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ABSTRACT 

The Waste Isolation Pilot Plant (WIPP), a facility located in a bedded salt formation in Carlsbad, 
New Mexico, is being used by the U.S. Department of Energy to demonstrate the technology for 
safe handling and disposal of transuranic wastes produced by defense activities in the United 
States. In support of that demonstration, mechanical tests on salt were conducted in the 
laboratory to characterize material behavior at the stresses and temperatures expected for a 
nuclear waste repository. Many of those laboratory test programs have been carried out in the 
RE/SPEC Inc. rock mechanics laboratory in Rapid City, South Dakota; the first program being 
authorized in 1975 followed by additional testing programs that continue to the present. All of 
the WIPP laboratory data generated on salt at RE/SPEC Inc. over the last 20 years is presented 
in this data report. A variety of test procedures were used in performance of the work including 
quasi-static triaxial compression tests; constant stress (creep) tests, damage recovery tests, and 
multiaxial creep tests. The detailed data is presented in individual plots for each specimen tested. 
Typically, the controlled test conditions applied to each specimen are presented in a plot followed 
by additional plots of the measured specimen response. Extensive tables are included to 
summarize the tests that were performed. Both the tables and the plots contain cross-references 
to the technical reports where the data were originally reported. Also included are general 
descriptions of laboratory facilities, equipment, and procedures used to perform the work. 
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1 .O INTRODUCTION 

1.1 BACKGROUND 

The Waste Isolation Pilot Plant (WIPP) is a facility sited in a bedded salt formation in 
southeastern New Mexico. The purpose of the WIPP is to demonstrate the technology for safe 
handling and disposal of transuranic (TRU) radioactive wastes produced by defense activities 
of the United States. This technology is being developed in support of performance assessment 
calculations and activities necessary to demonstrate compliance to the regulatory requirements 
promulgated by the Environmental Protection Agency (EPA). 

One of the necessary inputs the WIPP Project has used to Mfill its mission is rock 
mechanics testing performed in a materials testing laboratory. Much of that laboratory work 
was performed by RE/SPEC Inc. in their rock mechanics laboratory located in Rapid City, South 
Dakota. The first laboratory testing contract between Sandia National Laboratories (SNL) and 
REISPEC Inc. was issued in 1975 when the pre-W"P conceptual repository designs were being 
considered by SNL. After that first contract, additional laboratory investigations were 
conducted over the years and continue today. The results of those laboratory testing programs 
were published in technical reports and a summary listing is presented in Table 1-1. 

Throughout many of the reports in Table 1-1 there are references to  a set of constitutive , 
equations known as the Multimechanism Deformation (M-D) model which is based on the 
micromechanisms thought to control the deformation of salt at the stresses and temperatures 
expected for a nuclear waste repository (Munson and Dawson, 1979; Munson and Dawson, 
1982a; Munson and Dawson, 1982b; Munson and Dawson, 1984; Munson, 1979; Munson et al., 
1989b). Typical test programs were directed at quanti@ng either elastic or inelastic parameters 
appearing in this constitutive model (Fossum et al., 1994), while some other programs were 
designed to evaluate or guide the development and refinement of the forms of the constitutive 
model. This especially pertains to  the testing performed in support of the Multimechanism 
Deformation Coupled Fracture (MDCF) model (Chan et al., 1992; Chan et al., 1996) and the 
experiments define the form of the flow potential (Munson et al., 1989a; Munson et al., 1989b). 
Another specialized testing program was directed at determining the thermomechanical damage 
recovery parameters that impacted WIPP sealing systems (Brodsky and Munson, 1994). 

The salt creep and mechanical response data which are given in this data report are 
fundamentally independent of any constitutive model, as is appropriate. The data were, 
however, ultimately analyzed by well established methods to give the parameters specifically 
required for the M-D and MDCF models. These methods and the results of the analysis used 
for this parameter determination have been presented elsewhere for the determination of 
discrete parameter values (Munson et al., 1989a; Munson et al., 1989b) and for the determina- 
tion of parameter distribution functions (Pfeifle et  al., 1992; Fossum et al., 1994). 
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1.2 APPROACH AND SCOPE 

1 

This report is a summary presentation of laboratory results that have been generated at 
RE/SPEC Inc. and documented in the reports listed in Table 1-1. In keeping within the intent 
of a data report, there have been no data analyses performed on the data; however, simple 
changes in data format have been performed to make the original data sets compatible with 
modern personal computer systems. For the oldest data sets, old technology “punch card” 
listings of data were transcribed for modern magnetic disk storage. Where plots were generated 
for this report, they simply represent data extracted from the reports in Table 1-1 and only the 
graphical format may have changed. Some of the older data were originally reported using 
English units and those results have been converted to  SI units for this report. 

ReportNo. Author( s) Title 

Table 1-1. Summary List of WIPP-Related Laboratory Investigations at 
RWSPEC Inc. 

Mellegard, K. D. 
Pfeifle, T. W. /I SAND92-7291 1 Creep Tests on Clean and Argillaceous Salt From 

the Waste Isolation Pilot Plant 

Thermomechanical Damage Recovery Parameters 
for Rocksalt From the Waste Isolation Pilot Plant I 11 SAND93-7111 I Brodsky, N. S. 

SAND91-7083 
Mellegard, K. D. 
Callahan, G. D. 
Sensenv. P. E. 

Multiaxial Creep of Natural Rock Salt 

sAND90-7076 

Crack Closure and Healing Studies in WIPP Salt 
Using Compressional Wave Velocity and 

Results 
Brodsky7 ” Attenuation Measurements: Test Methods and 

SAND89-7098 Creep of Salt From the ERDA-9 Borehole and the 
Senseny, P. E. wIpp workings 11 ‘~~85-7261 Triaxial Compression Creep Tests on Salt From the 

waste Isolation Pilot Plant sensen’, P* E. 

2 

Hansen, F. D. 
Mellegard, K D. 11 SAND80-7114 I Further Creep Behavior of Bedded Salt From 

Southeastern New Mexico at Elevated Temperature 

sAND79-7030 

SAND79-7045 

Hansen, F. D. 
Mellegard, K. D. 

Hansen, F. D. 

Creep Behavior of Bedded Salt From Southeastern 
New Mexico at Elevated Temperature 

Triaxial Quasi-Static Compression and Creep 
Behavior of Bedded Salt From Southeastern New 
Mexico 



The approach used in this report is to present sufficient background information, in a 
general way, to place the material studies into the proper context, followed by the detailed test 
results. As part of the background information, the work gives some general history of salt core 
acquisition along with information on specimen preparation and handling. General information 
is also provided on typical laboratory procedures and equipment. The various types of tests that 
were performed are described along with general notes on how the acquired data were reduced 
to obtain meaningful test results. 

The bulk of the report presents the detailed results from individual tests. These results are 
presented only in graphical form because many of the data sets contain hundreds (and in some 
cases thousands) of lines of acquired data. Also included are summary tables that are cross- 
referenced to the individual plots of data by a test number and/or a specimen identification 
number. Each result (either tabular or graphical) is also cross-referenced to the report where 
that result originally appeared. 

1.3 PERMANENT RECORDS RETENTION 

The supporting information for each of the reports in Table 1-1 was collected and organized 
in an orderly fashion by following the guidelines presented in the SNL Quality Assurance 
Procedure Q,AP 20-3, entitled Qualification of Existing Datu, Rev. 2, 6-28-95 (Scully, 1995). 
Specifically, the guidelines for developing a Laboratory Data Notebook presented in Appendix B 
of Q,AP 20-3 were used to assemble a data records package for each report. These individual 
data packages followed the format detailed in Appendix B of Q,AP 20-3 and-those files are in the 
Sandia WIPP Central Files (SWCF) for records retention and future reference. These records 
packages contain the original complete test objectives, statements of work, calibrations, data, 
and all other relevant documents of the tests, including core identification and specimen 
identification. These records also include documentation of procedures, including coring, core 
identification, calibration, testing, and data reduction. 

1.4 TRANSMISSION TO PERFORMANCE ASSESSMENT 

As is consistent within the intent of a data report, the data presented reflect only simple 
data reduction (e.g., conversion of measured forces and displacements to stresses and strains). 
The data presented in this report have not been the subject of any analysis. The complete 
analysis of the data has been performed in other work which determines material parameters 
for specific constitutive models (Munson et al., 1989a; Munson et al., 1989b) and the statistical 
distributions of those parameters (Pfeifle et al., 1992; Fossum et al., 1994). The parameters 
resulting from those analyses, performed subsequent to the laboratory testing, are the quantities 
transmitted to  Performance Assessment for support of numerical studies. 
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1.5 REPORT ORGANIZATION 

The remainder of this report is organized into eight chapters. The next chapter, Chapter 
2.0, covers topics related to  core acquisition and specimen preparation. Chapters 3.0,4.0, and 
5.0 present general information on typical laboratory facilities, test equipment, and test 
procedures, respectively. Chapter 6.0 describes the processes by which test systems were 
calibrated and verified. Chapter 7.0 presents all the tabulated test results. Chapter 8.0 is a 
brief summary. Chapter 9.0 is a list of cited references followed by appendices that contain the 
detailed test results in graphical form. Appendix A holds the plots of the quasi-static triaxial 
compression tests. Appendix B contains detailed results from creep testing of specimens from 
boreholes drilled in the vicinity of the WIPP facility. Appendix C is also dedicated to creep 
testing, but for specimens taken from the WIPP mine workings. The detailed results of the 
specialized multiaxial testing are given in Appendix D. Lastly, Appendix E presents the 
detailed results obtained from the damage recovery testing program. 
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2.0 TEST SPECIMENS 

2.1 CORE ACQUISITION 

The specific sources of core are generally given in the individual reports listed in Table 1-1. 
The bulk of the WIPP-related core came from two sources. The first source was the AEC7 and 
ERDAS deep boreholes drilled from the ground surface and located in the vicinity of the WIPP. 
The borehole core was greater than 100 mm (4 inches) in diameter and could be subcored in the 
laboratory to provide testable specimens of 50 mm diameter. The second source of core was the 
WIPP mine workings. The core obtained directly from the WIPP mine workings was generally 
large diameter which required subcoring to 100 mm in diameter. The salt core obtained from 
the WIPP mine workings was classified as clean salt or argillaceous salt. The clean salt was 
relatively free of impurities while the argillaceous salt had a significant clay content. The salt 
core obtained from the AEC7 and ERDAS boreholes was not classified and has an unknown clay 
content. A non-WIPP source of salt core was the International Salt Mine in Avery Island, 
Louisiana. The Avery Island core was used in a testing program that was designed solely to 
determine the creep flow potential criterion that should be used for salt. 

The acquisition of core samples was typically performed by SNL field and contract 
personnel. The core was marked to designate its source and depth of recovery. The recovered 
core varied in length and each individual piece was given a unique marking. The individual 
pieces were packaged in core boxes and shipped in temperature controlled trucks (to prevent 
freezing of the specimen) to  RE/SPEC Inc. in Rapid City, South Dakota. Upon arrival in Rapid 
City, the core was inspected for damage and logged into an inventory for control purposes. The 
core was stored in a controlled environment where the core was protected from extremes in 
temperature. The core remained in storage protected from extremes in temperature until it was 
retrieved for specimen preparation purposes. 

A chain of custody was implemented by logging the initial core information into a core 
inventory system. As the core moved through the processes of specimen preparation and 
laboratory testing, additional core inventory records were generated to document specimen 
usage and storage locations. 

2.2 SPECIMEN PREPARATION 

The preparation and control of testable specimens from the core samples was done by 
RE/SPEC using standard RE/SPEC laboratory procedures that have evolved as an integral part 
of a corporate quality assurance program (RE/SPEC, 1995). The prepared specimens were 
labeled such that they could be traced back to the original core sample which in turn should be 
traceable to  a recovery site in the field. This specimen labeling scheme often followed the 
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outline of an SNL procedure designated WIPP-092 that was devised for maintaining traceability 
of specimens. The specimen label became a unique identifier for each individual specimen and 
was used in the published reports to link the reported test results to specific specimens. In later 
sections of this report, those same identifiers wi l l  be seen on the plots and in the summary 
tables. 

The typical specimen preparation procedure comprised a sequence of machining operations 
which were conducted at the RE/SPEC laboratory. First, the core sample was sawn to 
appropriate lengths in a bandsaw. The sawn pieces were then subcored in a vertical milling 
machine to obtain specimens of the appropriate diameter. Typical length-to-diameter (L:D) 
ratios were constrained to  about L:D = 2. The ends of the cored specimens were then finished 
flat and parallel in a milling machine or lathe. The finished specimen represented a right- 
circular-cylinder which had dimensions that could be determined using standard dimensional 
measurement tools; e.g., micrometers, calipers, V-blocks, height gage, and a granite surface 
plate. These specimen dimensions were recorded for each specimen for later use in data 
reduction. 

A special specimen preparation procedure was devised for creating large thin-walled hollow 
cylinders of salt needed for multiaxial testing. Starting with a large diameter core, the core was 
sawn to an appropriate length and then the outside surface was finished in a lathe. A thin- 
walled cylinder was then created with a boring tool on a lathe to cut the appropriate inside 
diameter. The inner surface and the ends of the hollow cylinder were then finished to produce 
the final specimen. 

6 



3.0 LABORATORY FACILITIES 

When the first laboratory testing contract between RE/SPEC and SNL was placed in 1975, 
the RE/SPEC laboratory was housed in facilities located near the present site of the laboratory. 
In 1980, the laboratory was moved to  a new facility which had a design based on the need for 
a laboratory setting that was dedicated to rock mechanics testing. The new facility covered a 
total of 30,000 square feet with about 10,000 square feet dedicated to laboratory operations. The 
new facility incorporated an earth-sheltered concept that enhanced constant temperature control 
within the laboratory portion. The entire facility was equipped with a backup power system 
that could support electrical power needs during periods of commercial utility power outages. 

A floor plan of the laboratory portion of the current facility is shown in Figure 3-1. The 
General Lab Area at the east end is a high bay area used for shippingheceiving and storage of 
core. Adjacent to  that area is a Specimen Preparation room that is equipped with saws, lathes, 
milling machines, and grinders that are available for use in preparing testable specimens. 
Machined specimens are taken into the Metrology room where dimensional and mass 
measurements can be made. The Metrology room also houses the calibration standards that are 
kept on site, such as load cells, dead weight pressure systems, temperature baths, gage blocks, 
and electrical standards. The largest area on the floor plan is dedicated to the Rock Lab where 
the test systems are located. Those test systems are discussed in Chapter 4.0 of this report. 
The remainder of the laboratory space is dedicated to petrographic and thermal studies along 
with facility support services; e.g., office space, drafting, mechanicallutility rooms, storage areas, 
and a Quality Assurance fireproof storage vault. 
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4.0 TEST EQUIPMENT 

4.1 TEST FRAMES 

The mechanical test results contained in this report were generated using a variety of test 
frames available in the RE/SPEC laboratory. The laboratory supports 16 different test frames 
including 4 computer-controlled servohydraulic frames built by MTS Systems Inc. of Eden 
Prairie, Minnesota, 10 fully automated and computer-controlled static triaxial compression 
systems, and 2 manually operated static triaxial compression systems. The 2 manually operated 
machines and the 10 automated machines are custom systems. The configuration and use of 
any of the available test frames is well documented within the original reports listed in 
Table 1-1. The general details of those test frames used for the work in Table 1-1 are presented 
here for easy reference. 

4.1 .I Static Triaxial Compression Machines 

Twelve test frames are equipped with a system of accumulators and dilatometers for 
maintaining loads and pressures on the test specimens. These test frames are termed static 
systems and are usually used for constant stress (creep) tests on cylindrical specimens, but can 
be operated manually to  effect a quasi-static, stress-rate controlled, triaxial compression test. 

~ 

Two of the systems were originally designed and built by Dr. Wolfgang R. Wawersik at the 
University of Utah. The operation and capabilities of those two test frames were well 
documented (Wawersik, 1975; Dropek, 1976). Additional documentation is contained in the 
early reports listed in Table 1-1. These two frames are limited to testing 50-mm-diameter 
specimens. 

The design for the two small systems served as a basis for Wawersik’s subsequent design 
of a larger test frame (Wawersik, 1979). The new design allowed for specimens as large as 
100 mm diameter and that design was adopted by RE/SPEC for construction of four similar 
machines. Shortly thereafter, six additional frames of the same design were procured as a 
custom order from the Instron Corporation of Canton, Massachusetts. Instron also equipped 
all ten of the larger systems with computerized data acquisition and process control for 
maintaining constant stress as inelastic deformations cause an increase in specimen area. A 
schematic drawing of the larger test system is given in Figure 4-1. Specific information on the 
ten larger test frames and the two smaller test frames is given in Table 4-1. 

9 
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4.1.2 Servohydraulic Test Frames 

Test 
System 
Name(a) 

uTs2 
HCS 

There are four servohydraulic test frames built by MTS Systems, Inc. All four systems are 
similar in that they include (1) a frame and load actuator that provides the reaction and axial 
force, respectively, (2) a control console that houses servoloop controllers and transducer signal 
conditioning, and (3) a computer that provides software control and data acquisition. Only two 
of the four servohydraulic test systems were used and specific information on those two test 
frames is given in Table 4-2. 

Capabilities 
MTS - 

Model Axial Specimen Confining Pore 
Number Force Temperature Pressure l%essure 

0 ("C) (RIpa) (MPa) 
312.41 0.5 300 70 70 
315.03 3.4 200 35 - 

Table 4-1. Static Triaxial Compression Test Frames 

Table 4-2. Servohydraulic Test Frames 

(a) UTS2 = Two-column universal frame with movable crosshead. 
HCS = High stiffness frame with fmed crosshead (hollow cylinder configuration). 
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The UTS2 machine is used routinely for uniaxial and triaxial compression tests at both room 
and elevated temperature. A schematic drawing of this style of machine is given in Figure 4-2. 
This machine can be equipped with either a pressure vessel for triaxial compression testing or 
an environmental chamber for testing at  elevated temperatures. 

The HCS machine is a custom designed system equipped with an annular pressure vessel 
designed for testing thin-walled cylindrical specimens. The HCS machine has three independent 
axes of servocontrol; one for axial load, one for internal pressure, and one for external pressure, 
This configuration allows each of the three principal stresses to  be uniquely specified. 

4.2 INSTRUMENTATION/DATA ACQUISITION 

The test systems used to conduct the experiments described in the reports listed in Table 1-1 
were instrumented to measure specimen response under controlled test conditions. Typical 
physical quantities that were measured during testing were time, force, pressure, displacement, 
and temperature. The instrumentation and data acquisition methods that were used varied 
depending upon which test system was used and also the state of the art in electronics at the 
time the test was run. 

4.2.1 Static Triaxial Compression Machines 

The first test systems in use at REISPEC were the static loading frames. These frames 
were designed primarily to perform creep tests, but they could also be used to perform slow 
loading (quasi-static) stress-rate-controlled triaxial compression tests. Their primary instrumen- 
tation systems are comprised of two Linear Variable Differential Transformers (LVDTs) for 
measuring axial displacement, a dilatometer capable of measuring volume changes at constant 
confining pressure, a load cell for measuring total axial force, in-line pressure transducers for 
measurements of confining pressure (and sometimes pore pressure), a thermocouple for 
temperature measurement, and some type of clocking device to record elapsed time. 

The two diametrically opposed LVDTs were mounted so their average signal output 
represented the displacement  of the axial force generation ram relative to the fixed pressure 
vessel containing the specimen. When this relative displacement measurement was corrected 
for nonspecimen deformations (e.g., compression of the steel ram and platens), the net change 
in displacement represented the axial deformation of the specimen. "he dilatometer was a 
screw-driven intensifier in which the screw rotation could be measured to determine the volume 
of oil that had to be extracted from the test vessel to maintain a constant pressure. This 
volumetric measurement was corrected for temperature changes in the oil and intrusion of the 
axial force ram to obtain the net volume change of the specimen. 

12 
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A strain-gage-based load cell was placed between the axial loading ram and test vessel 
loading column to measure the total axial force applied to the system. When the forces required 
to react against the confining pressure were subtracted fkom the total force measurement, the 
net axial force on the specimen could be determined. Pressure transducers were used in the 
lines leading to the test vessel to  monitor confining pressure. Embedded in the wall of the test 
vessel was a thermocouple used to record system temperature. 

During the early years of the laboratory, the transducer signal conditioning was provided 
by individual electronic units whose high-level signal outputs were fed to  a single master 
display. The display module could feed data at  predetermined intervals to a paper tape printer 
where data values were recorded for later processing. The resolution of the system was limited 
to that provided by the 4% digit display meter. With the procurement of new test machines 
from the Instron Corporation, new data acquisition electronics became available. The new 
system used board-level signal conditioning and the high-level signal outputs were fed to 
individual channels on an analog-to-digital (AD) conversion board. The A/D board was 
embedded in a Digital Equipment Corporation (DEC) computer system with an LSI 11/23 
microprocessor platform. Custom software purchased with the system allowed 14-bit resolution 
of the data signals through the A/D boards and automated scanning of all data channels. 

4.2.2 Servohvdraulic Test Frames 

The two servohydraulic test machines were used for programmable load path testing which 
primarily consisted of quasi-static triaxial compression, hydrostatic compression, and multiaxial 
creep tests. They both use a DEC microprocessor that allows computer control of both test 
conditions and data acquisition. The data acquisition is performed by a 14-bit A/D board that 
is fed signal voltages from electronic signal conditioner modules that service individual 
transducers. 

The specimen deformation measurement techniques are similar on both machines in that 
while indirect measurements (like those made on the static machines) are possible, the primary 
method of measuring specimen deformations uses direct-contact extensometers. This type of 
instrumentation can be placed directly on the specimen, even when the specimen is contained 
within a pressurized and heated test vessel. A typical direct-contact extensometer mounting 
configuration used on the UTS2 machine is shown in Figure 4-3. The axial extensometer 
measures axial specimen deformation over the prescribed gage length; the circumferential 
extensometer effectively measures the change in specimen diameter. The circumferential 
extensometer is mounted at the ends of a roller-link chain wrapped around the mid-height of 
the specimen. In some configurations, the circumferential extensometer is replaced by a 
diametral gage. A diametral gage comprises a strain-gaged ring attached to two vertical posts 
that hold mounting pins which contact opposite ends of a diameter through the mid-height of 
the specimen. The diametral gage thus measures the change in specimen diameter along a 
horizontal axis whereas the circumferential gage measures the average change in specimen 
diameter. 
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The specialized test system used for testing hollow cylinders was equipped with a unique 
configuration of extensometers that were capable of measuring the changes in inner and outer 
diameters of the specimen. This was accomplished by mounting four extensometers at 90" 
intervals on a ring that was spring loaded to hold it in place against the specimen. The four 
extensometers then provide four measurements of the distance from the specimen wall to  the 
fixed diameter ring and those four measurements could be averaged. Two such rings were used; 
one for the inside of the specimen and one for the outside. 

The UTS2 universal test system has a movable crosshead with an attached strain-gaged 
load cell that measures the total axial force applied to the test column. This approach is similar 
to the static load frames in that the force required to react against the confining pressure within 
the test vessel must be subtracted from the load cell measurement to obtain the net axial force 
applied to the specimen. The HCS system (used for testing of hollow cylinders) does not have 
a loadxell at all. Rather, it uses a differential pressure transducer to  measure the pressure 
difference between the chambers above and below the axial force actuator. This difference is 
linearly related to  the level of total axial force and can be calibrated to  read in units of force. 
Ag&, the reactive force necessary to  support the pressures within the annular pressure vessel 
must be subtracted from the total to  obtain the net axial force on the specimen. 

In both systems, standard pressure transducers are connected in the lines leading from the 
servohydraulic pressure control intensifiers to  the pressure vessel to monitor the confining 
pressures applied to  the specimen. Again, thermocouples are used to track the system 
temperatures and the computer system provides a clocking device to  record the elapsed time 
during the test. 

The acoustic data generated in two of the reports required specialized equipment in addition 
to the standard capabilities available with a servohydraulic test frame. The additional 
equipment was an ultrasonic velocity measurement system that included two pairs of 
compressional wave velocity transducers, a switching box, a pulserheceiver, a preamplifier with 
power supply, and a digital oscilloscope. One set of velocity transducers was mounted in the 
platens above and below the specimen for measurements parallel to  the specimen axis, and a 
second set of transducers was held by springs against the sides of the specimen for measure- 
ments perpendicular to  the axis. During measurement, a main pulse was sent to one of the 
pulsing transducers at the same time a trigger pulse was sent to  the oscilloscope. The main 
pulse traveled through the specimen to the receiving transducer and the oscilloscope recorded 
both the pulsing signal waveform and the receiving signal waveform. The two recorded 
waveforms were then analyzed to determine arrival times and amplitudes. 
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5.0 TEST PROCEDURES 

5.1 QUASI-STATIC 

One of the common types of mechanical test is the quasi-static triaxial compression test. 
Initially, this type of test was run using the static frames to impose a constant stress rate by 
manually incrementing the axial load at prescribed intervals of time. Later, with the'advent 
of servohydraulic test systems, this type of test was usually run as a constant strain rate test 
using the axial strain measurement as feedback to the control loop. 

The generalized procedure used for running the quasi-static tests required placing a 
cylindrical specimen between two metal platens and then encasing the assembly in an elastomer 
protective sleeve (or jacket). This test assembly was placed in a pressure vessel and subjected 
to a constant confining pressure. If the test was to  be performed at elevated temperatures, the 
whole assembly was heated to the desired temperature and allowed to stabilize for several 
hours. The heating was applied at a low rate and while the specimen was under pressure to 
avoid thermal cracking of the specimen. The axial force was then increased in either of two 
modes, constant stress rate or constant strain rate, until the specimen failed or some other 
limiting condition was reached. An excursion in the loading was allowed whereby the axial 
loading could be reversed and then reapplied to  create an unloadlreload sequence. 

The measured mechanical data generally were recorded as values of force, pressure, and 
displacement. Data reduction involved using the recorded data with knowledge of initial 
specimen geometry to convert the measurements into values of principal stresses and strains. 
The calculation of axial strain was straightforward. The measurement of the net change in 
specimen length was used to calculate a true (or logarithmic) axial strain. The measurement 
of net change in specimen diameter was used to calculate a true lateral strain under the 
assumption that the deformed shape of the specimen remained as a right circular cylinder. The 
axial stress was calculated using the measurement of net axial force on the specimen and the 
current area of the deformed specimen. This calculation gave a Cauchy stress measure for axial 
stress. The radial stress component was simply the value of the measured confining pressure. 

5.2 CREEP 

The scope of many of the test programs involved performance of the triaxial compression 
creep test. This type of test required application of constant stress states over long periods of 
time and the static load frames were designed specifically for this purpose. 

The generalized procedure used for performing the creep tests required placing a cylindrical 
specimen between two metal platens and then encasing the assembly in an elastomer protective 
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sleeve (or jacket). This test assembly was placed in a pressure vessel and subjected to a 
constant confining pressure. If the test was to be performed at elevated temperatures, the 
whole assembly was heated to the desired temperature and allowed to  stabilize for several 
hours. The heating was applied at a low rate and while the specimen was under pressure to  
avoid thermal cracking of the specimen. The axial force was then increased while holding the 
confining pressure constant until the desired axial stress difference was imposed. This static 
stress state was then maintained over long periods of time while recording the inelastic 
deformation of the specimen. The maintenance of a constant axial stress required that the axial 
force on the system be periodically adjusted to  compensate for measured changes in specimen 
diameter. On the ten Instron frames, this adjustment was performed automatically under 
computer control. 

Most of the creep tests were performed as single-stage tests; that is, the specimen strains 
were allowed to accumulate at a fixed stress state for some time and then the stress was 
removed and the test was complete. In contrast, some of the creep tests were run using a 
multistage load path whereby the stress state or temperature was changed at specified times. 
Thus, the stages subsequent to  the initial loading stage could be viewed as individual creep 
tests; but they each might have a unique strain history depending upon the deformations that 
occurred in prior stages. - 

The measured mechanical data generally were recorded as values of force, pressure, and 
displacement. Data reduction involved using the recorded data with knowledge of initial 
specimen geometry to  convert the measurements into values of principal stresses and strains. 
The calculation of axial strain was straightforward. The measurement of the net change in 
specimen length was used to calculate a true (or logarithmic) axial strain. The measurement 
of net change in specimen diameter was used to  calculate a true lateral strain under the 
assumption that the deformed shape of the specimen remained as a right circular cylinder. The 
net change in specimen diameter was deduced from an algorithm that used the volumetric 
measurement provided by the dilatometer and the axial displacement measurement 
(Dropek, 1976). The axial stress was calculated using the measurement of net axial force on the 
specimen and the current area of the deformed specimen. This calculation gave a Cauchy stress 
measure for axial stress. The radial stress component was simply the value of the measured 
confining pressure. 

5.3 MULTIAXIAL (HOLLOW CYLINDER) 

The multiaxial tests used thin-walled hollow cylinders of salt that were jacketed with 
elastomer tubes both inside and outside. After assembly into an annular pressure vessel, three 
independent servocontrol systems were activated to control the pressure applied to  the mtside 
surface of the specimen, the pressure applied to  the inside surface of the specimen, and the axial 
force imposed on the specimen. The three controlled loads (outer pressure, inner pressure, and 
axial force) were ramped up under computer control to  a desired hydrostatic stress state. At 
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the operator's command, a computer program would then quickly ramp all three controlled 
variables along a proportional stress path to apply the desired shear stresses while maintaining 
a constant mean stress and Lode angle. Once the desired level of shear stress was applied, that 
level was then maintained constant for long periods of time as prescribed for a creep test. 

The measured mechanical data generally were recorded as values of force, pressure, and 
displacement. Data reduction involved using the recorded data with knowledge of initial 
specimen geometry to convert the measurements into values of principal stresses and strains. 
The calculation of axial strain was straightforward. The measurement of the net change in 
specimen length was used to calculate a true (or logarithmic) axial strain. The measurements 
of net change in the inner and outer specimen diameters were used to calculate the true 
circumferential and radial strains. The circumferential strain was calculated using the change 
in average specimen diameter. The radial strain was calculated using the change in the 
thickness of the thin specimen wall. The axial stress was calculated using the measurement 
of net axial force on the specimen and the current annular area of the specimen. The radial and 
circumferential principal stresses were calculated fkom the measurements of internal and 
external pressure. The radial stress was assumed to resist changes in wall thickness and was 
calculated as the sum of the radial stresses at the middle of the wall required to equilibrate the 
inner pressure acting on the inner wall and the outer pressure acting on the outer wall. The 
circumferential stress was assumed to resist changes in average specimen diameter and was 
calculated as the stress acting over the wall thickness to  balance the difference between the 
forces of the outer pressure acting on the outer wall and the inner pressure acting on the inner 
wall. 

~ .~~ ~ ~ - .  

5.4 DAMAGE RECOVERY 

The intent of the damage recovery tests was to  investigate the introduction of damage and 
damage recovery in intact WIPP specimens. Damage was introduced during a standard 
constant strain rate test performed at low confining pressure. Subsequently, the damaged 
specimen was subjected to hydrostatic pressurization at either room or elevated temperatures. 
During both the damage and damage recovery phases, the ultrasonic compressional waves were 
monitored along with the corresponding axial and lateral specimen strains. During data 
analysis, the ultrasonic data was correlated to  the levels of specimen strain (damage). 

I 
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6.0 CALIBRATIONNERIFICATION PROCESSES 

6.1 CALIBRATION 

The general approach to calibration followed the guidelines set forth in a national 
Performance Test Code on Measurement Uncertainty (ANSUMME, 1985). That test code 
suggests that insofar as possible, “the calibration process should include a reasonable simulation 
of instrument test-like conditions.” Following this guideline, the transducers on the test 
systems were calibrated by bringing reference calibration standards to  the test system rather 
than taking the transducers to a calibration facility. 

During a typical calibration, transducers were connected in their normal orientations on the 
test system and their outputs were recorded through an analog-to-digital converter at the data 
collection computer. A typical calibration consisted of applying 20 known standard inputs to  the 
transducer and reading the corresponding transducer outputs at the data collection point. The 
correlation between the transducer outputs and known standard inputs provided the sensitivity 
and offset for that transducer. Standard inputs were provided by standards that were traceable 
to the U.S. National Institute for Standards and Technology (formerly National Bureau of 
Standards). 

The calibration constants determined for each transducer were periodically checked by 
veriQing them against the standards. This was usually done during the interval available 
between the termination of one test and the initiation of the next test. This transducer 
verification provided a check on anomalies that could arise in the data acquisition process 
(e.g., transducer drift, power supply fluctuations, wire breaks, etc.). 

In addition to the transducer calibrations, system calibrations were also performed. System 
calibrations are those correction factors used to account for changes in the transducer output 
that are unrelated to specimen behavior. For example, when axial specimen deformation is 
measured with extensometers that are connected between a loading ram and a fixed point on 
a test vessel, a portion of the displacement reading represents deformation of the test system 
and not deformation of the specimen. This is often referred to as the “machine softness” 
component of the reading. Calibration factors that account for machine softness were 
determined and used when reducing axial deformation data. Other typical system calibration 
factors that were determined to account for such biases included (1) the temperature gradient 
between the thermocouple location and the midpoint of the specimen, (2) temperature 
corrections on dilatometer volume measurements, (3) pressure and temperature effects on 
transducers subjected to hostile environments, (4) delay times for acoustic transducers, and (5)  
the influence of the protective jackets used when performing triaxial compression tests. The 
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specific details of these types of system calibrations are too extensive to be presented here, but 
they are contained in the individual reports listed in Table 1-1. 

6.2 VERIFICATION 

After all calibration constants have been determined, there is still a need to verify (or 
validate) that the test system is responding as expected. A typical verification technique 
involved testing a specimen fabricated fkom material with known properties, like steel and 
aluminum, and checking the test result to verify that the expected response was observed. This 
common technique of verification was often carried out just prior to starting production testing 
on the rock samples and was reported in the final results, if appropriate. 

Another method of verifying proper system operation was to  test a specimen of rock that had 
been previously characterized, either by REISPEC or perhaps some other agency. The test 
results could be compared to the previously published results to  gain confidence that the test 
system was operating properly. Again, such comparative verification exercises were reported 
in the final results, if appropriate. 
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7.0 DATA 

This chapter comprises the bulk of this report and holds the compilation of data from the 
various sources listed in the introduction. This chapter is organized into four sections, each of 
which presents data for a particular type of test. The four test types are (1) quasi-static triaxial 
compression, (2) constant stress (creep), (3) multiaxial, and (4) damage recovery. Moreover, the 
section on creep data is further organized as to source of specimens. The creep data results are 
presented separately for specimens that came from boreholes in the vicinity of the WIPP and 
specimens that came directly from the WIPP mine workings. 

7.1 QUASI-STATIC TRl AXIAL COMPRESSION 

Within this subsection, two tables have been included that summarize the complete work 
performed and documented in the reports for borehole specimens. The first table represents the 
matrix of tests that were performed and the second table presents a summary of the test results. 
All of the specimens used for quasi-static triaxial compression tests came from the boreholes 
AEC7 and ERDAS drilled in the vicinity of the WIPP. 

A text matrix is given in Table 7-1. The source where the data were originally reported is 
indicated in the table. The first column in the table is the specimen identification label that was 
assigned in the original report. The next two columns are the original nominal diameter of the 
specimen and the specimen's length-to-diameter ratio. The nominal test conditions are given 
in columns four through six as specimen temperature, confining pressure, and axial stress 
difference loading rate, respectively. 

Each test listed in a test matrix produced a result generated from an analysis of the data. 
The variow test results are summarized for borehole specimens in Table 7-2 along with 
comments on the tests. 

Plots have been created to present the salient features of each test listed in Table 7-1 to 
demonstrate control of desired test conditions and observations of the resulting specimen 
behavior. Thus, data plots consist of curves tracing the control variables as a h c t i o n  of time 
and also plots of stress versus strain. These plots can be found in Appendix A. 

7.2 CONSTANT STRESS (CREEP) 

Within each of the following two subsections (one for borehole specimens and one for 
specimens from the mine workings), two tables have been included that summarize the complete 
work performed and documented in the reports. The first table represents the matrix of tests 

23 



that were performed, and the second table presents a summary of the test results. In all the 
tables, the source references are given in subheadings to  indicate where the data were originally 
reported. The sign convention in the tables is that compression is positive. 

V 
Specimen ~ ~ m r u  E 

I.D. ( m a )  (GPa) 

Table 7-1. Quasi-Static Test Matrix for Borehole Specimens 

Comments 

Specimen I.D. 

0.0644 3.0 39 AEC7-1953 
(Test RQ-1) 

(Test RQ-2) 26 0.0769 2.0 AEC7-1954 (B) 

0.0619 1.4 AEC7-2721.5 (A) 36 
(Test RQ-3) 

(Test RQ-4) 0.0765 2.5 AEC7-2721.5 (B) 4o 

AEC7-1953 
(Test RQ-1) 

0.46 
The maximum stress and strain 
values are not ultimate values. 
Loading was terminated at machine 
limits. The elastic parameters were 
not determined from an un- 
loadheload cycle. They are an 
integrated modulus calculated over 
the initial 1 percent of axial strain. 

0.37 

0.26 

0.29 

~ 

AEC7-1954 (B) 
(Test RQ-2) 

(Test RQ-3) 
AEC7-2721.5 (A) 

AEC7-2721.5 (B) 
(Test RQ-4) 

Dimensions'"' Specimen 
Temperature 

L:D 

Following Data From SAND79-7045 

5 0 1  I 28 I 3.45 

5 O I  I 28 1 13.8 

Load Rate 

A& 
(Mpdmin) 

0.21 . 

0.14 

0.14 

0.12 

(a) D = diameter 
L D  = length-to-diameter ratio. 

Table 7-2. Quasi-Static Test Results for Borehole Specimens 

24 



7.2.1 Boreholes 

A composite text matrix for the tests on specimens from boreholes is given in Table 7-3. The 
first column in the table identifies the specimen as it was identified in the original report. The 
second column is the stage of loading for that specimen. The next column designates the load 
path for that portion of the test where the designation “A” means application of the load and 
“C” means the constant stress portion of the test. The nominal test conditions are given in 
columns four through six and column seven is the test duration. The durations are given in 
units of seconds (s), minutes (m), or days (d). 

The test results for the specimens listed in the test matrix are summarized in Table 7-4. 
Included as a test result in Table 7-4 are the increments of strain induced in the specimen 
during the application of an axial stress difference to  initiate the creep test and during the creep 
portion of the test. The sign convention on the strain values is that compression is positive. 
Also included in Table 7-4 are test comments that may reflect unusual specimen behavior, 
aberrations in test control, or some other special characteristic of that test that deserves 
consideration. 

Plots have been created to present the salient features of each test to  demonstrate control 
of desired test conditions and observations of the resulting specimen behavior. Thus, typical 
plots consist of curves tracing the control variables as a function of time and also plots of strain 
versus time. Most of the tests were initiated by applying the axial stress difference at a 
relatively slow rate. For these tests, plots are included that present the test conditions as a 
function of time during the load application. Also included are plots of the stress versus strain 
response for the load application. All plots can be found in Appendix B where the sign 
convention is that compression is positive. 

7.2.2 WIPP Mine Workings 

A composite text matrix for the tests on specimens from the WIPP mine workings is given 
in Table 7-5. The first column in the table identifies the specimen as it was identified in the 
original report. The second column is the stage of loading for that specimen. The next column 
designates the load path for that portion of the test where the designation “A” means application 
of the load and “C” means the constant stress portion of the test. The nominal test conditions 
are given in columns four through six and column seven is the test duration. The durations are 
given in units of seconds (s), minutes (m), or days (d). 

The test results for the specimens listed in the test matrix are summarized in Table 7-6. 
Included as a test result in Table 7-6 are the increments of strain induced in the specimen 
during the initial application of an axial stress difference to  initiate the creep test and during 
the creep portion of the test. The sign convention on the strain values is that compression is 
positive. Also included in Table 7-6 are test comments that may reflect unusual specimen 
behavior, aberrations in test control, or some other special characteristic of that test that 
deserves consideration. 
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Table 7-3. Constant Stress (Creep) Test Matrix for Borehole Specimens (Page 1 of 6) 

Specimen I.D. Stage Load Temperature Q1 - 0 8  =a Test 
Path'") ("C) (MPa) (MPa) Duration(") 

A 
1 ERDA918812127-011 

C 

C 

C 

(Test I.D. 2127) 

A 
1 ERDA9188/2124-011 

(Test I.D. 2124) 

A 
1 ERDA918812 126-011 

(Test I.D. 2126) 

25 0-10 15 <30 s 

25 10 15 337 a 

22 11.7 20.7 216 a 

25 15 15 244 a 

22 0-11.7 20.7 <30 s 

25 0-15 15 <30 s 

SLA/7911/2 
(Test I.D. 1) 

sLA/79/4N2 
(Test I.D. 1R) 

SLA/79/18C/l 
(Test I.D. 2) 

A 24 0-10.3 0 15 m 
1 

C 24 10.3 0 8.9 a 

C 24 10.3 0 26.9 a 

C 70 10.3 0 14.9 a 

C 24 20.7 17.2 61.8 a 

A 24 0-io.3 0 15 m 
1 

A 24-70 10.3 0 44 m 
2 

A 24 0-20.7 17.2 30 m 
1 



Table 7-3. Constant Stress (Creep) Test Matrix for Borehole Specimens (Page 2 of 6) 

SLA/79/1/1 
(Test I.D. 4R) 

SLA/79/18C/2 
(Test I.D. 9) 



Table 7-3. Constant Stress (Creep) Test Matrix for Borehole Specimens (Page 3 of 6) 

.. . ,,, - _  d . , .. ,, -.- 
I .  , 

, -  

(Test I.D. 1) 

(Test I.D. 3) 



I ,,. ! 

+ 
Load Temperature =I - 03 03 Test 

Path'" ("0 (MPa) (MPa) Duration(") 

A 24 . 0-20.7 17.2 40 m 

C 24 20.7 17.2 15 d 

A 70 ' 0-20.7 17.2 19 m 

C 70 20.7 17.2 6.7 d 

A 100 0-20.7 17.2 31 m 

C 100 20.7 17.2 1.8 d 

A 100 0-10.3 20.7 15 m 

C 100 10.3 20.7 15.1 d 

A 24 0-10.3 0 7 m  

C 24 10.3 0 6.8 d 

A 24 10.3-20.7 0 15 m 

C 24 20.7 0 15 m 

A 24 0-10.3 17.2 15 m 

ERDA9-2606.0 (B) C 24 10.3 17.2 7.1 d 

A 24 10.3-20.7 17.2 15 m (Test I.D. 10) 

C 24 20.7 17.2 7.9 d 

A 100 0-10.3 0 15 m 

ERDA9-2679.0 (A) C 100 10.3 0 5.2 d 

A 100 10.3-20.7 0 21  m (Test I.D. 11) 

C 100 20.7 0 Od 

' Specimen I.D. Stage 

1 ERDA9-2674.5 (A) 
(Test I.D. 5) 

1 ERDA9-2674.5 (B) 
(Test I.D. 6) 

1 ERDA9-2679.0 (B) 
(Test I.D. 7) 

1 ERDA9-2605.0 (B) 
(Test I.D. 8) 

1 

2 

1 

2 

1 

2 

1 , .  
I. ' 

Table 7-3. Constant Stress (Creep) Test Matrix for Borehole Specimens (Page 4 of 6) 

ERDA9-2678.0 (B) 
(Test I.D. 9) 



w 
0 

Table 7-3. Constant Stress (Creep) Test Matrix for Borehole Specimens (Page 5 of 6) 

Specimen I.D. Stage Load 
Path'") 

I 1  w 
ERDA9-2678.3 (B) I I C  
(Test I.D. 12) &; (Test I.D. 13) 

ERDA9-2678.7 (B) 
(Test I.D. 14) 

1 k- 

Temperature 01 - 0 3  03 Test 
("C) (MPa) 

100 0-10.3 17.2 15 m 

100 10.3 17.2 5.7 d 

100 10.3-20.7 17.2 15 m 

(MPa) Duration'b) 

100 20.7 17.2 0.5 a 
24 0-31 13.8 45 m 

24 31 13.8 10.9 d 

24 0-41.4 10.3 60 m 

24 41.4 10.3 3.7 d 

Following Data From SAND79-7045 
(Nominal Specimen Diameter = 60 rn and L:D = 2) 

AEC7-2729 
(Test I.D. RC-1) 

AEC7-2715 (B) C 100 10.3 3.45 9.9 d 

A 100 10.3-20.7 3.45 18 m 
(Test I.D. RC-2) 

2 
C 100 20.7 3.45 5.1 a 

. -  
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Table 7-3. Constant Stress (Creep) Test Matrix for Borehole Specimens (Page 6 of 6) 

AEC7-2715 (A) 
(Test I.D. RC-3) 

AEC7-2711 (A) 
(Test I.D. RC-4) 

AEC7-2711 (B) 
(Test I.D. RC-5) 

(a) A = application load-up to initiate creep test 

(b) s = seconds 
C = constant stress (creep) portion of test. 

m = minutes 
d = days. 



.' < ,  .~ ., , 

Load 
Path'") 

w tw 

Strain 
Increments, % 

€1 e3 

Table 7-4. Constant Stress (Creep) Test Results for Borehole Specimens (Page 1 of 6) 

A 

C 

A 

C 

A 

C 

1 ERDA918812 127-011 
(Test I.D. 2127) 

1 ERDA918812 124-011 
(Test I.D. 2124) 

1 ERDA918812126-011 
(Test I.D. 2126) 

Specimen I.D. 

0.166 -0.083 

0.317 -0.219 

0.228 -0.102 

0.698 -0.141 

0.438 -0.118 

2.399 -1.118 1 

Stage 

A 

C 

A 

C '  

A 

C 

A 

C 

1 SLA/7911/2 
(Test LD. 1) 

1 
SLA/7914Al2 
(Test I.D. 1R) 

2 

1 SLA/79/18Cl1 
(Test I.D. 2) 

Comments 

0.253 - 
0.540 - 

0.224 - 
0.131 - 

Data acquisition failure at -9 days. Data 
prior to 9 days is valid. 

- - 
0.595 - 
0.752 -0.301 

3.27 -1.58 



Table 7-4. Constant Stress (Creep) Test Results for Borehole Specimens (page 2 of 6) 

Strain 
Specimen 1.D. Stage path(") Increments, % Load 

E l  E3 

A 1.01 -0.431 

C 5.22 -2.84 

A 

C 0.325 

1 SLA/79/19Al2 
(Test I.D. 3) 

0.098 -0.028 
, 1 SLA/79/11/2 . 

(Test I.D. 4) - 

A 0.074 -0.025 

C 0.298 -0.139 

A 

C 4.54 -2.28 

A 0.129 -0.052 

C 1.28 -0.582 

A 0.150 -0.058 

C 5.02 -2.57 

A 0.912 -0.436 

1 
SLA/79/1/1 
(Test I.D. 4R) - - 

2 

1 SLA/79/15Al2 
(Test I.D. 5) 

SLA/79/19All 
(Test I.D. 6) 

SLA/79/15A/l 
(Test I.D. 7) 

SLA/79/18B/2 

1 

1 
1c 24.6 -15.8 

A 0.181 - 
1 

(Test I.D. 8) C 10.8 - 
A 0.086 -0.022 

C 18.7 -10.9 
1 SLA/18C/2 

(Test I.D. 9) 

co co 

Comments 

Data acquisition failure at -9 days. Poor 
lateral strain data. Possible leak in 
dilatometer system. 



, 

Specimen I.D. 

SLA/79/20/2 
(Test I.D. 10) 

SLA/79/20/1 
(Test I.D. 11) 

SLA/79/18B/1 
(Test I.D. 12) 

SLA/79/14B/1 
(Test I.D. 12R) 

/ .  

Strain 
Increments, % 

E1 E3 

Comments Load 
Path(n) I 

Stage 

A 0.066 -0.023 

C 14.3 -8.50 

A 1.04 -0.473 

C 27.0 -16.6 

A 0.026 -0.021 

1 

1 

1 
C 0.081 0.557 

A 0.016 -0.010 

C 0.276 -0.032 
1 

Table 7-4. Constant Stress (Creep) Test Results for Borehole Specimens (Page 3 of 6) 

A 

C 

A 

C 

A 

C 

A 

C 

A 

C 

1 ERDA9-2668.5 (A) 
(Test I.D. 1) 

1 ERDA9-2668.5 (A) 
(Test I.D. lA) 

1 ERDA9-2668.5 (B) 
(Test I.D. 2) 

1 ERDA9-2662.0 
(Test I.D. 3) 

1 ERDA9-2678.0 (A) 
(Test I.D. 4) 

0.34 - 
0.47 - 

0.17 - 
0.07 - 

0.42 - 
3.27 - 
0.81 - 

10.9 - 
1.45 - 
2.75 - Specimen ruptured. 

Leak required unload at  5.1 days. Data is 
valid. 

Test restarted and data appended to Test 1. 
Data was reported as Test 1. 



Table 7-4. Constant Stress (Creep) Test Results for Borehole Specimens (Page 4 of 6) 

Strain 
Specimen ID. Stage path(') Increments, % Load 

E l  E3 

A 0.79 -0.29 

C 4.11 -1.80 

A 1.54 -0.70 

1 ERDA9-2674.5 (A) 
(Test I.D. 5) 

1 ERDA9-2674.5 (B) 
C 43.0 -20.5 (Test I.D. 6) 

A 1.18 -0.48 
1 ERDA9-2679.0 (B) 

C 39.8 -28.4 (Test I.D. 7) 

Comments 

Specimen contacted vessel wall a t  150 hours. 

Specimen contacted vessel wall at end of test. 

ERDA9-2678.0 (B) 
(Test I.D. 9) 

A 

C 

A 

C 

A 

C 

1 ERDA9-2605.0 (B) 
(Test I.D. 8) 

1 

2 

A 

C 

A 

C 

A 

C 

A 

C 

1 

2 

1 

2 

ERDA9-2606.0 (B) 
(Test I.D. 10) 

0.20 -0.09 

6.55 -3.14 

0.24 - 
0.36 - 
0.87 - 
0.89 - Specimen ruptured. 

0.12 -0.05 

0.35 -0.22 

0.51 -0.22 

2.91 -1.43 

0.61 - 
7.82 - 
6.97 - Specimen contacted vessel wall. 

- - Never started. 

ERDA9-2679.0 (A) 
(Test I.D. 11) 



Table 7-4. Constant Stress {Creep) Test Results for Borehole Specimens (Page 6 of 6) 

Comments Specimen I.D. 

ERDA9-2678.3 (B) 
(Test I.D. 12) 

ERDA9-2605.5 (B) 
(Test I.D. 13) 

AEC7-2729 
(Test I.D. RC-1) 

AEC7-2715 (B) 
(Test I.D. RC-2) 



Table 7-4. Constant Stress (Creep) Test Results for Borehole Specimens (Page 6 of 6) 

Strain 
Load Increments, % Specimen I.D. Stage Path(") 

E1 ES 

A 0.148 -0.053 

C 0.438 -0.156 

A 0.396 -0.191 

C 2.12 -0.854 

A 0.492 -0.246 

C 6.22 -3.05 

A 0.751 -0.314 

1 

2 AEC7-2715 (A) 
(Test I.D. RC-3) 

3 

1 
AEC7-2711 (A) C 3.16 -1.40 

A 0.551 -0.276 

C 6.81 -3.44 

A 0.178 -0.083 

(Test I.D. RC-4) 
2 

1 
AEC7-2711 (B) C 5.34 -2.37 

A 1.40 -0.608 

C 24.4 -13.8 

A 2.25 -0.924 

C 23.9 -12.9 

(Test I.D. RC-5) 
2 

1 AEC7-2715.5 
(Test I.D. RC-6) 

Comments 

(a) A = application load-up to initiate creep test. 
C = constant stress (creep) portion of test. 



w 
00 

Specimen I.D. 

Table 7-6. Constant Stress (Creep) Test Matrix for Mine Workings Specimens (Page 1 of 6) 

Load Temperature o1 - IS, OS Test 
Path'" ("C) (MPa) (MPa) Duration@) 

Stage 

ClXOl-l/3-3/7-1 

ClXOl-L/3-3/1-1 

C 1x0 1-1/3-3/4-1 

ClXO 1-1/3-3/2-1 

ClXOl-l/3-3/6-1 

ClXO 1-1/3-2/7-1 

MCE36-l/l-l/2-2/2 

L4X01-6/1-2/1-2/1 

f 

(Nominal Specimen Diameter = 100 mm and bD = 2) 

A 25 0-11.5 15 e30 s 

C 25 11.5 15 184 d 

A 25 0-15 15 e30s , 

1 

1 
C 25 15 15 461 a 

C 25 17 15 248 a 
A 25 0-17 15 e30 s 

1 

A 25 0-21 15 < 30 s 

C 25 21 15 159 d 

A 100 0-3.5 15 e 30 s 

C 100 3.5 15 433 d 

A 100 0-5 15 e 30 s 

C 100 5 15 211 d 

A 100 0-7 15 e 30 s 

C 100 7 15 326 d 

A 25 0-10 15 < 30 s 

C 25 10 15 615 d 

1 

1 

1 

1 

1 



Table 7-5. Constant Stress (Creep) Test Matrix for Mine Workings Specimens (Page 2 of 6) 

Specimen I.D. 

L4X01-6/1-2/1-4/1 

L4XO1-6/1-lIl-l/1 

L4X01-6/1-l/l-2/1 

Load Temperature a, - os OS Test 
Path'"' ("C) (ma) (MPa) Duration(") 

A 25 0-11.5 15 c 30 s 

C 25 11.5 15 449 d 
A 25 0-13 15 < 30 s 
C 25 13 15 468 d 
A 25 0-15 15 <30 s 

22.6 d C 25 15 15 

Stage 

1 

1 

1 

L4X01-5/1-lIl-7/1 

L4X01-6/1-l/l-3/1 

L4XO 1-6/1-2/1-7/1 

A 2'5 0-15 15 c30 s 
C 25 15 19 101 d 
A 100 0-3.5 15 c30 s 
C 100 3.5 15 340 d 

1 

1 
1 I I 1  A 100 0-5 15 c 30 s 

C 100 5 15 70.8 d 

L4X01-7/1-2/1-4/1 
A 100 0-5 15 < 30 s 
C 100 5 15 410 d 

1 

A 25 0-10 15 
(Test I.D. ClX041) C 25 10 15 1 ClXO1-04/1-3/1-2 < 30 s 

219 d 



Table 7-6. Constant Stress (Creep) Test Matrix for Mine Workings Specimens (Page 3 of 6) 

Specimen I.D. 

ClX01-04/1-3/2-2 
(Test I.D. ClX042) 

ClX01-02/1-3/1-2 
(Test I.D. ClX021) 

Stage Load Temperature c1 - os OS Test 
Path'") ("0 (MPd (MPa) Duratiodb) 

A 25 0-15 15 c 30 s 
C 25 15 15 166 d 
A 25 0-15 15 c 30 s 
C 25 15 15 281 d 

1 

1 



Table 7-6. Constant Stress (Creep) Test Matrix for Mine Workings Specimens (Page 4 of 6) 

Load Temperature 
Path'" ("C) Specimen ID. Stage q - os 4 Test 

(MPa) ( m a )  Duration@) 

DX16-218- 1-2 

C 25 17 15 272 d 

A 25 0-19 15 c30 s 

C 25 19 15 270 d 
1 
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Table 7-6. Constant Stress (Creep) Test Matrix for Mine Workings Specimens (Page 6 of 6) 

Specimen I.D. 

- A  25 0-19 15 < 30 s 

C 25 19 15 208 d 
A 25 0-21 15 < 30 s 

C 25 21 15 174 d 

DX19-5/6-1-2 1 

1 DX16-2/6-1-2 

A 25 0-25 15 c30 s 

C 25 25 15 44 d 
A 25 0-30 15 < 30 s 

C 25 30 15 10.3 d 

A 25 0-30 15 c 30 s 

C 25 30 15 11.7 d 
A 100 0-3.5 15 <30 s 

C 100 3.5 . 15 I 68d 

DX19-5/1-1-2 1 

DX19-5/2-1-2 1 

DX19-513-1-2 1 

DX16-2/3-1-2 1 

1 I A 100 0-7 15 <30 s 
I I I I DX1944-1-2 

C 100 7 15 180 d 

A 100 0-17 15 <30 s 

C 100 17 15 2.8 d 
A 200 0-2 15 <30 s 

C 200 2 15 47 d 

DX19-514-1-2 1 

DX16-212-1-2 1 



1 

Load Temperature ol-03 
Path'" ("0 (IvIpa) 

A 200 0-2 

C 200 2 
A 200 0-3.5 
C 200 3.5 

Specimen I.D. Stage 

DX16-2/5-1-2 1 

DX19-4/3-1-2 1 

Table 7-6. Constant Stress (Creep) Test Matrix for Mine Workings Specimens Wage 6 of 6) 

03 Test 
(MPa) Durationfi' 

15 e 30 s 

15 231 d 
15 e 30 s 
15 37 d 

(a) 

(b) s = seconds 

A = application load-up to  initiate creep test 
C = constant stress (creep) portion of test. 

m = minutes 
d = days. 

B w 



Table 7-6. Constant Stress (Creep) Test Results for Mine Workings Specimens (Page 1 of 6) 

Specimen 1.D. Comments 

C 1X01-1/3-3/7-1 

C UT0 1- 1/3-3/14 

C lX01-1/3-3/4-1 

ClX01-1/3-3/2-1 

C 1x0 1-1/3-2/7-1 

MCE36-l/l-1/2-2/2 



Table 7-6. Constant Stress (Creep) Test Results for Mine Workings Specimens (Page 2 of 6) 

Comments 

L4XO 1-6/1-!Y1-4/1 

L4X01-6Il-Ill-Ill 

L4XO 1-5/1-1/1-7/1 

L4X01-6/1-l/l-3/1 

L4XO 1-7/1-2&4/1 



Table 7-6. Constant Stress (Creep) Test Results for Mine Workings Specimens (Page 3 of 6) 

Specimen I.D. 

ClX01-04/1-3/2-2 
(Test I.D. (31x042) 

C uT01-02/1-3/1-2 
(Test I.D. ClXO21) 

Strain 
Comments Load Increments, % Stage path(B) . 

61 Es 

A 0.399 -0.181 

C 1.901 -0.780 

A 0.216 -0.085 

C 1.979 -1.059 

1 

1 

P4X18-4/4-1-2 

P4X18-1/5-1-2 

P4X18-ll3-1-2 

P4X18-4/2-1-2 

P4X18-1/6- 1-2 

P4X184ll-1-2 

A 0.097 -0.029 

C 0.525 -0.204 

A 0.212 -0.075 

C 1.133 -0.045 

A 0.316 -0.124 

1 

1 

Anomalous test result. Localized deforma- 
tion along clay seams. 

1 
C 12.97 -6.445 

A 0.165 -0.059 

C 2.272 -0.943 

A 0.372 -0.051 

C 12.91 -2.059 

A 0.044 -0.022 

C 0.437 -0.233 

1 

1 

1 



Table 7-6. Constant Stress (Creep) Test Results for Mine Workings Specimens P a g e  4 of 6) 

Specimen LD. Comments 



'I Table 7-6. Constant Stress (Creep) Test Results for Mine Workings Specimens (Page 6 of 6) 

Specimen I.D. 

DX19-5/6-1-2 

DX16-2/6-1-2 

DX19-5/1- 1-2 

DX19-5/2- 1-2 

DX19-6/3-1-2 

DX16-2/3-1-2 

DX19-441-2 

DX19-5/41-2 

DX16-2/2-1-2 

Comments 
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Plots have been created to present the salient features of each test to  demonstrate control 
of desired test conditions and observations of the resulting specimen behavior. Thus, data plots 
consist of curves tracing the control variables as a function of time and also plots of strain 
versus time. These creep tests were initiated by applying the desired axial stress difference 
very quickly (<30s) and no data were collected during that time. Thus, there are no stress 
application plots as were produced for the borehole specimens. All creep data plots can be found 
in Appendix C where the sign convention is that compression is positive. For those specimens 
classified as argillaceous salt, a notation is included in the figure caption. 

7.3 MULTIAXIAL STRESS 

This section presents the data obtained fiom a highly specialized type of test that required 
the use of large, thin walled, hollow cylinders of salt. For this work, the relatively uniform and 
pure dome salt from Avery Island, Louisiana, was used. The use of a non-WIPP salt type was 
acceptable because these tests were designed to investigate the role of the intermediate principal 
stress on the creep potential of salt and no site specific material properties were sought. Two 
tables have been included to  summarize the work performed. The first table represents the 
matrix of tests that were performed and the second table presents a summary of the test results. 

The text matrix that was followed is given in Table 7-7. The first column in the table is the 
test identification label that was given in the original report. The remaining columns give the 
test conditions in three equivalent forms; first as stress invariants, then as principal stresses, 
and finally as the values of the controlled variables. All of the tests were performed on 
specimens with the same nominal dimensions; a length of 610 mm, an outer diameter of 
305 mm, and a wall thickness of 25 mm. All tests were conducted at  laboratory room 
temperature (20°C) and were performed on a single special purpose test system. 

The numerical test results are summarized in Table 7-8. For this analysis, the test results 
were represented by the Lode angle for stress calculated from the measured stresses and the 
principal strain rates observed at the end of the test, The principal strain rate values were used 
to calculate Lode angles for strain rates which were then plotted against Lode angles for 
stresses. Each test provided a single data point on the Lode angle plot and they appear as 
shown in Figure 7-1. There are two theoretical curves in Figure 7-1; one represents the 
theoretical response if the creep potential of salt is governed by a Mises criterion and the other 
represents the theoretical response if the creep potential of salt is governed by a Tresca 
criterion. A comparison of the two theoretical curves with the experimental data led to  the 
conclusion that the creep potential of salt was best represented by a Tresca criterion. 

Plots have been created to present the salient features of each test to  demonstrate control 
of desired test conditions and observations of the resulting specimen behavior and those plots 
can be found in Appendix D. The figures in Appendix D are plots of curves that trace the 
control variables as a function of time and also plots of all three principal strains versus time. 
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Table 7-7. Multiaxial Test Matrix for Avery Island Salt'") 

=rr %e =, F Po pi 
( m a )  (BIpa) ( m a )  (MN) m a )  (MPa) V" Specimen 4 Ja 

ICD. ( m a )  

AI/82/Cf1 -55 33.33 0" -18.33 -12.56 -24.11 -0.538 -17.85 -18.91 

-16.85 -17.57 -55 33.33 10" -17.18 -13.23 -24.60 -0.549 AI/86/C '3/1 
AI/86/Af 1/11 

AI/86/Cf4/1 
AV86/A'12/1 -55 33.33 20" -16.05 -14.05 -24.90 -0.555 -15.89 -16.25 

AV82/Cf7 -55 33.33 30" -15.00 -15.00 -25.00 -0.557 -15.00 -15.00 

-15.27 -15.73 AI/86/Af10/1 -55 52.08 20" -15.48 -12.98 -26.54 -0.592 . 



The control variables are presented in terms of two stress invariants and the Lode angle for 
stresses because they are common measures used when dealing with multiaxial states of stress. 
In the strain versus time plots, the strain values include the elastic and inelastic strains 
induced during the loading to initiate the creep tests. The multiaxial tests were originally 
reported using a positive sign for tension and that convention has been retained in this section 
and in Appendix D. 

Table 7-8. Multiaxial Test Results for Avery Island Salt 

AI/86/A112/1 
AI/82/C17 t- AI/86/A'10/1 ' 

Stress Lode Principal Strain Rates at End of Test (s-') 

krr %e kzz Angle, w" 
0.78" 0 6.83 x lo-'' -5.64 x lo-'' 

10.23" 0 6.73 x 10-l' -6.63 x 10-l' 
10.21" 0 0.59 x 10-l' -0.59 x 10-l' 
19.85" 0 3.36 x 10-l' -4.35 x 10-lo 
20.65" 0 0.89 x 10-l' -3.17 x 10-l' 
29.59" 1.88 x 10-l' 1.88 x 10-l' -3.17 x lo-'' 
20.52" 0 1.94 x 10-l' -2.07 x lo-'' 

7.4 DAMAGE RECOVERY 

This section presents the data obtained from a specialized testing program devised to assess 
the effects of time, temperature, hydrostatic stress, and damage level on crack closure and 
healing of salt specimens retrieved f?om the WIPP mine workings. Table 7-9 has been included 
to summarize the work performed and it represents the matrix of tests that were performed. 

The tests listed in Table 7-9 were used to generate data that could be used to  address 
questions in two separate experiments. In the first experiment, three specimens that had been 
subjected to a controlled level of damage (1 percent axial strain) in a strain rate controlled 
triaxial compression test, were healed at one of three Werent pressures (5,10, and 15 MPa). 
Crack closure and healing, as indicated by changes in ultrasonic compressional wave amplitudes 
and velocities, were observed as a function of time by recording the recoveries of the amplitudes 
and velocities. In the second experiment, the effect of different damage levels was investigated. 
Specimens that had been subjected to one of three controlled levels of damage (0.5, 1.0, or 1.5 
percent axial strain) were all healed at a pressure of 15 MPa. Again, the recoveries of the wave 
amplitudes and velocities were measured as a function of time to assess the effect of initial 
damage level on the healing process. 
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Figure 7-1. Strain Rate Lode Angle Versus Stress Lode Angle. 
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The results of the testing are graphical in nature, so there is no tabulation of test results 
contained within this section. Plots have been created to present the data measured during 
each test. Included are plots of strain versus time and plots of wave amplitude and velocity 
versus time. These plots can be found in Appendix E. The sign convention for the damage 
recovery work was that compression is positive. 

Table 7-9. Damage Recovery Test Matrix for WIPP Mine Workings Salt 

(a) This test was originally reported in SAND90-7076 (Brodsky, 1990) and 
then referenced again in SAND93-7111 (Brodsky, 1993). 
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8.0 SUMMARY 

Twenty-one years of laboratory testing performed by RE/SPEC Inc. in support of the WIPP 
has been summarized and compiled into this single document. The types of tests performed 
over that period and included here represent quasi-static triaxial compression, constant stress 
(creep), multiaxial creep, and damage recovery. All tests performed over that period and 
included here have been previously reported. 

The data contained herein are essentially only a reproduction of previously published 
results. There has been no new data reduction performed in preparation of this report. A 
substantial part of the current effort involved retrieval of archived information for the given 
reports from the RWSPEC file system. This information was reformatted for incorporation into 
the standard Laboratory Notebook System format now in use at the WIPP and described in 
Appendix B of SNL Quality Assurance Procedure QAP 20-03 entitled Qualification ofExisting 
Data (Scully, 1995). Those Laboratory Notebooks provide all the supporting information for the 
data presented in this summary report and they will be transferred to Sandia WIPP Central 
Filing for future reference and records retention. 
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Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9/88/2127-0/1; Stage 1 of 1. 
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Figure B-3. Test Conditions Versus Time for a Creep Test: Specimen ERDA9/88/!21240/1; 
Stage 1 of 1. 
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Figure B-4. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9/88/2124-0/1; Stage 1 of 1. 
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Figure B-7. Test Conditions Versus Time for Stress Application to Initiate a Creep 
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Figure B-8. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SW79/1/2; Stage 1 of 1. 
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Figure B-9. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/1/2; Stage 1 
of 1. 
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Figure B-10. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/1/2; Stage 1 of 1 (Data Acquisition Failure at 9 Days. Data Before 9 
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B-13. Test Conditions Versus Time for a Creep Test: Specimen SLAp19/4A/2; Stage 
1 of 2. 
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Figure B-14. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/4A/2; Stage 1 of 2. 
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Figure B-16. Test Conditions Versus Time for Temperature Application to Initiate a Creep 
Test: Specimen SLA/79/4A/2; Stage 2 of 2. 
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Figure B-18. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/18C/l; Stage 1 of 1. 
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Figure B-19. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/18C/l; Stage 1 of 1. 
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Figure B-20. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18C/1; Stage 
1 of 1. 
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Figure B-21. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/18C/l; Stage 1 of 1. . 
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Figure B-22. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/19A/2; Stage 1 of 1. 
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Figure B-23. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/19A/2; Stage 1 of 1. 
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Figure B-24. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/19A/Z; Stage 
1 of 1. 
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Figure B-26. Axial Strain and Lateral Strain Versus Time for a Creep Test: 
SLA/79/19A/2; Stage 1 of 1. 
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Figure B-26. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/11/2; Stage 1 of 1. 
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Figure B-27. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SW79/11/2; Stage 1 of 1. 
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Figure B-28. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/11/2; Stage 
1 of 1. 
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Figure B-29. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/11/2; Stage 1 of 1 (Data Acquisition Failure at 9 Days. Data Before 9 
Days is Valid. Poor Lateral Data Caused by Dilatometer Leak). 
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Figure B-30. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/1/1; Stage 1 of 2. 
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Figure B-31. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/1/1; Stage 1 of 2. 

B-45 



RSI-386-96-142 

Constant Stress (Creep) Test 
(Test Conditions vs. Time) 

30 

25 

20 

SAND80-7114 
15 AO = 10.3 MPa 

10 

5 

0 
O.OE+O 1.OE+6 2.OE+6 3.OE+6 4.OE+6 5.0E+6 6.OE 

Time, seconds 

30 

25 

20 

-I 

U 

15 2 
s 

Y 5 
6 

10 

5 

0 
+6 

Figure B-3%. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/1/1; Stage 1 
of 2. 
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Figure B-33. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/1/1; Stage 1 of 2. 
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Figure B-34. Test Conditions Versus Time for Temperature Application to Initiate a Creep 
Test: Specimen SLA/79/1/1; Stage 2 of 2. 

B-48 



RSI-386-96-146 

Constant Stress (Creep) Test 
(Test Conditions vs. Time) 

25 

20 

SAND8017114 
15 

o3 = 20.7 MPa 

&. - 

110 

105 

100 

4 
0 

'El 
3 

95 ; 
Y 5 
6 

90 

85 

80 
O.OE+O 5.0E+5 1 .OE+6 1.5E+6 2.0E+6 

Time, seconds 

Figure B-36. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/1/1; Stage 2 
of 2. 
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Figure B-36. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/1/1; Stage 2 of 2. 
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Figure B-37. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/15A/2; Stage 1 of 1. 
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Figure B-38. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/15A/2; Stage 1 of 1. 
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Figure B-39. Test Conditions Versus Time for a Creep Test: Specimen SW79/16A./2; Stage 
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Figure B40. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLAI79lS5N2; Stage 1 of 1. 

B-54 



RSI-386-96-152 

Stress Application to Initiate a Creep Test 
(Test Conditions vs. Time) 

110 

I I n In I 

105 

100 

90 

200 400 600 800 1000 1200 0 

Time, seconds 

Figure B-41. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/19A/l; Stage 1 of 1. 
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Figure B42. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/19Nl; Stage 1 of 1. 
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Figure B-43. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/19A/1; Stage 
1 of 1. 
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Figure B-44. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/19A/l; Stage 1 of 1. 
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Figure B-46. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/15A/I; Stage 1 of 1. 
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Figure B-46. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
WInitiate a Creep Test: Specimen SLA/79/16A/l; Stage 1 of 1. 
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Figure B-47. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/16A/l; Stage 
1 of 1. 
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figure B-48. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/16AI1; Stage 1 of 1. 

B-62 



RSI-386-96-160 

I 

Stress Application to Initiate a Creep Test 
(Test Conditions vs. Time) 

I 
TEST # 8 
SLA/79/188/2 r-l SANDSO-71 14 

0 a 

El 
a AG = 5.5 MPa 

= 0 MPa 
A'G = 0.7 MPa/min 

0 
4 

0 0 0 0 0 0 0 

220 

21 5 

21 0 

i2 
3 
'CI 

205 

" i 
6 

200 

195 

190 
0 100 200 300 400 500 600 

Time, seconds 

Figure B-49. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/18B/2; Stage 1 of 1. 
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Figure B-SO. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/18B/2; Stage 1 of 1. 
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Figure B-61. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18B/2; Stage 
1 of 1. 
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Figure B-62. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/18B/2; Stage 1 of 1. 
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Figure B-63. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/18C/2; Stage 1 of 1. 
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Figure B-64. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/18C/2; Stage 1 of 1. 
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Figure B-66. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18C/2; Stage 
1 of 1. 
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Figure B-56. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/18C/2; Stage 1 of 1. 
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Figure B-67. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/20/2; Stage 1 of 1. 

B-71 



RSI-386-96-169 

Stress Application to Initiate a Creep Test 
(Stress vs. Strain) 

I 

0 

0 

0 

- - o Axial C 

A Lateral 

0 

0 

TEST # 10 
SLA/79/20/2 
SAND8017114 
ACJ = 5.5 MPa 
o3 = 20.7 MPa 
A b  = 0.7 MPa/min , r 

1 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

Strain, percent 

Figure B-68. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/20/2; Stage 1 of 1. 
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Figure B-69. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/20/2; Stage 
1 of 1. 
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Figure B-60. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/20/2; Stage 1 of 1. 
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Figure B-61. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/20/1; Stage 1 of 1. 
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Figure B-63. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/20/1; Stage 
1 of 1. 
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SW79/20/1; Stage 1 of 1. 

Specimen 

B-78 



RSI-386-96-176 

- 

25 

20 

15 
I 

TEST#12 - 

SLA/79/18B/l 
SAND80-7114 
Ao = 5.5 MPa 
o3 = 20.7 MPa 
A'o = 0.7 MPdmin 
T = 7OoC 

ut" 
L 8 
in' 10 

Stress Application to Initiate a Creep Test 
(Test Conditions vs. Time) 

100 200 300 400 500 0 

Time, seconds 

Figure B-66. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen SLA/79/18B/1; Stage 1 of 1. 
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Figure B-66. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/18B/l; Stage 1 of 1. 

B-80 



RSI-386-96-178 

H D  

Constant Stress (Creep) Test 
(Test Conditions vs. Time) 

25 

20 

Q 

B 
UT. u) a 
L 

15 I 
I I 

TEST# 12 
SLA/79/18B/1 
SAND80-7114 
ACT = 5.5 MPa - 

. 80  

75 

70 2 
3 
'c) 

5 
d 3 
(0 

65 6 
Y 

60 

55 
O.OE+O 2.OE+5 4.OE+5 6.0E+5 8.OE+5 1 .OE+6 1.2E+6 1.4E+6 

Time, seconds 

Figure B-67. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/18B/l; Stage 
1 of 1. 
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Figure B-68. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/18B/l; Stage 1 of 1. 
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Figure B-70. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen SLA/79/14B/1; Stage 1 of 1. 
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Figure B-71. Test Conditions Versus Time for a Creep Test: Specimen SLA/79/14B/l; Stage 
1 of 1. 
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Figure B-72. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
SLA/79/14B/l; Stage 1 of 1. 
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Figure B-73. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen EFtDA9-2668.5 (A); Stage 1 of 1. 
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to Initiate a Creep Test: Specimen ERDA9-2668.5 (A); Stage 1 of 1. 
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Figure B-76. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2668.5 (A); 
Stage 1 of 1 (System Malfunction at 5.1 Days. Test was Restarted After 
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Figure B-76. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2668.5 (A); Stage 1 of 1 (System Malfunction at 5.1 Days. Test was 
Restarted After Repair). 
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Figure B-77. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2668.5 (B); Stage 1 of 1. 
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Figure €3-78. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2668.5 (€3); Stage 1 of 1. 
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Figure B-79. Test Conditions Versus Time for a Creep Test: Specimen ER;DA9-2668.5 (€3); 
Stage 1 of 1. 
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Figure B-80. Axial Strain and Lateral Strain Versus Time for a Creep Test. Specimen 
ERDA9-2668.5 03); Stage 1 of 1. 
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Figure B-81. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2622.0; Stage 1 of 1. 
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Figure B-82. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2622.0; Stage 1 of 1. 
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FigureB-83. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2622.0; 
Stage 1 of 1. 
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Figure B-84. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2622.0; Stage 1 of 1. 
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Figure B-86. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2678.0 (A); Stage 1 of 1. 
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Figure B-86. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2678.0 (A); Stage 1 of 1. 
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Figure B-87. Test Conditions Versus Time for a Creep Test: Specimen EFtDA9-2678.0 (A); 
Stage 1 of 1 (Specimen Rupture Terminated Test). 
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Figure B-88. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2678.0 (A); Stage 1 of 1 (Specimen Rupture Terminated Test). 
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Figure B-89. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2674.5 (A); Stage 1 of 1. 
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Figure B-90. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2674.5 (A); Stage 1 of 1. 
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Figure B-91. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2674.6 (A); 
Stage 1 of 1. 
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Figure B-92. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2674.5 (A); Stage 1 of 1. 
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Figure B-93. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2674.5 (B); Stage 1 of 1. 
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Figure B-94. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2674.5 03); Stage 1 of 1. 
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Figure B-96. Test Conditions Versus Time for a Creep Test: Specimen EDA9-2674.5 (B); 
Stage 1 of 1 (Specimen Contacted Vessel Wall at 150 Hours). 
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Figure B-96. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
EFtDA9-2674.5 (B); Stage 1 of 1 (Specimen Contacted Vessel Wall at 160 
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Figure B-97. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2679.0 (B); Stage 1 of 1. 
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Figure B-98. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2679.0 (B); Stage 1 of 1. 
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Figure B-99. Test Conditions Versus Time for a Creep Test:'Specimen ERDA9-2679.0 (B); 
Stage 1 of 1 (Specimen Contacted Vessel Wall at End of Test). 
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Figure B-101. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2605.0 (B); Stage 1 of 1. 
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Figure B-102. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2605.0 03); Stage 1 of 1. 
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Figure B-103. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2605.0 (B); 
Stage 1 of 1. 
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Figure B-104. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2605.0 (B); Stage 1 of 1. 
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Figure B-106. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2678.0 (B); Stage 1 of 2. 
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Figure B-106. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2678.0 03); Stage 1 of 2. 
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Figure B-107. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.0 (B); 
Stage 1 of 2. 
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figure B-108. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2678.0 (B); Stage 1 of 2. 

B-122 



RSI-386-96-224 

25 

20 

15 

Stress Application to Initiate a Creep Test 
(Test Conditions vs. Time) 

I 

TEST 9, Stage 2 
ERDA9-2678.O(B) 
SAN D79-7030 
Ac = 20.7 MPa 
c3 = 0 MPa 
A h  = 0.7 MPdmin 
T = 24OC 

30 

24 

12 8 

6 

0 200 400 600 800 1000 

Time, seconds  

Figure B-109. Test Conditions.Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2678.0 (B); Stage 2 of 2. 
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Figure B-110. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2678.0 03); Stage 2 of 2. 
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Figure B-111. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.0 (B); 
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Figure B-112. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2678.0 (B); Stage 2 of 2 (Specimen Rupture Terminated Test). 
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Figure B-113. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2606.0 (B); Stage 1 of 2. 
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Figure B-114. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2606.0 03); Stage 1 of 2. 
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Figure B-116. Test Conditions Versus Time for a Creep Test: Specimen EFtDA9-2606.0 (B); 
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Figure B-116. Mal Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2606.0 (B); Stage 1 of 2. 
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Figure B-117. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2606.0 (13); Stage 2 of 2. 
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Figure B-120. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ER.DA9-2606.0 (B); Stage 2 of 2. 

B-134 



RSl-386-96-236 

Stress Application to Initiate a Creep Test 
(Test Conditions vs. Time) 

0 100 200 300 600 700 800 900 400 500 

Time, seconds 

Figure B-121. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2679.0 (A); Stage. 1 of 2. 
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Figure B-122. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2679.0 (A); Stage 1 of 2. 
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Figure B-123. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2679.0 (A); 
Stage 1 of 2. 
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Figure B-124. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2679.0 (A); Stage 1 of 2. 
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Figure B-126. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
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Figure B-126. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2679.0 (A); Stage 2 of 2 (Specimen 
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Figure B-127. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2678.3 (B); Stage 1 of 2. 
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to Initiate a Creep Test: Specimen ERDA!3-2678.3 (B); Stage 1 of 2. 



RSl-386-96-246 

0 

(T = 100°C 

1 0 

Figure B-129. Test Conditions Versus &e for a Creep Test: Specimen ERDA9-2678.3 (B); 
Stage 1 of 2. 

B-143 



RSI-386-96-247 

6.OE-2 

5.0E-2 

4.0 E-2 

3.OE-2 

2.0 E-2 r 
m .- 
L 

1 .O E-2 
Gi 

O.OE+O 

-1 .OE-2 

-2.0E-2 

-3.OE-2 

Constant Stress (Creep) Test 
(Strain vs. Time) 

O.OE+O 5.OE4 1.OE+5 1.5E+5 2.OE+5 2.5E+5 3.OE+5 3.5E+5 4.0E+5 4.5E+5 5.OE+5 

Time, seconds 

Figure B-130: Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2678.3 03); Stage 1 of 2. 
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Figure B-131. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2678.3 (B); Stage 2 of 2. 
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Figure B-132. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2678.3 (B); Stage 2 of 2. 
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Figure B-133. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2678.3 (B); 
Stage 2 of 2. 
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Figure B-134. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2678.3 (B); Stage 2 of 2. 
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Figure B-136. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen ERDA9-2605.5 (B); Stage 1 of 1. 
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Figure B-136. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen ERDA9-2605.5 (B); Stage 1 of 1. 
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Figure B-137. Test Conditions Versus Time for a Creep Test: Specimen ERDA9-2605.6 (B); 
Stage 1 of 1. 
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Figure B-138. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ERDA9-2605.5 (€3); Stage 1 of 1. 
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Figure B-139. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen EFtDA9-2678.7 (B); Stage 1 of 1. 
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Figure B-140. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen EFtDA9-2678.7 03); Stage 1 of 1. 
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figure B.143. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2729; Stage 1 of 3. 
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Figure B-144. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen AEC7-2729; Stage 1 of 3. 
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Figure B-146. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2729; Stage 
1 of 3. 
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Figure B-147. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2729; Stage 2 of 3. 
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Figure B-148. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen AEC7-2729; Stage 2 of 3. 
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Figure B-149. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2729; Stage 
2 of 3. 
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Figure B-160. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
AEC7-2729; Stage 2 of 3. 
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Figure B-161. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2729; Stage 3 of 3. 
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Figure B-162. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen AEC7-2729; Stage 3 of 3. 
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Figure B-163. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2729; Stage 
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Figure B-164. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
AEC7-2729; Stage 3 of 3. 
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Figure B.166. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2715 (B); Stage 1 of 2. 
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Figure B-166. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen AEC7-2715 (B); Stage 1 of 2. 
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Figure B-168. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
AEC7-2715 03); Stage 1 of 2. 

B-172 



RSl-386-96-276 

L 
iij 8 -  

6 -- 

4 -  

2 

0 

Stress Application to Initiate a Creep Test 
(Test Conditions vs. Time) 

A'o = 0.57 MPNmin - 
T = 100°C 

1~ A A A A A A A A A 1L A A A A A A  

I 1 1 

A A A  

- 125 

- 100 

-50 6 

- 25 

- 0  
0 200 400 600 800 1000 1200 

Time, seconds 

Figure B-169. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2715 (B); Stage 2 of 2. 
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Figure E-160. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen AEC7-2715 03); Stage 2 of 2. 
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Figure B-161. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2716 (B); 
Stage 2 of 2. 
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Figure B-162. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
AEC7-2715 (B); Stage 2 of 2. 
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Figure B-163. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2716 (A); Stage 1 of 3. 
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Figure B-166. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
AEC7-2715 (A); Stage 1 of 3. 
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Figure B-167. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2716 (A); Stage 2 of 3. 
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Figure B-168. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen AEC7-2715 (A); Stage 2 of 3. 
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Figure B-169. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2716 (A); 
Stage 2 of 3. 
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Figure B-170. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
AEC7-2715 (A); Stage 2 of 3. 
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Figure B-171. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2715 (A); Stage 3 of 3. 
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Figure B-172. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen AEC7-2715 (A); Stage 3 of 3. 
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Figure B-173. Test Conditions Versus Time for a Creep Test: Specimen AEC7-2716 (A); 
Stage 3 of 3. 
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Figure B-174. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specinhen 
AEC7-2716 (A); Stage 3 of 3. 
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Figure B-176. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2711 (A); Stage 1 of 2. 
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Figure B-186. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
AEC7-2711 (B); Stage 1 of 2. 
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Figure B-187. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
Specimen AEC7-2711 (B); Stage 2 of 2. 
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Figure B-188. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
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Figure B-191. Test Conditions Versus Time for Stress Application to Initiate a Creep Test: 
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Figure B-192. Axial Stress Difference Versus Axial and Lateral Strain for Stress Application 
to Initiate a Creep Test: Specimen AEC7-2715.5; Stage 1 of 1. 
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Figure C-1. Test Conditions Versus Time for a Creep Test: Specimen ClXO1-1/3-3/7-1; 
Stage 1 of 1. 
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Figure C-2. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ClX01-1/3-3/7-1; Stage 1 of 1. 
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Figure C-3. Test Conditions Versus Time for a Creep Test: Specimen ClXOl-l/3-3/1-1; 
Stage 1 of 1. 
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Figure c-4. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ClXO1-1/3-3/1-1; Stage 1 of 1. 
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Figure C-6. Test Conditions Versus Time for a Creep Test: Specimen ClXOl-l/3-3/4-1; 
Stage 1 of 1. 
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Figure C-6. Axial Strain and Lateral Strain Versus Time for a Creep Tesk Specimen 
ClXOl-l/3-3/4-1; Stage 1 of 1. 
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Figure C-7. Test Conditions Versus Time for a Creep Test: Specimen ClXO1-1/3-3/2-1; 
Stage 1 of 1. 
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Figure C-8. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ClX01-1/3-3/2-1; Stage 1 of 1. 
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Figure 43-9. Test Conditions Versus Time for a Creep Test: Specimen ClX01-1/3-3/6-1; 
Stage 1 of 1. 
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Figure C-10. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ClXO1-1/3-3/6-1; Stage 1 of 1. 
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Figure C-11. Test Conditions Versus Time for a Creep Test: Specimen ClXOl-l./3-2/7-1; 
Stage 1 of 1. 
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Figure (3-12. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ClXOl-l/3-2/7-1; Stage 1 of 1. 
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Figure 42-13. Test Conditions Versus Time for a Creep Test: Specimen MCE36-l/l-l/2-2/2; 
Stage 1 of 1. 
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Figure (3-14. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
MCE36-l/l-l/2-2/2; Stage 1 of 1. 
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Figure C-16. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 

IAXO1-6/1-2/1-2/1; Stage 1 of 1 (Argillaceous Salt). 
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Figure (3-17. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-2/1-4/1; 
Stage 1 of 1 (Argillaceous Salt). 
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Figure C-18. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
IAxOl-6/1-2/1-4/1; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-19. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-l/l-l/1; 
Stage 1 of 1 (Argillaceous Salt). 
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Figure C-20. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
L4X01-6/1-l/l-l./1; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-21. Test Conditions Versus Time for a Creep Test: Specimen L4XOl-6/1-1/1-2/1; 
Stage 1 of 1 (Argillaceous Salt). 
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Figure C-22. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
IdXO1-6/1-l/l-2/1; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-23. Test Conditions Versus Time for a Creep Test: Specimen L4X01-5/1-l/l-7/1; 
Stage 1 of 1 (Argillaceous Salt). 
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Figure C-24. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
LAx01-5/1-l/l-7/1; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-26. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-l/l-3/1; 
Stage 1 of 1 (Argillaceous Salt). 
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Figure (3-26. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
L4X01-6/1-l/l-3/1; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-27. Test Conditions Versus Time for a Creep Test: Specimen L4X01-6/1-2/1-7/1; 
Stage 1 of 1 (Argillaceous Salt). 
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Figure C-28. h a l  Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
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Figure C-29. Test Conditions Versus Time for a Creep Test: Specimen L4X01-7/1-2/141; 
Stage 1 of 1 (Argillaceous Salt). 
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Figure C-30. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
L4X01-7/1-2/1-441; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-31. Test Conditions Versus Time for a Creep Test: Specimen ClX01-04/1-3/1-2; 
Stage 1 of 1. 
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Figure C-32. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ClX01-04/1-3/1-2; Stage 1 of 1. 
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Figure C-33. Test Conditions Versus Time for a Creep Test: Specimen ClX01-04/1-3/2-2; 
Stage 1 of 1. 
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Figure C-34. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ClX01-04/1-3/2-2; Stage 1 of 1. 
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Figure C-35. Test Conditions Versus Time for a Creep Test: Specimen ClX01-02/1-3/1-2; 
Stage 1 of 1. 
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Figure C-36. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
ClX01-02/1-3/1-2; Stage 1 of 1. 
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Figure C-37. Test Conditions Versus Time for a Creep Test: Specimen P4X18-4/4-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-38. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X1844-1-2; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-39. Test Conditions Versus Time for a Creep Test: Specimen P4X18-l/6-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-40. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X18-1/5-1-2; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-41. Test Conditions Versus Time for a Creep Test: Specimen P4X18-V3-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-42. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X18-U3-1-2; Stage 1 of 1 (Argillaceous Salt. Anomalous Test Result. 
Localized Deformation Along Clay Seams). 
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Figure C-43. Test Conditions Versus Time for a Creep Test: Specimen P4X1842-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-44. Axial'Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X1842-1-2; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-45. Test Conditions Versus Time for a Creep Test: Specimen P4X18-U6-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-46. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X18-1/6-1-2; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-47. Test Conditions Versus Time for a Creep Test: Specimen P4X1841-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-48. M a l  Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X1841-1-2; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-49. Test Conditions Versus Time for a Creep Test: Specimen P4X18-2/3-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-SO. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X18-2/3-1-2; Stage 1 of 1 (Argillaceous Salt. Anomalous Test Result. Possible 
Moisture Effects). 
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Figure C-61. Test Conditions Versus Time for a Creep Test: Specimen P4X1845-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-62. Mal Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X1845-1-2; Stage 1 of 1 (Argillaceous Salt). 
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Figure C-63. Test Conditions Versus Time for a Creep Test: Specimen P4X18-2/4-1-2; Stage 
1 of 1 (Argillaceous Salt). 
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Figure C-64. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
P4X18-2/4-1-2; Stage 1 of 1 (Argillaceous Salt. Anomalous Test Result. Possible 
Moisture Effects). 
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Figure C-65. Test Conditions Versus Time for a Creep Test: Specimen DXl6-2/7-1-2; Stage 
1 of 1. 
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Figure C-66. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX16-2/7-1-2; Stage 1 of 1. 
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Figure (3-67. Test Conditions Versus Time for a Creep Test: Specimen DXl9-6/7-1-2; Stage 
I 1 of 1. 
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Figure C-68. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX19-5/7-1-2; Stage 1 of 1. 
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Figure C-69. Test Conditions Versus Time for a Creep Test: Specimen DX19-6/6-1-2; Stage 
1 of 1. 
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Figure C-60. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX19-5/5-1-2; Stage 1 of 1. 
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Figure C-61. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/1-1-2; Stage 
1 of 1. 
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Figure C-62. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX16-W1-1-2; Stage 1 of 1. 
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Figure C-63. Test Conditions Versus Time for a Creep Test: Specimen DX16-2/4-1-2; Stage 
1 of 1. 
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Figure (2-64. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX16-W4-1-2; Stage 1 of 1 (Anomalous Test Result. Possible Machine 
Malfunction). 
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Figure (2-66. Test Conditions Versus Time for a Creep Test: Specimen DXl6-W8-1-2; Stage 
1 of 1. 
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Figure C-66. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX16-2/8-1-2; Stage 1 of 1. 
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Figure C-67. Test Conditions Versus Time for a Creep Test: Specimen DXl9-6/6-1-2; Stage 
1 of 1. 
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Figure C-69. Test Conditions Versus Time for a Creep Test: Specimen DXl6-2/6-1-2; Stage 
1 of 1. 
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Figure C-70. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX16-!2/6-1-2; Stage 1 of 1 (Possible Jacket Leak Near End of Test). 
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Figure C-71. Test Conditions Versus Time for a Creep Test: Specimen DXl9-6/1-1-2; Stage 
1 of 1. 

e-79 



RSI-386-96-080 

Constant Stress (Creep) Test 
(Strain vs. Time) 

Figure C-72. h a 1  Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX19-5/1-1-2; Stage 1 of 1. 
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Figure (3-73. Test ConditionsT7ersus Time for a Creep Test: Specimen DX19-612-1-2; Stage 
1 of 1. 
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Figure C-74. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX19-5/2-1-2; Stage 1 of 1. 
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Figure C-76. Test Conditions Versus Time for a Creep Test: Specimen DX19-513-1-2; Stage 
1 of 1. 
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Figure C-76. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX19-5/3-1-2; Stage 1 of 1. 
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Figure C-77. Test Conditions Versus Time for a Creep Test: Specimen DX16-W3-1-2; Stage 
1 of 1. 
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Figure C-78. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX16-2/3-1-2; Stage 1 of 1. 
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Figure (3-79. Test Conditions Versus Time for a Creep Test: Specimen DXl9441-2; Stage 
1 of 1. 
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Figure C-80. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX19-4/4-1-2; Stage 1 of 1 (Anomalous Test Result. Unknown Cause). 
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Figure c-81. Test Conditions Versus Time for a Creep Test: Specimen DXl9-5/41-2; Stage 
1 of 1. 
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Figure C-82. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX19-6/4-1-2; Stage 1 of 1. 
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Figure C-83. Test Conditions Versus Time for a Creep Test: Specimen DXl6-2/2-1-2; Stage 
1 of 1. 
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Figure C-84. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX16-2/2-1-2; Stage 1 of 1 (Anomalous Test Result. Unknown Cause). 

C-92 



RSl-386-96-093 

25 

20 

a a z 15 
ur" 
s! 
Q 
u) 

10 

5 

Constant Stress (Creep) Test 
(Test Conditions vs. Time) 

DX16-215-1-2 
SAND857261 
do = 2 MPa 
o3 = 15 MPa 
T = 2OO0C 

- -  - 

21 5 [Temperature] 

21 0 

I 205 

Figure C-86. 

+ tD 
3 *- 200 ; 

Y 

0 

- 195 

- 190 

I 1 8 5  
O.OE+O 5.OE+6 1 .OE+7 1.5E+7 2.0E+7 

Time, seconds 

Test Conditions Versus Time for a Creep Test: Specimen DX16-2/5-1-2; Stage 
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Figure 42-86, Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX16-261-2; Stage 1 of 1 (Anomalous Test Result. Unknown Cause). 
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Figure C-88. Axial Strain and Lateral Strain Versus Time for a Creep Test: Specimen 
DX19-4/3-1-2; Stage 1 of 1. 
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Figure D-1. Test Conditions Versus Time for a Multiaxial Creep Test: Specimen AI/82/C'1. 
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Figure D-2. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen AI/82/C'1. 
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Figure D-3. Test Conditions Versus Time for a Multiaxial Creep Test: SpecimenAI/t36/C'3/1. 

D-7 



- I ... ,~ I . . . _.' - _, . , . -  

RSI-386-96-100 

Multiaxial Creep Test 

Time, seconds 

FigureD-4. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen 
A1/86/C'3/1. 
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Figure D-6. Test Conditions Versus Time for a Multiaxial Creep Test: SpecimenAI/86/A'l/l. 
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FigureD-6. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen 
AI/86/A11/1. 
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Figure D-10. Principal Strains Versus Time for a Multiaxial Creep Test: Specimen 
AI/86/A'12/1. 
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Figure. D-11. Test Conditions Versus Time for a Multiaxial Creep Test: Specimen AI/82/C17. 
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Normalized Parallel Velocity as a Function of Axial Strain During the Quasi- 
Static Loading to Induce Damage in Specimen MCE36-1/2-1/2-1/2. 
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Figure E-23. Test Conditions as a Function of Time During the Hydrostatic Loading to 
Recover Damage in Specimen MCE36-1/2-1/2-1/2. 
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Figure E-26. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen MCE36-1/2-1/2-1/2. 
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FigureE-27. Normalized Perpendicular Velocity as a Function of Time During the 
Hydrostatic Loading to Recover Damage in Specimen MCE36-1/2-1/2-1/2. 
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Figure E-28. Normalized Parallel Velocity as a Fundion of Time During the Hydrostatic 
Loading to Recover Damage in Specimen MCE36-1/2-1/2-1/2. 
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Figure E-30. Axial and Lateral Strain as a Function of Time During the Quasi-Static 
Loading to Induce Damage in Specimen MCE36-l/l-l/2-7/2. 
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Figure E-34. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi- 
Static Loading to Induce Damage in Specimen MCE36-l/l-l/2-7/2. 
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Figure E-36. Test Conditions as a Function of Time During the Quasi-Static Loading to 
Induce Damage in Specimen ClX01-04/1-4/2-2. 
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Figure E-37. Normalized Perpendicular Amplitude as a Function of Axial Strain Duringthe 
Quasi-Static Loading to Induce Damage in Specimen ClX01-04/1-4/2-2. 
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Figure E-38. Normalized Parallel Amplitude as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-04/1-4/2-2. 
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Figure E-39. Normalized Perpendicular Velocity as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-04/142-2. 
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Figure E-40. 
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Normalized Parallel Velocity as a Function of Axial Strain During the Quasi- 
Static Loading to Induce Damage in Specimen ClX01-04/1-4/2-2. 

E-50 



RSI-386-96-353 

25 

20 

15 
a" 
E 
cn" 
2 
zn' 
v) 

10 

5 

0 

Damage Recovery Phase 
(Test Conditions vs. Time) 

I 

TEST # 1 
C1 X01-04/1-4/2-2 
SAND9017076 
Damage Level = 1 % 
Pressure = 10 MPa 
Temperature = 2loC 

I I 

25 

20 

15 $ 
3 a 

B 

10 0" 
Y f 

5 

0 
O.OE+OO 1 .OE+05 2.OE+05 3.OE+05 4.0E+05 5.OE+05 

Time, seconds 

Figure E-41. Test Conditions as a Function of Time During the Hydrostatic Loading to 
Recover Damage in Specimen ClX01-04/1-4/2-2. 
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Figure E-49, Normalized Perpendicular Amplitude as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-03/1-4/42. 
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E-60 



RSl-386-96-363 

l.OOE+OO 

9.90E-01 

9.80E-01 

9.70E-01 

>r 
'c 9.6OE-01 
0 

.cI 

I 

3 
.- 8 9.5OE-01 
I m E 9.4OE-01 
Z 

9.30E-01 

9.20E-01 

9.1 OE-01 

9.OOE-01 

Figure E-61. 

Normalized Perpendicular Velocity vs. Axial Strain 
(Damage Induction Phase) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Axial Strain, percent 

Normalized Perpendicular 'Velocity as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-03/1-4/42. 

E-61 



RSI-386-96-364 

Normalized Parallel Velocity vs. Axial Strain 
(Damage Induction Phase) 

1.020E+00 

1.01 5E+OO 

1 .OlOE+OO 

>r 
0 
c, - 

1.005E+00 
3 
- 8 
m 

E I.OOOE+OO 
0 z 

I 

L 

9.95OE-01 

9.900E-0 1 

9.85OE-0 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Axial Strain, percent 

Figure E-52. Normalized Parallel Velocity as a Function of &al Strain During the Quasi- 
Static Loading to Induce Damage in Specimen ClX01-03/1-4/4-2. 
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Figure E-63. Test Conditions as a Function of Time During the Hydrostatic Loading to 
Recover Damage in Specimen ClX01-03/1-4/4-2. 
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FigureE-67. Normalized Perpendicular Velocity as a Function of Time During the 
Hydrostatic Loading to Recover Damage in Specimen ClX01-03/1-4/4-2. 
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Figure E-68. Normalized Parallel Velocity as a Function of Time During the Hydrostatic 
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Induce Damage in Specimen ClX01-04/1-2/4-2. 
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Figure E-60. Axial and Lateral Strain as a Function of Time During the Quasi-Static 
Loading to Induce Damage in Specimen ClX01-04/1-2/4-2. 

E-70 



RSI-386-96-373 

Normalized Perpendicular Amplitude 
vs. Axial Strain 

(Damage Induction Phase) 
1 .OE+OO 

9.OE-01 

8.OE-01 

7.OE-01 
a m .- 5 6.OE-01 

2 5.OE-01 

E 4.OE-01 

z 

I 

E" 
.I w 
I 

8 
3.OE-01 

2.OE-01 

1 .OE-01 

O.OE+OO 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Axial Strain, percent 
0.8 0.9 1 

Figure E-61. Normalized Perpendicular Amplitude as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-04/1-2/42. 
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Figure E-62. Normalized Parallel Amplitude as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-04/1-2/4-2. 
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Figure E-63. Normalized Perpendicular Velocity as a Function of Axial Strain During the 
' Quasi-Static Loading to Induce Damage in Specimen ClX01-04/1-2/4-2. 
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Figure E-64. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi- 
Static Loading to Induce Damage in Specimen ClX01-04/1-2/4-2. 
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Figure E-71. Test Conditions as a Function of Time During the Quasi-Static Loading to 
Induce Damage in Specimen ClX01-04/1-2/3-2. 
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Figure E-77. Test Conditions as a Function of Time During the Hydrostatic Loading to 
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FigureE-78. Axial and Lateral Strain as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-04/1-2/3-2. 

E-88 



RSl-386-96-391 

Normalized Perpendicular Amplitude vs. Time 
(Damage Healing Phase) 

1 

0.8 

0.2 

0 

TEST # 4 
C1 X01-04/1-2/3-2 
SAN D90-7076 
Damage Level = 0.5 % 
Pressure = 15 MPa 
Temperature = 2loC 

O.OE+OO 2.OE+04 4.OE+04 6.OE+04 8.OE+04 1 .OE+05 1.2E+05 1.4E+05 1.6E+05 

Time, seconds 
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Figure E-80. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-04/1-2/3-2. 
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Figure E-84. Axial and Lateral Strain as a Function of Time During the Quasi-Static 
Loading to Induce Damage in Specimen ClX01-02/1-4/4-2. 
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Figure E-87. Normalized Perpendicular Velocity as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-02/1-4/42. 
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Recover Damage in Specimen ClX01-02/1442. 
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Figure E-90. Axial and Lateral Strain as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-02/1-4/4-2. 
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FigureE-91. Normalized Perpendicular Amplitude as a F'unction of Time During the 
Hydrostatic Loading to Recover Damage in Specimen CIX01-02/1-4/4-2. 
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Figure E-92. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-02/1-4/4-2. 
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Figure E-93. Normalized Perpendicular Velocity as a Function of Time During the 
Hydrostatic Loading to Recover Damage in Specimen ClX01-02/1-4/4-2. 
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Figure E-94. Normalized Parallel Velocity as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-02/1-4/4-2. 
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Figure E-96. Test Conditions as a Function of Time During the Quasi-Static Loading to 
Induce Damage in Specimen ClX01-02/1-4/2-2. 
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Figure E-96. Axial and Lateral Strain as a Function of Time During the Quasi-Static 
Loading to Induce Damage in Specimen ClX01-02/1-4/2-2. 
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Figure E-98. Normalized Parallel Amplitude as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClXOl-02/1-4/2-2. 
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Figure E-100. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi- 
Static Loading to Induce Damage in Specimen ClX01-02/1-4/2-2. 
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Figure E-101. Test Conditions as a Function of Time During the Hydrostatic Loading to 
Recover Damage in Specimen ClX01-02/1-4/2-2. 
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Figure E-102. Axial and Lateral Strain as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-02/1-4/2-2. 

E-I12 



RSI-386-96-415 

1 

0 .a 

a a 
N 
(II 
.- I 
E 0.4 
8 
Z 

0.2 

0 

Normalized Perpendicular Amplitude vs. Time 
(Damage Healing Phase) 

C1 XO1-02/1-4/2-2 
SAN D90-7076 
Damage Level = 1.5 % 
Pressure = 15 MPa 
Temperature = 2loC 

O.OE+OO 1 .OE+05 2.OE+05 3.0E+05 4.OE+05 

Time, seconds 
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Figure E-104. -Normalized Parallel Amplitude as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClXOl-O2/1-4/2-2. 

E-114 



RSI-386-96-417 

Normalized Perpendicular Velocity vs. Time 

1 .OOE+OO 

9.90E-01 

9.80E-01 

)r 9.70E-01 
0 
0 
.I 

I 

3 
.- w 9.6OE-01 
I 

i! L 
O 9.50E-01 Z 

9.40E-01 

9.30E-01 

9.20E-01 
O.OE+OO 5.OE+04 1 .OE+05 1.5E+05 2.OE+05 

Time, seconds 
2.5E+05 3.0Et.05 

FigureE-106. Normalized Perpendicular Velocity as a Function of Time During the 
Hydrostatic Loading to Recover Damage in Specimen ClX01-02/1-4/2-2. 
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Figure E-106. Normalized Parallel Velocity as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-02/1-4/2-2. 
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Figure E-107. Test Conditions as a Function of Time During the Quasi-Static Loading to 
Induce Damage in Specimen ClX01-04/1-4/4-2. 
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Figure E-108. Axial and Lateral Strain as a Function of Time During the Quasi-Static 
Loading to Induce Damage in Specimen ClX01-04/1-4/4-2. 
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Figure E-109. Normalized Perpendicular Amplitude as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-04/1-4/42. 
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Figure E-110. Normalized Parallel Amplitude as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClXO1-04/1-4/4-2. 
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Figure E-111. Normalized Perpendicular Velocity as a Function of Axial Strain During the 
Quasi-Static Loading to Induce Damage in Specimen ClX01-04/1-4/42. 
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Figure E-112. Normalized Parallel Velocity as a Function of Axial Strain During the Quasi- 
Static Loading to Induce Damage in Specimen ClX01-04/1-4/4-2. 
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Figure E-113. Test Conditions as a Function of Time During the Hydrostatic Loading to  
Recover Damage in Specimen ClXO1-04/1-4/4-2. 
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FigureE-114. Axial and Lateral Strain as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-04/1-4/4-2. 
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Figure E-116. Normalized Parallel Amplitude as a Function of Time During the Hydrostatic 
Loading to Recover Damage in Specimen ClX01-04/1-4/4-2. 
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Hydrostatic Loading to Recover Damage in Specimen ClX01-04/1-4/4-2. 

E-127 

\ 



RSI-386-96-430 

1.00E+00 * 

9.98E-01 - 

9.96E-01 - 

9.94E-01 - * 
0 
0 
Q) 9.92E-01 -. > 
'D 
Q) 
N 
3 9.90E-01 -. 
E 
8 

CI .- 
I 

.- 

z 
9.88E-01 -. 

9.86E-01 -. 

9.84E-01 -. 

I 
I 

TEST # 7 
C1 X01-04/1-4/4-2 
SAN D90-7076 
Damage Level = 0.5 % 
Pressure = 15 MPa 
Temperature 2loC 

~~ 

9.82E-01 1 1 I 

O.OE+OO 5.OE+04 1 .OE+05 1.5E+05 2.OE+05 2.5E+05 3.OE+05 
Time, seconds 

I I I I I I I I 

Figure E-118. Normalized Parallel Velocity as a Function of Time During the Hydrostatic 
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