency is examined. 

In the left part of Figure 5.1, the real-valued amplitude or maximum value of the total wall force per 
unit of length, P,,, , for harmonically excited systems with a cantilever wall are plotted as a function 
of the frequency ratio o / q  for several values of the flexibility factor d,. The results, which for the 
cantilever system considered also define the amplitude of the base shear per unit of wall length, 
(Vb)max, are normalized with respect to the common factor pX,H2. As before, Poisson's ratio and 
the damping factor for the retained medium are taken as v = 1/3 and 6 = 0.1 , with the damping fac- 
tor for the wall as 6, = 0.04 (or 2% of critical damping). 

As would be anticipated from the information for statically excited systems presented in the upper 
part of Figure 7, an increase in wall flexibility reduces the resulting wall force. However, the reduction 
is by no means uniform over the full range of frequencies. In particular, the reduction is substantially 
smaller at and near resonance than under static conditions of loading. 

The interrelationship of the dynamic and 'static' forces may better be appreciated from the right-hand 
plots of Figure 5.1, in which the ratio of the maximum values of the two forces (the amplification fac- 
tor, AF) is plotted as a function of the frequency ratio for the same three values of the flexibility factor 

d, - 

It is observed that: (a) the peak or resonant values of the amplification factors occur at exciting fre- 
quencies equal to the natural frequencies of the stratum, i.e., when o/ol = 1,3,5, ... ; (b) the abso- 
lute maximum amplification factors are attained at the fundamental frequency of the stratum; and (c) 
the latter factors are quite sensitive to the relative flexibility factor d, . For a rigid wall (d, = 0), it is 
well l ~ n o w n ~ , ~  that the absolute maximum amplification factor is l/&, or 3.16 for the value of 
6 = 0.1 considered. By contrast, for flexible walls, this factor is larger due to the reduced capacity of 
such walls to reflect and dissipate by radiation the waves impinging on them. As d, tends to infinity, 
the soil-wall system tends to respond as an unconstrained cantilever shear-beam, and the absolute 
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maximum amplification factor tends to 1/6 = 10 , the value applicable to a viscously damped single- 
degree-of-freedom oscillator. 

In Figure 5.2, the absolute maximum values of the amplification factors for cantilever and top-con- 
strained walls are compared over the complete range of d, values examined. It is observed that the 
results for the top-constrained wall are significantly lower than for the cantilever wall. As previously 
indicated, this is due to the fact that, for a specified, finite value of the relative flexibility factor d, , the 
effective stiffness of the top-constrained system is higher than that of the cantilever. 
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Figure 5.1 Frequency response curves for base shear per unit of wall length of harmonically excited systems; C-F walls of different 
flexibilities, pw = 0,6, = 0.04, v = 1/3,6 = 0.01, 
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Figure 5.2 Maximum amplification factor for total force in wall of harmonically excited systems 
with different wall flexibilities; CL, = 0,6, = 0.04, v = 1/3,6 = 0.01. 
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SECTION 6 

TRANSIENT WSPONSE 

Figure 6.1 shows normalized values of the absolute maximum wall force per unit of length, lPmaxl , 
for systems subjected to the first 6.3 sec of the N-S component of the 1940 El Centro, California 
earthquake record, the peak acceleration of which is X, = 0.312g. The plots on the left are for canti- 
lever walls, while those on the right are for top-constrained walls. The system parameters are the same 
as those for the harmonically excited systems examined in the preceding sections and are also identi- 
fied on the figure heading. The results are plotted as a function of T, = 2n/o,  = 4H/v, , the funda- 
mental natural period of the soil stratum when it is considered to respond as an unconstrained 
cantilever shear-beam. As a measure of the range of T, values that may be encountered in practice, it 
is noted that for values of v, between 250 and 1000 ft/sec and values of H between 10 and 50 ft, the 
value of T, falls in the range of 0.04 to 0.8 sec. 

The plots in Figure 6.1 are similar to, but by no means the same as, the response spectra for similarly 
excited, viscously damped single-degree-of-freedom systems. Specifically, for low-natural period, 
stiff strata, the wall force is the same as that obtained under static conditions of loading. With increas- 
ing T, or increasing flexibility of the stratum, the force levels increase, and after attaining nearly hor- 
izontal plateaus, they reach values that may well be less than the low-period, static values. For reasons 
already explained for statically and harmonically excited systems, the reduction in the force level 
achieved with a specified value of the relative wall flexibility factor d, is smaller for top-constrained 
walls than for cantilever walls. 

The interrelationship of the maximum dynamic and long-period, static wall forces can better be seen 
in Figure 6.2, in which the information already displayed in Figure 6.1 is replotted in the form of 
amplification factors. 

In Figure 6.3, the average values of the amplification factors for total wall force in the period range 
from T, = 0.1 to 0.5 sec are replotted as a function of the flexibility factor d,. The period range 
considered corresponds to the highly amplified, nearly horizontal region of the plots in Figures 6.1 
and 6.2. It is observed that, for the cantilever walls, these factors range from 1.32 to 1.89, whereas for 
the top-supported walls, they range from 1.32 to 1.51. It should be recalled that these results are for a 
medium with a damping factor 6 = 0.1 (5% of critical damping). An increase in soil damping will 
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naturally further reduce the amplification factors. 

The normalized values of the centroidal heights h for the seismically excited systems are finally plot- 
ted in Figure 6.4 as a function of the fundamental period of the stratum T, . These heights, which for 
cantilever walls represent the heights by which the maximum wall force must be multiplied to yield 
the overturning base moment, are relatively insensitive to variations in T, , and may, for all practical 
purposes, be taken equal to those reported in Figure 4.5 and Table 4.1 for the corresponding statically 
excited systems. The same can also be shown to be true of the normalized values of base shear and 
base moment, (Vb)max/Pmax and (Mb)max/PmaxH 

, 
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SECTION 7 

EFFECT OF WALL INERTIA 

For the systems considered so far, the wall mass was presumed to be negligible compared to the mass 
of the retained medium. The inertia of the wall has a twofold effect: (a) it modifies (generally 
decreases) the wall pressures induced by the retained medium; and (b) it induces additional forces on 
the wall. The net effect, which is generally an increase in the magnitude of the wall forces, may be 
evaluated exactly from the information presented, but the following simpler, approximate procedure 
would be adequate for all practical purposes. 

The maximum force per unit of wall length for a wall with mass, Piax , may be related to that of the 
massless wall, P,,, , by 

in which mwe represents the effective mass per unit of wall length, and the amplification factor AF 
may be taken equal to that for the massless wall. The value of mwe , normalized with respect to the 
corresponding wall mas m, = pwH, is plotted as a function of the relative flexibility factor d, in 
Figure 17. Both cantilever and top-constrained systems are considered. For rigid walls, the ratio is nat- 
urally unity, but for flexible walls, particularly for the more compliant cantilever systems, the effective 
mass is substantially smaller than the actual mass. 

With the maximum force for a wall with mass determined, the corresponding base moment and end 
reactions may be determined by considering the latter forces to bear the same relationship to the wall 
force as those applicable to massless walls. This is tantamount to taking the centroidal height h and 
the ratios of (vb)max/Pmax and (Mb)max/PmaxH for the wall with mass equal to those for a mass- 
less wall. 
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Figure 7.1 Effective wall mass for statically excited systems with different wall flexibilities; v = 1/3. 
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SECTION 8 

CONCLUSIONS 

Following are some of the more important conclusions of this study. . 

1. 

2. 

3. 

4. 

5. 

With the method of analysis and the numerical data presented, the dynamic response of the class 
of flexible retaining walls examined may be evaluated readily and with high degree of accuracy. 
The method, which makes use of Lagrange's equations of motion in combination with a recently 
proposed model for the action of soil-wall systems, is expected to prove of value in the analysis 
of a number of other problems as well. 

The magnitudes and distributions of the wall displacements, wall pressures and associated forces 
induced by horizontal ground shaking in the systems examined are quite sensitive to the flexibil- 
ity of the wall. Increasing this flexibility reduces the horizontal extensional stiffness of the 
retained medium relative to its shearing stiffness, and this reduction decreases the proportion of 
the soil inertia forces that gets transferred to the wall and, hence, the forces developed in it. 

For realistic wall flexibilities, the total wall force or base shear for cantilever walls may well be 
less than one-half of that obtained for fixed-based, rigid walls, with the reduction in the base 
moment being even larger. Because of the greater effective stiffness of top-supported walls, the 
corresponding reductions for such walls are significantly smaller than for the cantilever systems. 

Even for the 1940 El Centro earthquake ground motion record, the maximum wall displacement 
relative to the moving base for cantilever walls of realistic flexibilities is found to be less than the 
values of 0.1 to 0.4 percent of the wall height normally accepted as the minimum required to 
develop a limit state in the backfill material. 

The comprehensive numerical solutions presented and their analysis provide not only valuable 
insights into the effects and relative importance of the numerous factors that influence the 
response of the systems examined, but also a sound framework for assessing the behavior of even 
more complex soil-wall systems. 
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SECTION 10 

APPENDIX. NATURAL MODES AND INNER PRODUCTSS 

The jth natural mode of vibration of the beam or wall without the retained medium is given by 

@j(q) = coshhjq - cosl jq  - aj [ sinhhjq - sinhjq J (43) 

in which hj and aj are dimensionless factors that depend on the end support conditions. Thejth 
circular natural frequency of the wall, cow, , is related to Aj by 

The first five values of hj and aj for the two sets of boundary conditions considered here are given in 
Young and F e l g d 2  and are reproduced in Table 1 1.1. 

The inner products or integrals in the various expressions presented in the body of this paper are as 
follows: 

2aj c-F - 
hi 
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2hj&Jhj - (-l)”+j a j q  
4 4  C-F 

hj - E ,  

C-H: - 

in which E, = (2n - l)n/2. Equations (46)-(49) are given in Felgd3, while the rest were derived 
from basic principles. 



Table 10.1 Dimensionless factors Xj and ai in expressions for natural modes of 
vibration of clamped-free (C-F) and clamped-hinged (C-H) flexural beams 

C-F Beams C-H Beams 

hi aj x j  ai 

Order of 
Mode j 

1 1.8751 0410 0.7340 9550 3.9266 0230 1.0007 7730 

2 

3 

4 

4.6940 9 1 13 1.01 84 6644 7.0685 8275 1.0000 0144 

7.8547 5743 0.9992 2450 10.2101 7613 1.0000 0000 

10.9955 4074 1.0000 3355 13.3517 6878 1.0000 0000 

5 I 14.1371 6839 I 0.9999 9855 I 16.4933 6143 I 1.00000000 
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SECTION 11 

NOTATION 

The following symbols are used in this report: 

i 

J 
j 

K" 

elements of {A} 
vector of normalized exciting forces 
dimensionless factors in expressions for maximum wall displacement 
relative wall flexibility factor defined by equation (36) 
flexural rigidity per unit of wall length, defined by equation (5) 
complex-valued flexural rigidity of wall [= Dw( 1 + is,) 3 
Young's modulus of elasticity for wall 
fundamental cyclic frequency of retained medium when it is assumed to respond as an 
unconstrained cantilever shear-beam 
generalized force 
acceleration due to gravity 
shear modulus of elasticity for retained material 
complex-valued shear modulus for retained material [= G( 1 + is) ] 
centroidal height, defined as distance from base to point of application for dynamic wall 
force P 

integer defining order of beam mode under consideration 
integer defining total number of beam modes considered 
dynamic impedance of spring-dashpot combination when both the wall and the retained 
medium at the far-field vibrate in the nth natural mode of a uniform, cantilever shear-beam 
elements of [MI 
mass per unit length of wall 
effective mass per unit length of wall 
mass matrix 
instantaneous value of overturning base moment per unit of wall length induced by force P 
bending moment at base of wall 
integer defining order of shear-beam mode under consideration 
integer defining total number of shear-beam modes considered 
instantaneous value of total dynamic force per unit of wall length 
generalized coordinate 
amplitude ofjth generalized coordinate 
vector of amplitudes of generalized coordinates 

[= Fl 1 
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T W 

U 

xg 
x, 

6 

w 
o n  

elements of 
stifmess matrix 
thickness of wall 
fundamental natural period of retained medium when it is considered to respond as an 
unconstrained cantilever shear-beam 
kinetic energy of wall 
horizontal displacement of an arbitrary point of medium relative to moving base 
horizontal displacement of base-excited shear-beam relative to moving base 
participation factor in expression for displacement of shear-beam 
horizontal position coordinate 
vertical position coordinate 
shear-wave velocity for retained material 
instantaneous value of dynamic base shear in wall 
strain energy of wall 
wall displacement relative to moving base 
participation factor in expression of dynamic displacement of wall 
work done by wall pressures 
instantaneous value of ground acceleration 
maximum ground acceleration 
dimensionless factor in expression ofjth natural mode of vibration of a uniform beam; listed 
in Table 10.1 
material damping factor for retained material 
Kronecker delta 
material damping factor for wall 
dimensionless factor [= (2n - 1)x/2] 
dimensionless vertical position coordinate [= y/H ] 
dimensionless factor in expressions forjth mode and associated frequency of a uniform flex- 
ural beam; listed in Table 10.1 
mass per unit area of retaining wall 
Poisson's ratio for retained material 
mass density for retained material 
dynamic normal wall pressure 
component of 6 due to wall flexibility 
component of (T for a non-deflecting rigid wall 
vertical normal stress 
horizontal shearing stress in x-y plane 
jth natural mode of vibration of a uniform flexural beam 
nth natural mode of vibration of retained medium when assumed to act as an unconstrained, 
cantilever shear-beam 
circular frequency of excitation and of resulting steady-state response 
nth circular naturaI frequency of retained material when considered to respond as an uncon- 
strained, cantilever shear-beam 
jth circular natural frequency of uniform flexural beam 
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