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ABSTRACT

Robotic systems for remediation of hazardous waste sites must be highly reliable to avoid
equipment failures and the subsequent possible exposure of personnel to hazardous environments. 
Safe and efficient clean-up operations also require accurate and complete knowledge of the task
space.  This paper presents the progress made on a 18 month program, sponsored by the
Department of Energy (DOE) Morgantown Energy Technology Center (METC), under Contract
DE-AR21-95MC2093 with Mechanical Technology Inc., to meet these needs.  To enhance robot
reliability, a conceptual design of a  monitoring and diagnostic system is being developed to
predict the onset of mechanical failure modes, provide maximum lead time to make operational
changes or repairs, and minimize the occurrence of on-site breakdowns.  To ensure safe
operation, a comprehensive software package is being developed that will fuse data from multiple
surface mapping sensors and poses so as to reduce the error effects in individual data points and
provide accurate three-dimensional (3-D) maps of a work space.  

INTRODUCTION

The safe and cost effective cleanup of hazardous waste sites within the U. S. nuclear weapons
production complex  requires the use of remotely controlled robotic systems.  These robotic
systems have to be robust to stand the demands of the hostile envoirnment.   Due to the physical
dangers associated with the waste site surroundings, failed robots are not easily accessed by
humans to perform repairs and in extreme cases may have to be hauled out by other robots
or abandoned altogether.  Monitoring and diagnostic systems are the only means of providing
early stage detection, isolation, and tracking of developing faults before they result in catastrophic
failure.

A typical decontamination and decommissioning (D&D) task involves facilities that contain a
complax maze of pipes, valves, gages and tanks supported on large steel structures.  Because of
the uncertain knowledge of these facilities, due to incomplete and/or missing records,  sufficient
information about the task space has to be generated in situ  to allow collision free movement and



sensor based grasping to support dismantlement activities.  Task and tooling needs can only  

Figure 1.  Model-Based Supervisory Control Archtecture

be determined as more information is revealed about the site.  The robotic actions, in addition, 
must be performed with high confidence due to the extreme safety hazard.  To address
the above demanding requirements, DOE has undertaken the development of a model-based
supervisory control architecture (Figure 1).  The key elements of this architecture are the
inclusion of an operator in the control loop, a three-dimensional (3-D) "world model" of the task
space, surface mapping sensors to generate topological information, a data fusion and a
visualization software module to integrate sensor data and confirm and update the world model,
and monitoring and diagnostic technologies to provide information about robot health.  The
overall development approach and progress made to date on the data fusion software module and
the monitoring and diagnostic technologies are described below.

DATA FUSION SOFTWARE MODULE

A typical decontamination and decommissioning (D&D) facility contains a complex maze of
pipes, valves, gages, and tanks supported on large steel structures.  Many sensors in several



different locations will be used to create a complete 3-D model of this task space.  When a
surface mapping sensor scans a scene, the resulting data is expressed in the coordinate frame
associated with the sensor's physical location and orientation.  If the sensor moves, then any
subsequent data will be expressed in a different coordinate frame related to the new location
and orientation.  Therefore, an essential requirement for combining data sets from different
poses is to first convert all data into a common coordinate frame.  This process, called data
(scene) registration, requires the computation of the transformation that exists between two
sets of data acquired from different poses of the sensor.  Although registered data from
multiple sensors/poses can be combined directly without any further processing, a fusion
algorithm that weights sensor error will achieve significantly better results by reducing the
effects of error in individual data points.  Such an algorithm will thus provide a more accurate
map of the work space. 

The development objective for the data fusion module is to produce software that performs
data registration and data fusion functions for robotic remediation systems.  To provide the
most flexibility for different applications, the data fusion module will contain three
components: a registration software component, a fusion software component, and a graphic
user interface (GUI) software with file management capability.  Each of these software
components is described below.

Registration Software Component

The registration software component serves two operational needs: 1) to transform the data
into a common representation to permit the creation of a composite map of a task space, and
2)  to locate a robot in that task space.  The first need arises from the requirement of 
accurately combining data from multiple sensor scans, acquired from different poses within a
task space, in order to build a 3-D representation of the task space that is adequate for
subsequent planning and execution activities. In this case the registration process determines
the relative transformation that exists between two or more data sets acquired from different
sensor poses.  The second need arises from the requirement of  accurately locating a robot by
means of measurements from a sensor mounted on its end effector.  In this case, the
registration process will estimate the pose of the robot end effector by determining  the
transformation between the data generated by its sensor  and a set of corresponding spatial
coordinates stored in the GUI control files.

An evaluation of the available registration algorithms and software were carried out in order
to identify the best technical solution that is compatible with the schedule and cost constraints
of the project.  Because the preffered solution is a package of appropriate algorithms and
codes that have already been developed and tested, inquiries were made with key members in
the DOE robotics community.  This interaction identified the following six registration
algorithms:

Feature Based Algorithm.  Developed by MTI for Topographical Mapping Systems, this
technique uses three or more naturally occurring noncolinear objects in the task space of
simple geometric shapes, common in the two data sets, to derive the transformation that



will bring the coordinate frames of the two data sets into coincidence.  

Iterative Closet Point (ICP) Algorithm.  Improved by Carnegie Mellon University
(CMU), this technique was devised to avoid the problem of feature extraction for high-
speed applications.  Scanned data is matched to a model of a free-form surface, using an
iterative, least-squares ICP algorithm. 

ICP plus Spherical Attribute Image (SAI).  Developed by CMU, SAI is a technique for
registering scenes which have no features or fiducials, but only free-form objects.

Geometric Hashing.  Developed by CMU, this algorithm provides a means to automate
the registration process by fitting data to a member of a library of objects.  The technique
provides a good initial estimate of the pose which is refined by the ICP algorithm.

Coleman Research Corporation (CRC) Approach.  In this approach, registration is done
with the help of artificial targets placed in the work space. These targets are typically
spheres whose centers  are the fiducial points.  With corresponding data points, the pose is
estimated via an iterative, least-mean-square technique.

Fourier Transform.  Developed by the University of Florida, this technique was devised
for efficient updating of robotic world models.  The Fourier transform technique is used to
register the two images (in scale, rotation, and translation), so that a subtraction will
reveal the changes present in the current configuration.  

Based on the comparative evaluation of the above techniques, the state of development, and
the programmatic risk considerations, the feature-based registration technique was selected. 
This technique is a four-step process that requires algorithms for feature data segmentation,
feature surface characterization, computation of fiducial points, and computation of the
transformation (pose estimation) required to converge the two data sets.  The following
operational scenario illustrates this approach.

C Using existing facility drawings, video images, and 3-D visualization software, a set of
reference targets are identified.  These targets are naturally occuring objects of simple
geometric shapes having features that allow computation of fiducial points. (A target has
features which define a fiducial. For example, the intersection of two pipes contains two
cylinders, whose closest approach defines a line segment whose mid-point is a fiducial) 
The reference targets should be distributed so that any data set gathered by a mapping
sensor will contain data from at least three of these targets.  The present design supports
the following set of reference features.

Corner formed by three walls. The components are three plane surfaces.  The fiducial
is the point where the line formed by the intersection of two of the planes intersects
the third plane.

 
Pipe intersecting a wall. The components are a cylinder and a planar surface.  The



fiducial is the intersection of the axis of the cylinder with the plane.

Intersection of two non-parallel pipes.  The components are two cylinders while the
fiducial is the midpoint of the line connecting the closest approach of the two non-
parallel cylinder axes.

Cylinder tank with an end-cap or dome.  The components are a cylinder and a
quartic surface. The fiducial is the intersection of the cylinder axis with the quartic
surface.

  
C For each target feature component in each data set, the system operator encloses the

relevant data in a region-of-interest box.  The enclosed spatial data is segmented and
ouput to the registratin software. 

C Geometric forms are fit to the segmented data (plane, a quadric surface, or a cylinder) and
the fiducial points computed.  The output of this algorithm is the estimated position of the
fiducial point and a goodness of fit metric.

C The corresponding fiducials in the two data sets of interest are identified and forwarded to
the pose estimation algorithm that computes the transformation between the two sensor
poses.  

The individual elements in the fiducial algorithms and the pose estimation algorithm have been
checked using MATLAB.  Coding has begun but has not advanced where module testing is
possible.  When the module coding is complete, a simple test data set will be used to validate
the code at its unit level.  To test at the system level a more complex task space will be
modeled. 

Fusion Software

The purpose of the  fusion software component is to convert sensor measurements of the geometry of the
task space into a 3-D spatial data representation, called occupancy maps (see Figure 2).  These
occupancy maps store a scalar parameter, the probability of occupancy,  the value of which indicates,  to 
various degrees of certainty,  the areas that are free regions and the areas where encounters with solid
surface is likely.  Along with the occupancy map, the software will compute  a 3-D confidence map.  The
scaler value stored in each cell of  the confidence map represents the degree to which the corresponding
probability of occupancy value is supported by the source data.  The 3-D occupancy map and 3-D confidence
map are basic outputs of the fusion software  that will be  interpreted through visualization using  the Interac-
tive Computer-Enhanced Remote Viewing System (ICERVS), being developed by MTI under separate DOE
funding.  In summary, as the above discussion indicates, the fusion software requires three key elements, the
sensor error model, the occupancy map algorithm, and the confidence map algorithm.

Sensor Error Model  The sensor error model is a user supplied external function which is dynamically linked to
the Fusion Software Module at the run time.  The sensor error model is specific to each sensor and contains
the effects of many factors including basic sensor physics, its mechanical repeatability, the target surface
roughness, color, and reflectance, and the envoirnmental effects such as  task space temperature and humidity   



Surface mapping sensors selected by DOE for facility mapping system  will include a laser  radar and a
structured light sensor.  For the laser radar, the typical error sources after calibration include noise in the light
detection hardware, mechanical scanner jitter, signal attenuation from surface tilt and curvature, and variation
in speed of light due to changes in temperature and humidity.  For structured light sensor the errors include
quantization error associated with the basic optical resolution, mehanical positioning errors, and the surface
induced distortion of the laser illumination.  In general these errors  have Gaussian distribution in the three
orthogonal directions and can therefore be spatially described by three variance values.  Given the coordinates
of a measured point, the sensor error model will compute the set of variances associated with the range,
azmuth, and elevationof the particular point.  These variances are used to generate probability density function
using Gaussian uncertainty distribution.

Figure 2.  Topographical  Data  Fusion  Software

Published, theory based, sensor error models show extremely small errors.  Since the surface and
envoirnmental effects generate significant errors, the error model, for it to be useful, needs to be based on 
experimental characterization.  For the present project, the sensor error model for the structured light sensor is
based on experimental work performed at MTI  for the development of  a Topographical Mapping System
(TMS).   The laser radar sensor error model will be based on the results obtained from the ORNL testing of a
Colemon FM laser sensor.  

Occupancy Map Software  Given a set of sensor measurements and the associated sensor error model, the
occupancy map algorithm constructs a three dimensional occupancy grid where each cell in the grid is
characterized by the probability that it is occupied.  A value of "0" indicates that the cell is known to be
unoccupied or empty, while a value of "1" indicates that the cell is known to be occupied or full.  Initially, the
probability of occupancy for all cells is set equal to 1/2 and flagged as unmapped.

To create the occupancy map for a data set, the fusion software retrieves the sensor error model for that sensor
and determines the error variences for each point.  This permits the computation of a spatial occupancy profile
for a data point that also reflects the fact that the sensor must have a clear line of sight to that data point.  This
computation is repeated for each data point to create the occupancy map for that data set.  Data fusion is



performed when the individual occupancy maps such as those described above,  are combined using Bayesian
integration, to form a fused occupancy map.  

All algorithms required for implementation of  the Fusion software have been defined.  1D and 2D versions of
these algorithms have been evaluated and checked.  Prototyping of the 3D algorithm is in process.  The
preliminary design of the occupancy map software is complete and the detail design is in progress.  

Confidence Map Software

Development of Confidence Map software is subcontract to Dr. Mongi Abidi of University of Tennessee-
Knoxville.  For each cell in the confidence map, a confidence metric will be computed to estimate the extent to
which the corresponding probability of occupancy value can be presumed valid.  For the initial occupancy
map, the confidence metric will reflect the relative insensitivity of the probability of occupancy to the
assumptions made in computing it.  These assumptions include, for example, the parameter values choosen in
the sensor error model. When fusing different occupancy maps, the confidence metric will include  the number
of different sensor poses involved, the extent to which the line of sights are different for each sensor pose, the
number of different sensors used, and the relative corroboration among the individual probability estimates.

Graphic User Interface

The ICEERVS graphic user interface (GUI) will be expanded to provide a user friendly interface to Data
Fusion module.  A system archetecture has been provided that integrates the Data Fusion Module with
ICERVS  and provides a seamless interface between the two systems with the user (Figure 3) .  The GUI will
interface with both the Registration and the Fusion software.  The prelimnary design of the GUI is complete
and the detail design is in progress.

MONITORING AND DIAGNOSTICS TECHNOLOGIES

To address the need to maintain the health of robot systems used in D&D operations, the subject
DOE program also involves the development of a monitoring and diagnostic system for DOE
robots.  The Rosie mobile worksystem developed by Redzone Robotics and CMU is the reference
system.  A second-generation prototype, this robot is a telerobotically operated, hydraulically
driven mobile worksystem consisting of a locomotive platform and a four degree-of-freedom
heavy manipulator arm that can be equipped with various tools and robot manipulators.  Specially
designed for D&D work in nuclear environments, the Rosie mobile worksystem is largely
representative of the type of robots DOE hopes to deploy in the future. 

The simplest form of condition monitoring of robots is implemented by periodic inspections. 
Periodic inspections comprise an important part of maintenance programs because they effectively
detect problems that provide visible evidence before affecting operation (cracked hoses, leaky
seals, dust-clogged radiators).  Problems not manifested in this manner will be missed.  Periodic
inspections obviously offer no value if a sudden failure occurs during operation.  



Figure 3.  System Architecture Integrating Data Fusion Module with GUI

The maintenance program planned for the Rosie mobile worksystem calls for inspections to be
made between tasks or every 100 to 200 hours of operation.  After a high-pressure water or steam
wash down to remove surface contamination, suited maintenance workers check the system for
damage or wear such as hydraulic leaks, frayed wiring, structural tightness, etc.  The only
components designed to require periodic replacement in Rosie are the high- and low-pressure
hydraulic fluid filter elements.

Limit-checking of onboard sensors is the next step and another important part of condition
monitoring of robots.  With this approach, a fault is assumed to have occurred if a sensor
measurement exceeds a prespecified threshold value.  Used where there is a direct relationship
between signal level and a developing fault, limit-checking is typically employed to protect against
sudden overload, control breakdowns, and serious operator errors by annunciating or shutting
down the system in trouble when thresholds are exceeded.  The main advantages of using limit-
checking is that it is computationally simple to implement and provides protection when major
faults occur; however, this is often too late to avoid serious operational problems and work
interruptions.  Also, limit-checking provides very little diagnostic information regarding the exact
failure mode and root cause.  Lacking this data, a full shutdown may occur resulting in a



premature or unnecessary interruption.  Rosie currently has several onboard sensors; however,
these are only used for motion feedback.  Other sensors installed for monitoring purposes (e.g.,
hydraulic flow, temperature, reservoir level, etc.) were found to be noisy and unreliable, and are
being redesigned.Developing a practical monitoring and diagnostic system for the Rosie mobile
worksystem and other similar robots is no small task.  It is likely that a successful system will use
several approaches ranging from simple limit checking for certain failure modes to some of the
more exotic techniques that will be discussed below.  It is also likely the best robot reliabilities will
be achieved when deployment of such a system is done in combination with a maintenance
program which includes at least some periodic inspections.  It is also clear that the development of
a successful system design must be preceded by several steps including: 1) analysis of D&D
robots, represented in this case by the Rosie mobile worksystem, to determine failure modes,
relative criticalities, and fault-symptoms; 2) review and evaluation of the current literature to
search out applicable diagnostic and prognostic methodologies; 3) specification of the system
requirements; and 4) development of a design strategy. Once these steps are completed, the
conceptual design will be developed and evaluated.  Analysis of the Rosie and the literature review
have been completed, and development of system requirements and a design strategy is underway. 
The following subsections note the results and the progress achieved in these areas.

Identification of Component Failure Modes

One of the most important aspects in the analysis of robot failure modes is the criticality of
different components and different failure modes to robot operation.  Establishing a criticality
ranking is necessary to ensure that the monitoring and diagnostic system gives highest priority to
those failure modes with the greatest effect on robot operation.  Without such prioritization, the
resulting monitoring system winds up trying to cover too many components and failure modes
(monitoring parameters that are not critical and spending too little time on more important
elements) or monitoring those components where it is easy to obtain signals, whether their
performance is critical to robot health or not.

Another key aspect is the so-called fault-symptom relationship which connects degradation in
a component (wear, corrosion, fracture, etc.) to an observable effect on the system (increased
bearing torque, decreased flow, higher vibration, etc.).  Many such relationships evolve,
producing different symptoms as the failure mode progresses from early to late stages.  Fault-
symptoms form the basis for selecting the most appropriate sensor and detection techniques,
and, in accordance with their typically progressive nature, the logical basis for the diagnostic
system to determine the stage of the degradation and hence the urgency for notifying the
operator.

To develop failure mode criticality, fault-symptoms and other important related data,
information was gathered from several sources and put into a relational database.  Engineering
data describing the design of the Rosie platform was supplied by Redzone Robotics. 
Information regarding the work application including environmental and operational factors
was sought from ORNL where the Rosie platform is being evaluated.

The material obtained from Redzone consisted primarily of assembly drawings, parts lists and
various written descriptions.  A functional schematic was generated describing each major



subsystem and function path.  Figure 4 shows the left front wheel drive, steer and extension
assembly, and the hydraulic power supply and part of the valve manifold that supports its
operation.  From this schematic, it is easy to see the individual function paths and hence the
individual mechanical elements required to execute the three functions. It also shows the
components common to all of the function paths, i.e., the hydraulic power supply and supply
manifold.

Figure 4.  Functional Schematic of Rosie Mobile Worksystem

As a next step a Component Application Table was generated listing each mechanical element.
Generally, the breakdown stopped at the individual components as assembled onto the
platform such as the wheel drive motor rather than smaller pieces such as rotors, housings,
seals, bearings, etc.  This generally worked well as failure mode data areavailable describing
such mechanisms as complete  components.  All hydraulic tubing, hoses, and fittings and all
threaded fasteners generally within each function path were lumped together as two groups. 
A part of the Component Application Table, noting the parts in the left front wheel assembly,
is given in Table 1.  Type ID and model ID define the component type and link it to the
associated Component Type Table, which provides further information such as manufacturer,
design, specification, etc. The criticality level (column 4) places each component in one of
three categories based on failure effects:

Category I: Possible damage to robot or work area; self removal may not be
possible.
Category II: Work assignment cannot be completed; self removal may be possible.
Category III: Work assignment can be completed; maintenance is necessary.



Table  1.  Portion of Component Application Table

Component Application Table
Appl.

 ID

Subsys.

 ID

Function 

Path ID

Crit.

 ID

Type

 ID

Model

 ID

Function

1 1 0 III f RF 660 High pressure filter
2 1 0 III f 2 Low pressure filter
4 1 0 II he-fa OKO 50-4 230/460/3/60 Cooler
6 1 0 I m-e 1 Main hydraulic pump drive
7 1 0 I p-d 1 Main hydraulic pump
8 1 0 III rs 2 High pressure accumulator

11 1 0 I v-p 2 Main hydraulic supply relief valve
13 3 1 II m-h PGRF 280 GWS 100 LF drive motor
14 3 1 II bd 16 AT5/690-V LF drive motor pot. belt drive
15 3 1 II fc 1 LF drive fluid components
16 2 1 II v-s DLHZO-TE-L7 LF drive motor flow control valve
17 3 1 II x-r Series 2510 LF drive motor feedback resolver

Table 2.  Portion of Failure Modes Tables

Possible Failure Modes Table
Mode

Type ID

Comp

Type ID

Failure 

Mode

Speed of
Failure

Probability of
Failure

Primary Cause Primary Symptom

1 a-l end seal - leakage G L abrasive wear of end seal and/or
piston rod due to ingestion of
contamination

external leakage

2 a-l piston - jamming G L excessive side loads due to
misalignment.

increasing loss of
stroke/erratic motion

3 a-l piston - jamming G L stiction due to excessive
contamination.

increasing loss of
stroke/erratic motion

4 a-l piston seal -
leakage

G M abrasive wear of piston seal and
/or cylinder wall.

increasing loss of piston
force/internal leakage

5 a-r bearing - failure G L (see bearing failure) erratic motion/loss of
positioning precision

6 a-r shaft seal -
leakage

G L abrasive wear of end seal and/or
piston rod due to ingestion of
contamination

external leakage

A Possible Failure Modes Table was also put together.  For each (component) Type ID, this
table lists each failure mode that is thought to be reasonably possible within the existing
application.  The table currently contains 177 failure modes.  Various sources in the open
literature and MTI internal reports were used as sources for this data.  The primary
information for each failure mode is as shown in Table 2 which lists the failure data for several
representative component types.  Primary cause and symptoms are given.  The former



generally serves to complete the definitions of a given failure mode.  For example, there are
about a dozen modes associated with "running surface damage" to rolling element bearings,
while the causes, e.g. "abrasive wear", brinelling", "corrosion," etc., complete the picture. 
Primary symptoms note the overall effects on the system, including the progression from early
stage to more severe problems.  Although, in some cases, the corresponding failure mode can
be pinpointed by detection of those symptoms, in others, additional, more specific or more
subtle data is required.  Again, using rolling element bearings as an example, it is observed
that most failure modes result in increasing noise, vibration, torque, form, etc.  However,
certain types of vibration analyses such as signature analyses, envelope detection, or Kurtosis
analysis may help to distinguish between the different modes.  In some cases, a visual
inspection of the bearing may be required to make the determination.  Thus, in addition to
primary symptoms, MTI is also working to define a set of "secondary symptoms" where they
needed.  These have not yet been added to the database. Speed of failure and probability of
failure are also included in the table.  The former is given as either sudden (S) or gradual (G)
and provides the logical basis to prompt the diagnostic system to act quickly for sudden faults
while allowing additional diagnostic time for gradual failure modes.  Probability of failure is
assigned as low (L), medium (M), or high (H) and is based on a qualitative assessment of the
failure mode for the application.

The Component Application Table and the Possible Failure Modes Table are in the process of
being combined to form a Master Component Failure Mode Table.  This will combine some
600 system failure modes.  As the design process gets underway, a down selection of the most
important failure modes will be made to keep the system a manageable size. 

Identification of Applicable Technologies

A survey was conducted to identify monitoring and diagnostics systems available in the literature
for robot manipulators.  The literature survey revealed diagnostics methods for robots in four
broad areas: dynamic model-based diagnostics, expert systems, pattern classifiers, and hybrid
diagnostic systems.  In model-based diagnosis, the main motivation is to represent the robot
dynamics in the diagnostic system for early detection of faults.  Merits and problems of four
model-based methods, namely parameter estimation [5], analytical redundancy [6], stochastic
filtering [7], and dynamic thresholds [8] were evaluated.  

In the expert systems area, two types of methods based on shallow and deep knowledge are
available.  Shallow expert systems which derive their knowledge from a human expert
represent it in form of Fault Trees, Failure Mode and Effects diagrams, Event Trees or
if … then rules.  Deep expert systems, on the other hand, derive their diagnostic knowledge
from the structure and function of the robot components and store it in form of rules for
diagnosis.  Only one such system was developed by Krishnamurthi and Phillips [9] to address
fault diagnosis of robot electronics.  

In pattern classification based diagnosis, two methods using fuzzy set theory and neural
networks have been applied to robot diagnosis.  A fuzzy pattern classifier has been developed
by Tzou et al. [10] for detection of abrupt speed changes in the robot using vibration sensors. 
In the neural network application, a Cerebellar Model Articulation Controller (CMAC)
algorithm has been developed for manipulator fault detection [11].  



Hybrid diagnostic methods have been proposed in the literature to overcome the problems
associated with individual methods by using combinations of dynamic models, expert systems, and
pattern classifiers.  Two well-developed hybrid methods are available.  Isermann and Freyermuth
[12,13] developed a hybrid method using a combination of parameter estimation method and fault-
symptom trees to identify abnormality in the robot and relate the abnormality to component faults,
respectively.  Schneider and Frank [14] proposed a fuzzy logic-based threshold adapting expert
system for observer-based dynamic fault detection system.  Most of the advanced methods for
robot diagnosis are included in a survey by Dhillon and Anude [15].

The literature survey revealed very few papers in the area of prognostics of robots indicating that
this area is not as mature as the diagnostic area.  There are two prognostic methods for predicting
the reliability of general mechanical components.  The first method predicts the failure of a
component due to fatigue resulting from cyclic loading using fatigue strength models, whereas the
second method uses probability-based models (Gaussian and Weibull distributions) to predict the
number of cycles a component will survive.

Although fault tolerance methods are not directly related to fault diagnosis, because of their
importance with regard to robot reliability and their abundance in literature, these methods have
also been reviewed.  This review provided information that will be considered in development of a
diagnostic system for the Rosie mobile worksystem which has an interface/capability to
incorporate fault tolerance algorithms.  This interface will allow the diagnostic system to use fault
tolerance algorithms for on-line identification of components critical to the mission in the presence
of impending component failures. 

Based on information obtained from the literature review, a list of diagnostic methods
applicable to the Rosie mobile worksystems have been compiled along with a list of possible
sensors for monitoring the worksystem.  This list currently includes position sensors
(encoders, resolvers), tachometers, flow sensors, pressure sensors, liquid level indicators,
vibration sensors, acoustic sensors, etc. 

A trade-off study has been conducted to understand the relevance and applicability of the
various diagnostic methods to the Rosie mobile worksystem.  The study included the types of
sensory signals these methods operate on, the signal preprocessing required, the
computational requirements of these methods, and their sensitivity to faults. 

Design Strategy and Conceptual Design

In order to develop a design strategy for a diagnostic system, a set of design requirements are
needed.  For the Rosie mobile worksystem, these design requirements were developed based
on the operational requirements of a robot to be used for D&D, the literature survey,
discussions with the customer and the end user, and prior MTI experience in the area of
diagnostics.  The following design requirements have been identified for developing a
diagnostic system for the Rosie mobile worksystem:

The diagnostic system must operate on-line. 
It must give indication of critical failures at the earliest possible time.
It must have the ability to cope with the dynamic nature of robot operation.
It must be able to represent complex relations between faults and sensors signals. 



It must be able to use approximate diagnostic information in the form of approximate
probability of failure values and failure propagation rates.
It must have the ability to integrate sensory information (from diverse set of sensors,
human input, etc.) into a cohesive diagnostic strategy.
It must consider the influence of the robot's environment on component failures.
It must require the least number of sensors.
It must have an interactive interface for user to enter information he/she perceives
through others sensors (e.g., video images).
It must be computationally inexpensive.
It must be conducive to integration of prognostic and fault tolerance algorithms.

It is clear from the above list that many of these requirements are in conflict.  For example, the
ability to integrate various sensors would require large processing time which directly conflicts
with the on-line operation requirement.  The design of a diagnostic system for the robot will
aim at achieving a balance between these conflicting design requirements.

Based on the above requirements, a preliminary conceptual design of a diagnostic system has
been developed for the Rosie (see Figure 5).  This diagnostic system will be a hybrid between
dynamic-model-based methods and shallow expert systems.  The dynamic model will be used
to generate deviations in position/velocity during the robot s operations.  Along with other
sensor signals (e.g., pressure, temperature, flow, etc.), these deviations will then be used for
hierarchical fault detection and diagnosis.  In the first hierarchy, fault detection will be
performed using signals from various robot sensors, while in the second, third, and fourth
hierarchies, faulty robot subsystems, components and component failure modes will be
identified.  A hierarchical diagnostic system was deemed necessary to achieve a good balance
between providing fast on-line fault detection and diagnosis and a time-consuming search
process required to identify individual faults.  A hierarchical design will allow for fast fault
detection to be performed on-line.  On detecting a fault, the diagnostic system will
immediately inform the operator and then perform the more time-consuming fault diagnosis.

After completely developing the conceptual design of the diagnostic system, a cost-benefit
analysis will be conducted to evaluate the cost of implementing the diagnostic system and the
expected benefits.  Based on estimates of the number of robot units to be put operation in the
near future, the types of operation they would be performing, the expected benefits from the
diagnostic system in terms of down time and money saved will be evaluated.  Also, the
hardware/software required to implement the diagnostic system and integrate it with the
robot's subsystems will be assessed.



 Figure 5.  Preliminary Conceptual Design of Diagnostic System for Rosie 
MobileWorksystem
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