RMIS View/Print Document Cover Sheet ***

This document was retrieved from the Documentation and Records Management (DRM) ISEARCH System. It is intended for Information only and may not be the most recent or updated version. Contact a Document Service Center (see Hanford Info for locations) if you need additional retrieval information.

Accession #: D296005614

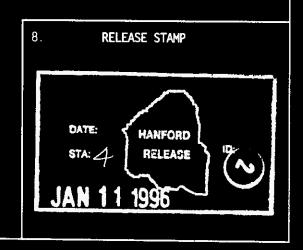
Document #: SD-WM-RPT-199

Title/Desc:

VAPOR & GAS SAMPLING OF SST 241TX111 USING THE VAPOR SAMPLING SYSTEM

Pages: 41

ENGINEERING DATA TRANSMITTAL


Page 1 of __/_ 1. EDT Nº 614229

	RIBUT		rganizati	on)	3. From: (Originating Organization) SPECIAL ANALYTICAL STUDIES 75770				4. Related EDT No.: N/A					
5. Proj /Prog /Dept./Div.: VAPOR/AS/SPECIAL ANALYTICAL STUDIES				ICAL	6. Cog. E RICKY M		3-7437		7. Purchase Order No.: N/A					
8. Or	iginat	or Remark	S:						9. Equip	./Compon	ient N	0.:		
241-	TX-11	1, SAMP	LING US	ING THE	VAPOR S	AMPLIN	IG SYST	EM		N/	Α			
									10. Syste	em/Bldg. M0292,				
11. R	lece i ve	r Remarks	:						12. Majo	r Assm.	Dwg.	No.:		
										<u>N/</u>	Α			
!									13. Perm No.:			licat	ion	
									14.0	<u> N/</u>				
									14. Requ	ired Kes	ponse	Date	. :	
15.				DATA	TRANSMITTE	:D			(5)	(0)	(11)		(1)	
(A)				(C)	_(D)		itle or Des	cription of Data	(F) Approval	(G) Reason	(H) Origi	-	([) Receiv-	
Item No.	(B)	Document/Dra	awing No.	Sheet No.	Rev. No.			mitted	Desig- nator	for Trans- mittal	nato Dispo Sitio	ſ.	er Dispo- sition	
1 WHC-SD-WM-RPT-199 ALL				ALL	0	VAPO SAMP SHEL USIN SAMP	Q	2	1					
16.						IK	Υ		<u> </u>					
	val Desig	nator (F)	1. Approva		for Transmitta view	1 (G)		1	Disposition					
(see WH Sec.12.	ĤC-CM-3-5		Release	 Pos 	st-Review st. (Receipt A	cknow. Re	guired)	 Approved Approved w/com Disapproved w/ 	mment 5 /comment 6	Reviewed Reviewed Receipt	w/comm	ent		
(G)	(H)	17.				GNATURE/E	ISTRIBUTION					(G)	(H)	
Rea- son	Disp	(J) Name	(K) :	Signature		(M) MSIN	(J) Na		nature (L)	Date (M	1)	Rea-	Disp	
2	ı	Cog.Eng.	R.D. MA	HON Rek	makes 3	S3-27		CE CENTER	100	R2	-12	3		
2	1	Cog. Mgr	. ភូ.មិ. <u>គ</u>	ORIAN /IK	46	33-27A	∠ CENTRAL	. FILES		A3	-88	3		
2	1		HCEL ROY	TIATM	B_1/9/92	S7-07								
3		DAVE BRA				S7-21								
3		JOHN DEI				T6-03								
3			ISWANATH			S3-90								
3		JAMES HU				K6-80								
18.			19.			20).		21. DOE A	APPROVAL No.	(if r	equ i	red)	
GLENN S Signatu Origina	CAPRIO re of ED tor	12/2 Date	Author	rized Repres	entative Date anization	Co	gni kant Man		[] Approv		mments /comme	ents		

SUPPORTING DOCUMENT	1. To	tal Pages <i>38</i>
2. Title VAPOR AND GAS SAMPLING OF SINGLE-SHELL TANK 241- TX-111 USING THE VAPOR SAMPLING SYSTEM	3. Number WHC-SD-WM-RPT-199	4. Rev No.
5. Key Words 241-TX-111 VSS SUMMA TST SORBENT TANK	6. Author Name: G.S. CAPRIO Signature Organization/Charge Code 75570/E62000	

7. Abstract

THIS DOCUMENT PRESENTS SAMPLING DATA RESULTING FROM THE OCTOBER 12, 1995, SAMPLING OF SST 241-TX-111 USING THE VAPOR SAMPLING SYSTEM.

A-6400-073 (08/94) WEF124

RELEASE AUTHORIZATION

Document Number: WHC-SD-WM-RPT-199, REV 0

Document Title: Vapor and Gas Sampling of Single-Shell Tank 241-TX-

111 Using the Vapor Sampling System

Release Date: 1/11/96

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

Kara Broz

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy. Printed in the United States of America. To obtain copies of this report, contact:

Westinghouse Hanford Company - Document Control Services P.O. Box 1970, Mailstop H6-08, Richland, WA 99352 Telephone: (509) 372-2420; Fax: (509) 376-4989

APPROVALS

Document title:

Vapor and Gas Sampling of Single-Shell Tank 241-TX-111

Using the Vapor Sampling System

Approved by:

R. A. Westberg, Field Scientist Vapor Sampling Project

10/31/95 Date

Sampling and Mobile Laboratories

Approved by:

R. D. Mahon, Project Lead Vapor Sampling Project

Sampling and Mobile Laboratories

Approved by:

D. L. Edwards, Technical Lead

Vapor Sampling Project

Sampling and Mobile Laboratories

WHC-SD-WM-RPT-199, Rev. 0

CONTENTS

1.0	SCOPE
2.0	SAMPLING EQUIPMENT DESCRIPTION
	SAMPLING EVENT DESCRIPTION 3.1 SPECIFICATIONS 3.2 OPERATIONS AND SAMPLING PERSONNEL 3.3 INDUSTRIAL HYGIENE FIELD RESULTS 3.4 AMBIENT CONDITIONS 3.5 SAMPLE COLLECTION 3.6 FIELD GC/FID RESULTS 3.7 RADIATION SCREENING
4.0	SAMPLE CHAIN OF CUSTODY: RECEIPT, STORAGE, AND SHIPMENT
5.0	QUALITY ASSURANCE AND CONTROLS
6.0	ANOMALIES
7.0	REFERENCES
APPE	NDICES
Α	SAMPLE LOG SHEETS
В	AMBIENT CONDITIONS
С	CHAIN-OF-CUSTODY FORMS

WHC-SD-WM-RPT-199, Rev. 0

LIST OF TABLES

1	Flow Control Calibration	•	•	•	 •	٠		•	٠	•	•	•	٠	•	2
2	TOC Results	٠				•	٠	•	•		•	•	•	•	Ę
3	Radionuclide Analysis Results	٠			 •	•	•	•	•		•			•	7
4	Pacific Northwest Laboratory Samples	٠			 •	•	•	•	•		•	•	•		8
5	Oak Ridge National Laboratory Samples .							•	•	•		•	•		ġ
6	Calibration Data				 •				•	•		•			10

LIST OF TERMS

Combustible Gas Indicator
Chain Of Custody
U.S. Department of Transportation
Gas Chromatograph
Gas Chromatograph/Flame Ionization Detector
Gamma Energy Analysis
High-Efficiency Particulate Air (filter)
Ammonia
Nitrogen Dioxide
Nitric Oxide
Water Vapor
Offsite Property Control
Oak Ridge National Laboratory
Organic Vapor Meter
Pacific Northwest Laboratory
Sampling and Mobile Laboratories
Single-Shell Tank
Tank Characterization Plan
SML Vapor Team
Total Organic Carbon
Triple Sorbent Trap
Vapor Sampling System
Westinghouse Hanford Company

This page intentionally left blank.

VAPOR AND GAS SAMPLING OF SINGLE-SHELL TANK 241-TX-111 USING THE VAPOR SAMPLING SYSTEM

1.0 SCOPE

The Vapor Issue Resolution Program tasked the Sampling and Mobile Laboratories (SML) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-TX-111. This document presents sampling data resulting from the October 12, 1995 sampling of SST 241-TX-111. Analytical results will be presented in separate reports issued by the laboratories that supplied and analyzed the sampling media.

2.0 SAMPLING EQUIPMENT DESCRIPTION

2.1 VAPOR SAMPLING SYSTEM

The SML vapor team (the team) used the vapor sampling system (VSS) to collect representative samples of the air, gases, and vapors from the headspace of SST 241-TX-111 on October 12, 1995. Mahon et al. (1994) describes in detail the VSS, its performance, and its operation. The team used the VSS to collect sorbent trap and SUMMA¹ canister headspace samples from SST 241-TX-111. The team then sent these samples to the analytical laboratories for analysis.

The VSS comprises a mobile laboratory and stainless-steel transfer tubing that connects the mobile laboratory to the vapor space. A vacuum pump draws sample vapor from the tank headspace and through all transfer tubing and the sampling manifold. Electrically activated, pneumatically actuated, valves direct sample flow within the VSS. Instrumentation housed in the mobile laboratory monitors and controls system temperature, monitors absolute and differential system pressure, meters and controls vapor mass flow, and monitors sample vapor total organic carbon (TOC) content using a gas chromatograph/flame ionization detector (GC/FID).

A key feature of the VSS is its use of heated transfer tubing and a heated sampling manifold. Maintaining the system temperature at an electronically controlled, elevated temperature prevents vapor condensation and reduces vapor adsorption on surfaces exposed to sample vapor. Mahon et al. (1994) describes various tests and observations that indicate the VSS sample transfer efficiency is consistently high.

SUMMA is a registered trademark of Molectrics, Inc., Cleveland, Ohio.

Sorbent trap samples are collected at the sorbent trap station of the sampling manifold. Sorbent traps are pencil-size stainless-steel or glass tubes that contain vapor-adsorbing media. A known amount of sample vapor is passed through the tube, which traps (by adsorption) virtually all the target analytes. The concentration of analytes in the vapor sampled is calculated from the quantity of analyte found in the sorbent media and the volume of vapor passed through the sorbent trap.

The sorbent trap station uses highly accurate mass flow controllers to measure and control the flow rate of sample vapor through the sorbent traps. The controllers FICV-1 through FICV-9 are mounted on top of the sorbent station between the inlet and outlet valves. Controllers FICV-10 and FICV-11 are located downstream of the sorbent trap station and the in-line driers, which remove moisture from the sample vapor before it is metered. Errors associated with the mass flow controllers were determined by the Westinghouse Hanford Company (WHC) Standards Laboratory before the SST 241-TX-111 sampling event (see Table 1). Flow rates and the duration of flow are specified by the analytical laboratories that supply and analyze the sorbent traps.

Flow-indicating Control valve	Typically used Flow (stdcm³/min)	% Change from 647 to Actual	% Change from Datalogger to Actual
1	200	-0.7	-0.85
2	200	0.05	-0.10
3	200	-0.45	-0.60
4	200	0.05	-0.10
5	200	0.55	0.35
6	200	0.25	0.05
7	200	0.4	0.20
8	200	0.25	-1.81
9	50	-0.128	-0.27
10	200	-1.1	-1.20
11	5000	0.332	0.17

Table 1. Flow Control Calibration.

The VSS is also equipped with a gas chromatograph (GC). The Hewlett Packard 5890 Series II GC is equipped with a flame-ionization detector (FID), a 1 mL sample loop, a 10 port injection valve, a 2 meter chromatographic column, a programmable oven, and a portable computer loaded with the HP-Chemstation

² HP-Chemstation is a registered trademark of the Hewlett Packcard Company, Avondale, Pennsylvania.

software used to control the GC. The GC is plumbed to directly transfer sample from the VSS manifold to the GC sample loop. After the sample is transferred into the sample loop and reaches equilibrium, the run is initiated manually. HP-Chemstation software activates the 10 port valve to transfer the sample from the sample loop to the column. The sample passes through the column and the FID generates a signal for TOC. All data is then transmitted to the computer where it is stored for further analysis.

The GC is equipped with a HP-5 column which is 2 meters long, 0.25 mm inside diameter, and which contains a 0.25 um phenyl methyl silicone phase. The GC oven is programmed to heat from 50 °C to 270 °C at a rate of approximately 70 °C per minute. Helium is the carrier gas, air and hydrogen the combustion gases, and nitrogen the make-up gas.

The GC/FID is configured to quantitatively estimate concentrations of TOC. The GC/FID confirms sampling system cleanliness, ambient air background TOC concentrations during sampling, and TOC concentration of tank vapor samples. The system is multi-point calibrated at the weather station on a as available basis, the last time being January 1995. The GC/FID has displayed a high degree of stability over a period of months. For further details, see Section 3.6, Field GC/FID Results.

The sampling manifold also has a station for sampling vapor with evacuated SUMMA canisters. SUMMA canisters are stainless-steel vessels with internal surfaces that have been prepared by the SUMMA process, which passivates active sites on the canister walls to minimize adsorption of gases and vapors. An analytical laboratory must clean and evacuate SUMMA canisters before use. The evacuated canister is filled with sample vapor through a manually operated valve, which is then closed to seal the sample inside. SUMMA canisters essentially allow collection and transfer of whole-air samples from the sample site to an analytical laboratory where the sample is analyzed. The standard capacity of each SUMMA canister is 6 liters.

3.0 SAMPLING EVENT DESCRIPTION

3.1 SPECIFICATIONS

The Vapor Issue Resolution Program specifies sampling requirements in WHC-SD-WM-TP-335, Rev. 1, Vapor Sampling and Analysis Plan (Homi 1995). The Sampling and Analysis Plan also specifies the types and number of samples to be collected, flow rates, and durations. These key sampling parameters are summarized on the sample log sheets in Appendix A. In addition to the sample log sheets, checksheets for each individual sample help ensure correct sampling procedures. SML retains these documents in the project file. This sample event's project-specific number is S5-069.

3.2 OPERATIONS AND SAMPLING PERSONNEL

Steve Carter was the Tank Farm Operations person-in-charge. The other SML vapor team members included:

- G. S. Caprio, Field Scientist
- R. D. Mahon, VSS Lead Scientist T. B. Utecht, Sampling Technician R. A. Westberg, Field Scientist.

The VSS was set up at SST 241-TX-111 on October 11, 1995 and was allowed to warm up overnight. Sampling began shortly after 10:00 a.m. on October 12, 1995, and was completed by 1:00 p.m. the same day.

3.3 INDUSTRIAL HYGIENE FIELD RESULTS

Before hooking up to SST 241-TX-111, an industrial hygiene technician field tested tank vapors. The technician purged the instrument/vent header for 5 minutes and then field measured vapor stream contents using a combustible gas indicator (CGI) and an organic vapor meter (OVM). The measurements were verbally reported, LEL 0%, NH₃ 400 ppm, 0, 20.1%, CO, 19ppm, and TOC 10.6 ppm.

3.4 **AMBIENT CONDITIONS**

The weather the day of the sampling event, October 12, 1995 was cool and sunny, with a light breeze from the northwest. Graphs of ambient temperatures and pressures taken at the Hanford Meteorological Station, which is about 2.5 miles west of TX-Farm, are provided in Appendix B.

3.5 SAMPLE COLLECTION

The hot-water-jacketed sampling probe was located in Riser 12A of SST 241-TX-111. The probe length, from the sample inlet to the top of the riser flange, was 6.1 meters.

All zones of the VSS were heated to 60 °C during setup of the VSS at SST 241-TX-111 on October 11, 1995. The team stabilized the VSS temperature zones by 10:00 a.m. on October 12, 1995, and the system was ready to collect samples. Measured according to the VSS operating procedure, the pressure and temperature of SST 241-TX-111 were 999 mbar (749.5 torr) and 22.6 °C, respectively. The sample log sheets in Appendix A provide a complete chronology of the sample event including start and end times, flow rates, volumes, and specific sample identifiers.

Approximately 23.5 hours before the first samples were collected, the team began heating the VSS transfer tubing and sampling manifold. During this warmup period, the team began a purge of all vapor transfer tubing and the sampling manifold with ambient air. Before sampling tank vapors on October 12, 1995, the team collected two SUMMA" canister samples of ambient air, one manually 10 meters upwind of the VSS connection with SST 241-TX-111, and the other using the VSS sampling manifold. The former was collected to establish background levels of trace organic vapors, and the latter was collected to establish the cleanliness of the sampling manifold.

A leak check of the VSS sampling manifold and transfer tubing was performed. The system was evacuated to 293 mbar (219.7 torr) and leakage of ambient air into the system was observed by monitoring system pressure for 15 minutes. Leakage resulted in an increase of 4.80 mbar (3.6 torr) in system pressure during the 15 minute test. Given a system volume of not more than 10 L, this pressure increase corresponds to a leak rate of approximately 10.9 ml/min. This leak rate was then estimated for average SUMMA, triple sorbent trap (TST), and sorbent sampling pressures. It was found that for the SUMMA canisters, dilution by ambient air was approximately 0.1%, for TSTs sampled at 50 mL/min was 0.8%, for TSTs sampled at 200 mL/min the dilution was approximately 0.5%, and for sorbent traps the dilution was approximately 0.4%.

The sampling valve was opened and the VSS was purged with sample vapor from SST 241-TX-111 for 30 minutes at a total flow rate of 5.46 L/min. This purge was performed to flush ambient air from the system and saturate the system's active adsorption sites. Because the volume of transfer tubing and the sampling manifold upstream of the sampling devices is estimated to be no more than 10 L, this purge provided about 16.4 air turnovers in the system.

Two analytical laboratories provided sample media. Pacific Northwest Laboratory (PNL) provided SUMMA $^{\rm m}$ canisters, and sorbent traps for organic vapors, ammonia (NH $_3$), nitrogen dioxide (NO $_2$), and water vapor (H $_2$ O) and Oak Ridge National Laboratory (ORNL) provided the TST sorbent traps.

3.6 FIELD GC/FID RESULTS

The GC was single point calibrated on the day of sampling using 6.0 ppmC Propane standard by Scott Specialty Gas. The standard is an E.P.A. Protocol Gas that is $\pm 2\%$ NIST traceable.

Table 2 displays the Field GC/FID results from the sampling of SST 241-TX-111.

Number of Runs	Description	Average TOC Concentration (ppmC)	% Standard Deviation
7	Propane	6.00	1.38
4	Ambient	2.69	1.90
4	Tank Vapor	26.89	0.34

Table 2. TOC Results.

3.7 RADIATION SCREENING

Samples are unconditionally released from the SST farm in accordance with 1995-33300-RSP-03, Release of Vapor Sampling Equipment (WHC 1995c). Radiological screening results are used to determine (1) if the samples must be shipped as radioactive or nonradioactive in accordance with U.S. Department of Transportation (DOT) regulations and (2) if the samples meet the laboratory acceptance criteria.

The DOT limits for shipping a nonradioactive sample are 2,000 combined pCi/g of beta-gamma activity and alpha activity. Samples exceeding these DOT limits may be shipped as radioactive material if the samples do not exceed the following laboratory acceptance criteria:

PNL: Beta-gamma activity <400 pCi/g of sample media. Alpha activity

<100 pCi/g of sample media.

ORNL: Beta-gamma activity <450 pCi/g of sample media. Alpha activity

<135 pCi/q.

To protect the sampling manifold and sampling devices from radioactive particulates, all sample vapor for the October 12, 1995, SST 241-TX-111 vapor sampling event was drawn through a series of four glass-fiber high-efficiency particulate air (HEPA) filters placed upstream of the sampling manifold. These four filters were in place any time tank vapors were flowing through the system. When sampling was complete, the filters were removed and assigned unique sample identifiers. All four HEPA filters were submitted to Laboratory 222-S for total alpha, total beta, and gamma energy analysis (GEA). The HEPA filter closest to the sampling manifold was analyzed to determine if the samples met DOT shipping criteria and laboratory acceptance criteria. Moisture from the tank vapors was collected in a silica gel trap through one of the sorbent station ports and analyzed for tritiated water. SST 241-TX-111 filter and silica gel analysis results are shown in Table 3. SML scientists use the activity results in Table 3 to calculate pCi/g of sample media. SML maintains this information in the project-specific file. The results in Table 3 indicate that the samples collected from SST 241-TX-111 met the laboratory acceptance criteria and the DOT definition of a nonradioactive shipment.

Activityb Activity Results^a Sample Filter Identifier (pCi/L of tank gas) (pCi/sample) = 54.95Upstream HEPA Total Alpha = 17500 S5069-A28.0U1 Total Beta = 21800 GEA = 4690 (²⁰⁸TL) GEA = 14800 (²¹²Bi) GEA = 13600 (²¹²Pb) = 68.45filter (box) = 14.73= 46.47= 42.70Downstream HEPA S5069-A29.0D1 Total Alpha = 0.404= 0.001Total Beta = 3.03 filter (box) = 0.01GEA ≈ <detectable = <detectable</pre> Upstream HEPA S5069-A30.0U2 Total Alpha = 1.67= 0.005Total Beta = 0.152 filter (VSS) = 0.001GEA ≈ <detectable = <detectable</pre> Downstream HEPA S5069-A31.0D2 Total Alpha = <0.563= < 0.002Total Beta = 8.53filter (VSS) = 0.03GEA = <detectable = <detectable</pre> $= <50.0^{c}$ Tritium trap S5069-A03.0T1 Total activity = <50.0

Table 3. Radionuclide Analysis Results.

Notes:

The samples are nonradioactive. These results were evaluated against laboratory acceptance criteria and DOT limits.

*All less than (<) values represent the minimum detection limits at Laboratory 222-\$.

*Numbers based on an approximation of the total volume of tank vapor through the HEPA filters.

Appendix A and the sample checksheets were used to estimate a total flow through the VSS of 318.5 L.

"Number is calculated using a total volume of 1 L passing through the tritium trap.

4.0 SAMPLE CHAIN OF CUSTODY: RECEIPT, STORAGE, AND SHIPMENT

All sorbent trains, and SUMMA canisters received from PNL are kept in a custody locked storage area maintained by SML. SML received TSTs by Federal Express from ORNL. ORNL shipped the samples on blue ice and were received chilled at SML. Sorbent trains and tubes were maintained at 4 ± 2 °C in a refrigeration unit. SUMMA canisters were stored in the same locked storage area, but were not refrigerated. The sorbent trains and SUMMA canisters were picked up from PNL by SML and transported in a government vehicle to a custody locked storage area.

After sampling, the PNL sorbent tubes and SUMMA[™] canisters were transported by government vehicle directly to PNL and delivered to J. A. Edwards on October 13, 1995. Table 4 lists the sample identifiers, sample types, and COC form numbers for all PNL samples.

Table 4. Pacific Northwest Laboratory Samples.

Sample Identifier	Sample Type	COC Number
S5069-A01.045	Ambient upwind SUMMA™	009267
S5069-A02.047	Ambient SUMMA [™] (VSS)	009267
S5069-A04.068	SUMMA™	009267
S5069-A12.109	SUMMA [™]	009267
S5069-A20.140	SUMMA [™]	009267
S5069-A08.T26	NH ₃ /NO _x /H ₂ O sorbent	009269
S5069-A09.T27	NH ₃ /NO _x /H ₂ O sorbent	009269
S5069-A10.T28	NO _x /H ₂ O sorbent	009269
S5069-A11.T29	NH ₃ /H ₂ O/H ₂ O sorbent	009269
S5069-A16.T30	NH ₃ /NO _x /H ₂ O sorbent	009269
S5069-A17.T31	NH ₃ /NO _x /H ₂ O sorbent	009269
S5069-A18.T32	NO _x /H ₂ O sorbent	009269
S5069-A19.T33	NH ₃ /H ₂ O/H ₂ O sorbent	009269
S5069-A25.T34	NH ₃ /NO _x /H ₂ O field blank	009269
S5069-A26.T35	NH ₃ /NO _x /H ₂ O field blank	009269
S5069-A27.T36	NH ₃ /NO _x /H ₂ O field blank	009269

On October 16, 1995, the ORNL TSTs were transported by a government vehicle directly to WHC shipping on Off-Site Property Control #W96-0-0006-03. Table 5 lists the sample identifiers, sample types, and COC form numbers for all ORNL samples.

From the time that samples are received by SML until they are shipped back to the analytical laboratory, all COCs are maintained by SML in accordance with WHC-IP-1127-1.3, Chain-of-Custody/Special Analysis Request for RCRA and CERCLA Protocol Samples (WHC 1995a). Copies of the completed COC forms for this sampling event are included in Appendix C.

Table 5. Oak Ridge National Laboratory Samples.IdentifierSample TypeCOC N

Sample Identifier	Sample Type	COC Number
S5069-A40.1100	TST	006769
S5069-A41.1103	TST	006769
S5069-A42.1104	TST	006769
S5069-A43.1105	TST	006769
S5069-A44.1106	TST	006769
S5069-A45.1107	TST	006769
S5069-A46.1108	TST	006769
S5069-A47.1109	TST	006769
S5069-A48.1111	TST	006769
S5069-A49.1112	TST	006769
S5069-A50.1113	TST	006769
S5069-A51.1114	TST	006769
S5069-A52.1115	TST Trip Blank	006769
S5069-A53.1116	TST Trip Blank	006769
S5069-A54.1118	TST Field Blank	006769
S5069-A55.1119	TST Field Blank	006769

5.0 QUALITY ASSURANCE AND CONTROLS

5.1 VAPOR SAMPLING SYSTEM CLEANING

Before sampling of SST 241-TX-111, the VSS manifold and vapor sample transfer tubing was heated to 60 °C and ambient air was purged through the system for 30 minutes. Also, all pertinent system valves were actuated to release any contaminants that may have collected in the VSS valves themselves. After this purge an ambient air sample was drawn through the VSS manifold and a GC/FID run was initiated. No significant level of contaminants was detected. A second ambient air GC/FID run confirmed that the VSS manifold and transfer tubing was free of organic remnant residue down to ambient levels. A SUMMA canister ambient air sample was then collected to confirm by laboratory analysis that the VSS sampling manifold was free of trace organic contaminants (or to determine which contaminants were present and at what concentration), as discussed in Section 3.5. For further details, refer to Appendix E of WHC-IP-1127-4.10 (WHC 1995b) and the project-specific file located with SML.

5.2 INSTRUMENT CALIBRATION

Instruments located in the VSS are calibrated on an annual basis at the WHC Standards Laboratory. VSS instrumentation calibration data, maintained in files by SML, are summarized in Table 6. According to the calibration schedule shown in Table 6, all instrumentation was within its calibration period during the SST 241-TX-111 sampling event.

Element	Calibration Date	Expiration Date	WHC Standards Laboratory Code
FICV-1	5/08/95	5/08/96	518-28-03-012
FICV-2	5/08/95	5/08/96	518-28-03-008
FICV-3	5/08/95	5/08/96	518-28-03-004
FICV-4	5/08/95	5/08/96	518-28-03-006
FICV-5	5/08/95	5/08/96	518-28-03-011
FICV-6	5/08/95	5/08/96	518-28-03-009
FICV-7	5/08/95	5/08/96	518-28-03-014
FICV-8	5/08/95	5/08/96	518-28-03-013
FICV-9	5/08/95	5/08/96	518-28-03-007
FICV-10	5/08/95	5/08/96	518-28-03-010
FICV-11	5/08/95	5/08/96	518-28-03-005
PE-1	5/04/95	5/04/96	518-80-02-005
PE-2	5/04/95	5/04/96	518-80-02-006
PE-3	5/04/95	5/04/96	518-80-02-008
PE-4	5/04/95	5/04/96	518-80-02-007
PD-1	5/04/95	5/04/96	518-80-02-004
PD-2	5/04/95	5/04/96	518-80-02-003
Temperature Control System	8/25/95	8/25/96	804-67-74-009

Table 6. Calibration Data.

5.3 BLANK SAMPLES

Trip blanks are samples that accompany the sample media from the point of generation through sample analysis. They are transported to the field with the sample collection media but remain unopened during the sampling event. Analysis of trip blanks is used to assess cross-contamination of sample media during field transport and storage.

Field blanks are sampling devices similar to trip blanks. They are prepared and handled in the same manner as the sampling media, but no tank vapors are drawn through them.

Spiked blanks are prepared as regular sampling media but also contain a known amount of special analyte. Tank vapors are drawn through these blanks and they are handled and analyzed just like any other sample. Analysis of the spiked blanks is used to evaluate potential sample loss during shipment or storage.

Ambient blanks are samples of ambient air collected at the sampling location. Analysis of ambient blanks is used to assess contamination that may be present in the atmosphere or in the transfer tubing or sampling manifold of the VSS immediately prior to sampling operations.

Tables 4 and 5 lists sample blanks used during the sampling of SST 241-TX-111.

6.0 ANOMALIES

All samples were collected in accordance with the Tank Characterization Plan (TCP) and WHC-IP-1127-4.10, Collection of Parallel Sorbent Tube and SUMMA Canister Samples Using the Vapor Sampling System (1995b).

The actual flow rate for TST sample number S5069-A50.1113 was 19.70 stdcm³/min. The flow was extremely low as compared to the previous VSS sampling events. Historically, when the desired flow rate is 200 stdcm³/min the anticipated range for the actual flow rate is between 160 and 200 stdcm³/min. One logical explanation for the low flow rate is the TST was packed extremely tight, thus restricting the flow through the tube.

7.0 REFERENCES

- 49 CFR 100-177, 1992, "Transportation," Code of Federal Regulations, as amended.
- Homi, C. S., 1995, Vapor Sampling and Analysis Plan, WHC-SD-WM-TP-335, Rev. 1, Westinghouse Hanford Company, Richland, Washington.
- Mahon, R. D., C. M. Jones, and M. S. Story, 1994 (draft), Evaluation of the Capabilities and Use of the Vapor Sampling System for Tank Headspace Sampling and Characterization, SD-WM-RPT-094, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1995a, Chain-of-Custody/Special Analysis Request for RCRA and CERCLA Protocol Samples, Procedure WHC-IP-1127-1.3, Rev. 1, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1995b, Collection of Parallel Sorbent Tube and SUMMA Canister Samples Using the Vapor Sampling System (VSS), Procedure WHC-IP-1127-4.10, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1995c, Release of Vapor Sampling Equipment, Procedure 1995-33300-RSP-03, Westinghouse Hanford Company, Richland, Washington.

APPENDIX A SAMPLE LOG SHEETS

This page intentionally left blank.

VSS Sampling of TX-111

Set up VSS (Secton A)(Temperature set point = 60°C)

Date: 10/12/95

Ensure HEPA filters are installed

34101 10112100

Ensure connection to sample probe

VSS Personnel: Rich Westberg, Glenn Caprio, Tim Utecht, and Rick Mahon

System status check sheet. (Verify zones are to temp)

Trailer Personnel: Tim Utecht

Tank Temperature 22.6 C

GC Standard Runs

GC Ambient Air Runs through port 10

WHC Sample ID	ORNL/PNL Sample ID	Port Valve #	Description	Desired Flow Rate	Desired Duration (min.)	Desired Total Flow	Actual Flow Rate	Actual Start Time	Actual End Time	Actual Total Time	Actual Total Flow
				SCCM		SCCM	SCCM			(min.)	Liters
Purge with ambient a	air for 30 min			5500	30	165000	5500	10/11-10:15	10/12-9:58	1423	7828.00
S5069- A01, 278	278		AMBIENT #1		1			10:07	10:08	1	
GC Run #1	Ambient air/Cl	eanliness o	check					10:11			
S5069- A02. 279	279	15	AMBIENT #2		1			10:15	10:16	1	
GC RUN#2	Ambient air							10:17			
LEAK CHECK(APPEN	IDIX A) L	eak Rate:	14.4 torr/hr								•
Purge with tank air f	or 30 min			5500	30	165000	5500	10:48	11:18	30	165.00
Measure tank pressu	re		PE-1 = 749.5 torr					11:20			
GCRUN #3 (Tank r	un #1)							11:22			
S50 <u>69-</u> A04. 280	280	11	SUMMA #3		1			11:26	11:27	1	6.00

VSS Sampling of TX-111

					17-111						
WHC Sample ID	ORNL/PNL Sample ID	Port Valve #	Description	Desired Flow Rate	Desired Duration (min.)	Desired Total Flow	Actual Flow Rate	Actual Start Time	Actual End Time	Actual Total Time	Actual Total Flow
Willo Sample ID	Sample ID	VEIVE W		SCCM	(,	SCCM	SCCM		Time	(min.)	Liters
S5069- A08. T26	T26	1	NH3/NOx/H2O (#1)	200	15	3000	200.00	11:31	11:46	15	3.00
S5069- A09. T27	<u>T27</u>	2	NH3/NOx/H2O (#2)	200	15	3000	200.00	11:31	11:46	<u>15</u>	3.00
S5069- A10. T28	T28	3	NOx/H2O (#3)	200	15	3000	200.00	11:31	11:46	15	3.00
S5069- A11. T29	T29	4	NH3/H2O/H2O (#4)	200	15	3000	200.00	11:31	11:46	15	3.00
S5069- A40. 1100	ORNL #1100	5	ORNL TST #1	200	20	4000	183.80	11:31	11:51	20	3.68
S5069- A41. 1103	ORNL #1103	6	ORNL TST #2	200	20	4000	167.40	11:31	11:51	20	3.35
S5069- A42. 1104	ORNL #1104	7	ORNL TST #3	200	20	4000	173.30	11:31	11:51	20	3.47
S5069- A43, 1105	ORNL #1105	8	ORNL TST #4	200	20	4000	189.10	11:31	11:51	20	3.78 📆
GCRUN #4 (Tank r	un #2)					<u></u>		11:57			<u>}</u> ;
S5069- A12. 281	281	13	SUMMA #4		1			12:06	12:07	1	600 🚉
S5069- A16. T30	T30	1	NH3/NOx/H2O (#5)	200	15	3000	200.00	12:14	12:29	15	ير 3.00
S5069- A17. T31	T31	2	NH3/NOx/H2O (#6)	200	15	3000	200.00	12:14	12:29	i 5	3.00 t
S5069- A18. T32	T32	3	NOx/H2O (#7)	200	15	3000	200.00	12:14	12:29	15	3.00 🗟
S5069- A19. T33	T33	4	NH3/H2O/H2O (#8)	200	15	3000	200.00	12:14	12:29	15	3.00
S5069- A44. 1106	ORNL #1106	5	ORNL TST #5	50	4	200	50.00	12:14	12:18	4	0.20
S5069- A45. 1107	ORNL #1107	6	ORNL TST #6	50	4	200	50.00	12:14	12:18	4	0.20
S5069- A46. 1108	ORNL #1108	7	ORNL TST #7	50	4	200	50.00	12:14	12:18	4	0.20
S5069- A47, 1109	ORNL #1109	8	ORNL TST #8	50	44	200	50.00	12:14	12:18	4	0.20
GCRUN #5 (Tank r	un #3)	·-·				· · · · · · · · · · · · · · · · · · ·		12:33			
S5069- A03. OT1 T	-2332 (222-S	3) 4	Tritium Trap	200	5	1000	200.00	12:38	12:43	5	1.00
S5069- A48. 1111	O <u>RNL #111</u> 1	5	ORNL TST #9	200	5	1000	200.00	12:38	12:43	5	1.00
S5069- A49. 1112	ORNL #1112	6	ORNL TST #10	200	5	1000	200.00	12:38	12:43_	5	1.00
S5069- A50. 1113	ORNL #1113	7	ORNL TST #11	200	5	1000	19.70	12:38	12:43	5	0.10
S5069- A51. 1114	ORNL #1114	8	ORNL TST #12	200	5	1000	189.80	12:38	12:43	5	0.95

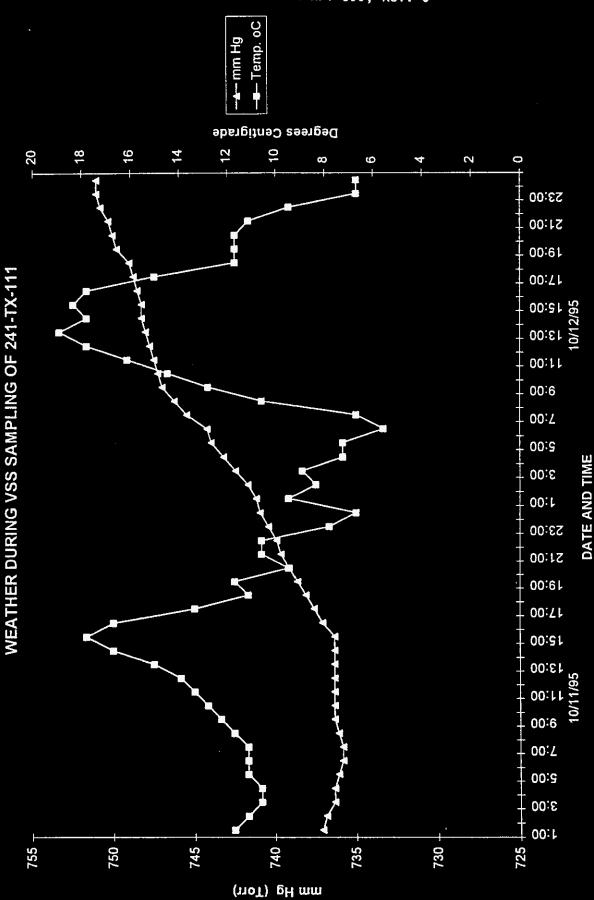
				SSA	VSS Sampling of TX-111						
				Desired	Desired	Desired	Actual	Actuai	Actual	Actual	Actual
	ORNL/PNL	Port	Description	Flow	Duration	Total	Flow	Start	End	Total	Total
WHC Sample ID	Sample ID	Valve #		Rate	(min.)	Flow	Rate	Time	Time	Time	Flow
				SCCM		SCCM	SCCM			(min.)	Liters
GCRUN#6 (Tank r	(Tank run # 4)							12:48			
S5069- A20, 282	282	15	SUMMA # 5					12:55	12:56	1	6.00
S5069- A54. 1118 OKNL #1118	OKNL #1118		RNL IST FIELD BLANK #7	# 1				12:48	12:49		
S5069- A55, 1119 ORNL #1119	ORNL #1119		ORNL TST FIELD BLANK #2	#2				12:48	12:49		
S5069- A25. T34	T34	NH3/NO	NH3/NOx/H2O FIELD BLANK	IK #1				12:40	12:41		
S5069- A26. T35	T35	NH3/NO	NH3/NOx/H2O FIELD BLANK	K #2				12:40	12:41		
S5069- A27. T36	T36	NH3/NO	NH3/NOx/H2O FIELD BLANK	£#3				12:40	12:41		
						TOTAL TAN	K GAS USED	DURING SAN	TOTAL TANK GAS USED DURING SAMPLING RUNS		MHC-SD-M
A											M-R
S5069- A28. 0U1	T-2333 (222S)		Upstream HEPA(box)								PT-
S5069- A29. 0D1 T-2334 (222S)	r-2334 (222S		Downstream HEPA(box)	(xo							199
S5069 A30, OU2 T-2335 (222S)	r-2335 (222S		Upstream HEPA(VSS)	(), F
S5069- A31, 0D2 T-2336 (222S)	T-2336 (222S		Downstream HEPA (VSS)	VSS)							Rev
											. 0

S5069- A28, 0U1 T-2333 (222S)	Upstream HEPA(box)
S5069- A29. 0D1 T-2334 (222S)	Downstream HEPA(box)
S5069 A30, OU2 T-2335 (222S)	Upstream HEPA(VSS)
S5069- A31, 0D2 T-2336 (222S)	Downstream HEPA (VSS)

Trip Blanks (DO NOT EXPOSE)	
S5069-A52, 1115 RNL TST#111	ORNL TST TRIP #1
S5069- A53, 1116 RNL TST#111	ORNL TST TRIP #2

TX-111 TOTAL TANK VAPOR USED

	NUMBER	TIME	VOLUME	TOTAL	
	OF	Z	Z	VOLUME,	
	EVENTS	MINUTES	SCCM	LITERS	
LEAK CHECKS		0	0099	2.60	
TANK PURGE PUMP DOWNS	က		2600	16.80	
TANK PURGE TIME (From Spreadsheet)		30	5500	165.00	
GC PURGES	4	2	2000	40.00	
SUMMA PURGES	ဇ	2	2000	30.00	
ALL SAMPLES COLLECTED				61.12	
TOTAL FOR TANK SAMPLING RUN				318.52	


VSS SAMPLING RADIOLOGICAL SCREENING RESULTS TX-111

PC fifter PC								
Maril TER (7.2335) Libra Pol Ilinar	S5069-A28.OU1				S5069-A29.OD1			
17820 00 88 44 BETA All All All All All All All All All	HEPA BOX UPSTREAM FILTER (T-2333	Liters	pCi / filter	pCi / liter	HEPA BOX DOWNSTREAM FILTER (T-233		pCi / filter	pCi / liter
1700000 54.34 ALPHA CREATION CREAT	I OI AL VOLUME	316.32	24 600 00	77 83	I O I AL VOLOME	20.016	3 03	100
Contention Con	90.19		2 (000:00) 1 7 5 00 00	00.44	VI 3G		2000	500
Conscious Cons	ALPHA		20.000	FC.57			5	7
Contention Con	GEA - AM-243		> Detectable	> Deleciable	SEA - AII-243		Chemiane	Coelectabil
Contention Con	7:7-19 -		14000.00	40.40	217-10 -		Confectable	Chelectable
Control Cont	767-dN -			< Defectable	102-401 -		Cherectable	Coerectable
Colectable Col	. Fb-212		nn nnaci	42.70	217-04		Coeffectable	C Defectable
Carectable Car	- In-229		< Detectable	< Detectable	677-U -		< Detectable	< Letectable
Colectable Col	- TL-208		4690.00	14.72	- 11-208		< Defectable	< Detectable
Terr (1-235)	-Cd-109		< Detectable	< Detectable	-cd-109		< Defectable	< Detectable
TER (T-2335) Lihets POI / filter POI / filt	Cs-137		< Detectable	< Detectable	Cs-13/		< Detectable	< Detectable
ILTER (T.2335)	S5069-A30.0U2				S5069-A31,OD2			
16.52 0.15 0.00 Defectable C Detectable	VSS UPSTREAM FILTER (T-2335)	Liters	oCi / filter	oCi / liter	VSS DOWNSTREAM FILTER (T-2336)	Liters	DCi / filter	pCi / liter
10 10 10 10 10 10 10 10	TOTAL VOLUME	318.52			TOTAL FLOW	318.52		
Column	BETA		0.15	00.0	BETA		8.53	0.03
Celectable Celectable Celectable CEA - Am.243 Celectable Cedectable Celectable C	ALPHA		1.67	0.01	ALPHA		< 0.563	< Detectable
Colectable Col	GEA - Am-243		< Detectable	< Detectable	GEA - Am-243		< Detectable	< Detectable
Coerciable Coe	- Bi- <u>2</u> 12		< Detectable	< Detectable	- Bi-212		< Detectable	< Detectable
C Detectable C De	- Np-237		< Detectable	< Detectable	- Np-237		< Detectable	< Detectable
Contectable	- Pb-212		< Detectable	< Detectable	- Pb-212		< Detectable	< Detectable
Alana Alan	- Th-229		< Detectable	< Detectable	· Th-229		< Detectable	< Detectable
1.0 C 50.0 S 50	- 1L-208		< Detectable	< Detectable	- TI-208		< Detectable	< Detectable
332) Liters PCI / filter <								
332) Lifers PCI / lifter <	S5069-A03.O71							
E ANALYSIS, USING VSS DOWNSTREAM FILTER ANALYSIS AS POSSIBLE EXPOSURE LEVEL C 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 <td>TRITIUM TRAP (T-2332)</td> <td>Liters</td> <td>pCi / filter</td> <td>pCi / liter</td> <td></td> <td></td> <td></td> <td></td>	TRITIUM TRAP (T-2332)	Liters	pCi / filter	pCi / liter				
Canal Vision Control of South Control	TOTAL VOLUME	1.0						
E ANALYSIS, USING VSS DOWNSTREAM FILTER ANALYSIS AS POSSIBLE EXPOSURE LEVEL TST SAMPLE 100 ALPHA Less than DOT shipping limits 100 Liters	TOTAL ACTIVITY		< 50.0	< 50.0				
ALPHA Less than DOT shipping limits TST SAMPLING TST SAMPLE TS								
PER SAMPLE 3.00 Liters TST SAMPLING 1.00 PER SAMPLE 3.00 Liters TOTAL VOLUME PER SAMPLE 1.00 In the control of the cont	= BETA and ALPHA Less than DC	VSS COVINS OT shipping lir	nits	INVESTIGATION OF THE PROPERTY	SIBLE EALUSURE LEVEL			
PER SAMPLE 3.00 Liters TOTAL CANAPLE 1.00 IPER SAMPLE 4 LL TSTS, BETA 0.04 IPLE ALL TSTS, BETA 0.04 IPLE ALL TSTS, BETA 0.04 ALL TSTS, BETA 0.04 0.04 ALL TSTS, BETA C Defectable 0.04 G gram) 0.13 pci per gram Beta ALL TSTS, GEA C Defectable S gram) 0.18 pci per gram Beta ALL TSTS, GEA C Defectable E C Detectable pci C Defectable DCI PER CANISTER 6 Liters C Detectable DCI PLE C Detectable DCI C Detectable PLE C Detectable DCI DCI	ON BRAS THEORY				ON IGM93 TST			
ALL TSTS, BETA O.044 D.004 D.005 D.0	P SAMPI E	300	iters		TOTAL VOLUME PER SAMPLE	100	Hor	
LE ALL TSTS, ALPHA 5 gram) 0.11 pCi per gram Beta ALL TSTS, GEA 0 gram) 0.13 pCi per gram Beta ALL TSTS, GEA 5 gram) 0.018 pCi per gram Beta ALL TSTS, GEA E Colectable pCi ALL TSTS, GEA E Colectable pCi ALL TSTS, GEA E Colectable pCi ALL TSTS, GEA		< Detectable	į		ALL TST'S, BETA	0		
5 gram) 0.11 pCi per gram Beta ALL TST'S, GEA 0 gram) 0.13 pCi per gram Beta ALL TST'S, GEA 5 gram) 0.18 pCi per gram Beta ALL TST'S, GEA E Contectable pCi ALL TST'S, GEA E Contectable pCi ALL TST'S, GEA E Contectable pCi ALL TST'S, GEA					ALL TSTS, ALPHA	< Detectable		
0 gram) 0.13 5 gram) 0.18 E	NH3 (0.75 gram)	_	pCi per gram Beta		ALL TSTS, GEA	< Detectable		
5 gram) 0.18 E	NO2 (0.60 gram)	_	oCi per gram Beta					
E - Oetectable PER CANISTER 6 2LE - 0.02 PLE - Cetectable	gram)	=	oCi per gram Beta					
PER CANISTER 6 9LE 0.02			ÿ					
PER CANISTER 6 PLE 0.02	SUMMA SAMPLING							
0.02 <detectable< td=""><td>TOTAL VOLUME PER CANISTER</td><td>_</td><td>iters</td><td></td><td></td><td></td><td></td><td></td></detectable<>	TOTAL VOLUME PER CANISTER	_	iters					
< Detectable		_	oČi Beta					
			ٽ ٽ					
< Detectable		_	Į.					

This page intentionally left blank.

APPENDIX B AMBIENT CONDITIONS

This page intentionally left blank.

This page intentionally left blank.

APPENDIX C CHAIN-OF-CUSTODY FORMS

This page intentionally left blank.

(56/T0) 002-F003-A			nigiro la slit 10 .	stent containe	by requestor and returned to p	ls shall be picked up	tinstem etobenezed gr	
	Date/Ti				per lab procedure, used in process	Return to customet,	Bis bodisM [seogsid	FINAL SAMPLE
				(ərni⊤əseQ			Relinquished By
		DateTime	<u> </u>	Received By	. somiDerid			
Y = Vegetation	liO = 0 iA = A	Date(Time		Received By	Date/Time			Relinguished By
VI = Viquid	-Guerra and						//	Relinquished By
L * Lizzne DF = Dumu Fidmes	bilos = Os	27.77 28- 1448	11 5091171 80	Received By	SH-H /SH 21/01	Tomas	pp 11/4/30	KAN 10 25 (P.S.
D2 = Drum Solids	io2 = 2	Date/Time Date/Time	mis mira	Received By	Date/Time	rais.	luni.	Kenndmaped By
	xinsM		to Rick Mahon					
		SLIMSAN	Please fox					List all known wa
0	emiT blof		SPECIAL INSTRUCTIONS	1 0N	WSDS Xes	VEKS	E HAZARDS/REN	POSSIBLE SAMPL
· ====================================					()			
Kev					()			
199,					. ()			
			56/1/01					
Ž								
SD-WM-RPT					()			
		700			()		PCCT-1	110-19055
꽃;			75tel Activity		4-17 8719 (I)	×	CZZL -	CO0-69059
//	——————————————————————————————————————		VIB / BEA		vi (1)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CCCT-L	Tno-6905
11			M30 1811		u (i)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1CC7-1	100- 6905
			77/10-1	7.7	n (1)			
#//V			439/81/t	/	प्रतः १५६४ (१)	^	A 1555 +	170-6905S
					ine No/Type Container	I Date I		Sample No.
Perservative	b/~	Offsite Property No.	9A3	№ Бпиот	ertuT eled	601		<u> </u>
		Hill of Lading/Air Bill ?	sourment Vehicle	Instructions	Method of			(ded) oT baggin
H/0	√ .qm»T	Ice Chest# 1/4-	01-Lhg-N-2HM 54/1/01		#3/000k#	T 70 6~		9AU abiT Isalor
		Purchase OrderVCharg			Sample Ori		P207	AF Number S
9606-868 XV		1°F No. 373-743.	WOLAM C	duestor R	Contact/Rec	423W A	8 LOTO 94	ollector GS (
	Page		NEWNELE ANALYSIS	TODY	IVIN OF CUS	CF		euodgnites W gmo

009267 Battelle CHAIN OF CUSTODY WHC Pacific Northwest Lab (509) 373-0141 J. A. Edwards - Fill. Telephone Custody Form Initiator 85-3009 / FAX 376-0418 Page Company Contact R. D. Mahon - WHC Telephone (509) 373-2891 Page 85-3152 / FAX 373-3793 2008-12-95 Collection date Project Designation/Sampling Locations 200 East Tank Farm 09 - 22 - 95 Vapor Sample SAF S5069 Preparation date 241-TX-111 Tank (VSS Truck) Field Logbook No. WHC-N -617-10 Ice Chest No. N/A Offsite Property No. N/A Bill of Lading/Airbill No. Government Truck Method of Shipment **PNL** Shipped to

Possible Sample Hazards/Remarks Unknown at time of sampling

Sample Identification

 S5069 - A01 . 278
 Ambient Air SUMMA #1 Upwind of TX-111

 S5069 - A02 . 279
 Ambient Air SUMMA #2 Through Port # ___

 S5069 - A04 . 280
 SUMMA #3 Port # ___

 S5069 - A12 . 281
 SUMMA #4 Port # ___

 S5069 - A20 . 282
 SUMMA #5 Port # ___

[] Field Transfer of Custody		[X] Chain	of Possession (Sign a	nd Print Name:	s)
Relinguished By	Date	Time	Received By	Date	Time
JA Edwards CA Edwards	09-22-95	1430	TRW Clauss Ma) (LA voe)	09-22-95	1430
TRW Clauss DRW Claur	9/26/95		CS CAPrio XII CVIL	9/26/95	1322
GS CAPRIO IN C.D.	10/13/95	10:35	RAWesthera Ma western	10/13/95	10:35
RA Westberg/Ra Western	10/13/95	11:25	JAEOUROSS/AEdward	10-13-95	11:25
			/		

Final Sample Disposition

Comments:

	PNL (only) Checklist	Pick-up	/ Delivery	Comments:
◊	Media labeled and checked?	Q/N		
0	Letter of instruction?	Ø/N		
◊	Media in good condition?	Ø/n	/ (Y) N	
0	COC info/signatures complete?	(Y)/N	/ Ø/N	
0	Rad release stickers on samples?		/ (Q/N	
0	Activity report from 222S?		/ (<u>V</u>)/N	
0	COC copy for LRB, RIDS filed?	A	1 8/N	
	POC	_@	POC VE	

(Revised 10/17/94 PNL)

CHAIN OF CUSTODY WHC 009268 Battelle Pacific Northwest Laboratory Telephone (509) 373-0141 J. A. Edwards - PNL Custody Form Initiator 85-3009 / P8-08 / FAX 376-0418 Page (509) 373-7437 Telephone Company Contact R. D. Mahon - WHC 85-9656 / S3-27 / FAX 373-7076 Page Project Designation/Sampling Locations 200 West Tank Farm Collection date 09 - ___ - 95 09 - 22 - 95 Preparation date 241-TX-111 Tank Vapor Sample SAF S5069 (VSS Truck) Field Logbook No. WHC-___--_--Ice Chest No. PNL-T-00__ Ertco Hi/Lo thermometer No. Offsite Property No. Bill of Lading/Airbill No. N/A Government Truck Method of Shipment Shipped to Possible Sample Hazard Remarks. Unknown at time of sampling Sample Identification PNL Triple Sorbent Trap (TST) Sample # 1 S5069 - A05 . 690 S5069 - A06 . 691 PNL TST Sample # 2 PNL TST Sample # 3 S5069 - A07 . 692 PNL TST Sample # 4 S5069 - A13 . 693 PNL TST Sample # 5 S5069 - A14 . 694 S5069 - A15 . 695 PNL TST Sample # 6 In VSS truck S5069 - A21 . 696 Open, close & store PNL TST Field Blank # 1 Open, close & store PNL TST Field Blank # 2 In VSS truc S5056 - A22 . 697 None S5069 - A23 . 698 Store PNL TST Trip Blank # 1 None S5069 - A24, 699 Store PNL TST Trip Blank # 2 X] Chain of Possession (Sign and Print Names) Field Transfer of Custody Received By Date Relinquished By Date Time Time TRW Clauss JIW Claus IL Julya JA Shurends for ILJULYA 09-22-95 1430 09-22-95 1430 GS CAPITO No Colo Hen Clam 75-15 11212 1315 9/26/95 1315 Thu Clause GS CAPETO 合体参加。 10:30 RA Westhern /1/9 West 10/13/95 10:30 RA Westley/Rawest 1124 10-13-65 10-13-95 Final Sample Disposition Comments: PNL (only) Checklist Pick-up / Delivery Comments: 0 Media labeled and checked? Ø/N ٥ Letter of instruction? Ø۱N / (X)N N/X 0 Media in good condition? 0 COC info/signatures complete? Ø/N (P)/N ٥ Sorbents shipped on ice? (<5°C) Cooler Temperature Status °C/Lo ٥ Hi/Lo thermometer - Keep upright! โซ/ท °C (pick up at PNL to WHC) Hi °C/Lo °C (delivery at WHC from PNL) 0 Hi/Lo thermometer IHi 2 °C/Lo -2 °C (at return to PNL from WHC) ON CO 0 Rad release stickers on samples? Ήi (D) N Hi · Z °C/Lo ~ 2 °C (at delivery from WHC to PNL) I ٥ Activity report from 222S? COC copy for LRB, RIDS filed? Y/N POC

(Revised 06/21/95 PNL)

Battelle Pacific Northwest Laboratory

CHAIN OF CUSTODY

WHC 009269

Custody Form Initiator

J. A. Edwards - PNL

(509) 373-0141 Tel:phone

Page 85-3009 / FAX 376-0418

Company Contact

R. D. Mahon - WHC

Telephone

(509) 373-2891

Page 85-3152 / FAX 373-3793

Project Designation/Sampling Locations 200 East Tank Farm Vapor Sample SAF S5069 Collection date

B-12-95

241-TX-111 Tank

Preparation date

09 - 22 - 95

Ice Chest No.

(VSS Truck)

Field Logbook No. WHC-N -647-10

Method of Shipment

Government Truck

Shipped to

WHC

Possible Sample Hazards/Remarks Unknown at time of sampling

Sample Identification

(INORG Sorbent Trap # 1) S5069 - A08 . T26 \ NH3/NOx/H2O (INORG Sorbent Trap # 2) S5069 - A09 . T27 NH3/NOy/H2O S5069 - A10 . T28 4 (INORG Sorbent Trap # 3) NO_x/H₂O (INORG Sorbent Trap # 4) S5069 - A11 . T29 · NH3/H2O/H2O (INORG Sorbent Trap # 5) S5069 - A16 . T30 -NH3/NO_x/H₂O (INORG Sorbent Trap # 6) S5069 - A17 . T311 NH3/NO_x/H₂O (INORG Sorbent Trap # 7) S5069 - A18 . T32 + NO_X/H₂O S5069 - A19 . T33 ' NH3/H2O/H2O (INORG Sorbent Trap # 8) (INORG Field Blank # 1) S5069 - A25 . T34 NH3/NOx/H2O (INORG Field Blank # 2) S5069 - A26 . T35 NH3/NOx/H2O (INORG Field Blank # 3) NH3/NOx/H2O S5069 - A27 . T36

[] Field Transfer of Custody		[X] Chain	of Possession (Sign a	nd Print Name	s) ·
Relinquished By	Date	Time	Received By	Date	Time
G W Dennis M.W. D	09- 26-95	1110	TRW Clauss Myclaum	09- 26-95	11:15
TRW Clauss Awclaum	09 ,2८ -95	341532	GSCAPrio Its Call	09- ン 6-95	13:12
(SCAPRIO AD C.)_	10-13-95		Kawesthern flawesthing	10-13-95	10:35
Ra Westlan Rawatten	10-13-95	11:25	JAEDWARDS/-JAEdwards	10-13-95	1125
₩)/			<u>'</u>		

Final Sample Disposition

Comments:

	PNL (only) Checklist	Pick-up	/ Delivery	Comments:	
O	Media labeled and checked?	(Y)/N			
◊	Letter of instruction?	(Ý)/N			
◊	Media in good condition?	∅ /N	/ ⊘ /N		
O	COC info/signatures complete?	N(K) N(K)	/ © /N		
0	Sorbents shipped on ice? (<10°C)	$(\tilde{Y})/N$	/ () /N		
◊	Rad release stickers on samples?)	/ (<u>P</u>)/N		
O	Activity report from 222S?		/ ∑ /N		
◊	COC copy for LRB, RIDS filed?		/ W/N		
O	COC copy for sorbent follow-on?	\bigcirc	/ Y/N	Original COC follows sorbent media	
	POC	(K)	POC (A)		
		ď.	(* '		(Revised

ed 05/10/95 PNL)

			, m. K. 1 133, Rev.		
ORNL		Cŀ	HAIN OF CUSTO	DY (Rev 1)	# 006769
Custody Form Initiator	Amy Dindal			Sampling Location	241-TX-111 (VSS)
ORNL Contact	Roger Jenkins			Telephone	(615) 576-8594
Method of Shipment	Federal Expres	ss		Shipped to	Rick Mahon, WHC
			Sample Identification		sal.
				not completed	1 316D 10/11/47
WHC Identii	ier	TST#	Trap Type	Received at WHC	Received at ORNL (/)
S5069-A40.1	100	1100	SAMPLE		
S5069-A41.1	103	1103	SAMPLE		
S5069-A42.1	104	1104	SAMPLE		
CERED A42.4	105	1105	CAMBLE		

S5069-A40.1100	1100	SAMPLE	
S5069-A41.1103	1103	SAMPLE	
S5069-A42.1104	1104	SAMPLE	
S5069-A43,1105	1105	SAMPLE	~
S5069-A44.1106	1106	SAMPLE	
S5069-A45,1107	1107	SAMPLE	
S5069-A46.1108	1108	SAMPLE	V
S5069-A47,1109	1109	SAMPLE	✓
S5069-A48.1111	1111	SAMPLE	
S5069-A49.1112	1112	SAMPLE	
S5069-A50,1113	1113	SAMPLE	~
S5069-A51.1114	1114	SAMPLE	
S5069-A52.1115	1115	TRIP BLANK	
S5069-A53.1116	1116	TRIP BLANK	
S5069-A54.1118	1118	FIELD BLANK	
S5069-A55.1119	1119	FIELD BLANK	レ

COMMENTS: Note extremely low flow on sample #55009-450.1113

10 tamper tape on Outside of cooler & did not All in "Received@wtk" cole
[] Field Transfer of Custody Chain of Possession (Sign and Print Names)

Relinquished By	. Date	Time	Received By / a	Date	Time
ABDINGUI ABDINGUI	1019/95	1256	A Westhere Wowleth	10/10/95	14:00
RA Westberg/ Marietten	10/16/95	1005	L.J. Jane Al Jan	10/10/16=	100-
K.J. Jan Sin Jan	10/16/95	1125	48 Divan Jahnda	617/15	1407

Cooler Temperature Status

Temperature (°C)	Min	Max			
When Shipped from ORNL 3	1	a			
When Received at WHC	-1	11			
When Shipped from WHC	~ }	5			
When Received at ORNL		13			

This page intentionally left blank.