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ABSTRACT 

Making use of a relatively simple, approximate but reliable method of analysis, a study is 
made of the responses to horizontal base shaking of vertical, circular cylindrical tanks that 
are filled with a uniform viscoelastic material. The method of analysis is described, and 
comprehensive numerical data are presented that elucidate the underlying response 
mechanisms and the effects and relative importance of the various parameters involved. In 
addition to the characteristics of the ground motion and a dimensionless measure of the 
tank wall flexibility relative to the contained medium, the parameters examined include 
the ratio of tank-height to tank-radius and the physical properties of the contained 
material. Both harmonic and earthquake-induced ground motions are considered. The 
response quantities investigated are the dynamic wall pressures, the critical forces in the 
tank wall, and the forces exerted on the foundation. Part A of the report deals with rigid 
tanks while the effects of tank wall flexibility are examined in Part B. A brief account is 
also given in the latter part of the interrelationship of the critical responses of solid- 
containing tanks and those induced in tanks storing a liquid of the same mass density. 
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EXECUTIVE SUMMARY 

The study reported here is motivated by the need for improved understanding of the response to 
earthquakes of cylindrical tanks in nuclear facilities storing high-level radioactive wastes. The study 
complements those reported previously in Brookhaven National Laboratory reports 52378, 52417, 
52420 and 52454. 

In previous studies of this problem, the waste was modeled as a homogeneous or layered inviscid 
liquid. Although the mechanical properties of these wastes cannot accurately be defined at this time, 
their representation as ideal liquids may not generally be appropriate, and it is desirable to consider 
other idehizations. 

In the present study, the waste is modeled as a uniform viscoelastic solid that is free at its upper 
surface and is bonded to a non-deformable base undergoing a uniform horizontal motion. The tank is 
presumed to be vertical and of circular cross section, and the interface of the tank wall and the 
contained material may be either smooth or rough. The objectives of the paper are: (1) To present a 
simple, approximate, yet reliable method of analysis for this system; and (2) through the study of 
comprehensive numerical solutions, to elucidate the underlying response mechanisms and the effects 
and relative importance of the various parameters involved. Part A of the report deals with rigid tanks, 
while Part B addresses the effects of wall flexibility on the assumption that the tank responds as a 
cantilever shear beam with no change in its cross section. 

In addition to the characteristics of the ground motion, the parameters governing the response of the 
system are the ratio of tank-height to tank-radius, the physical properties of the contained material, 
and a dimensionless measure of the flexibility of the wall relative to that of the contained material. 
The response quantities examined are the dynamic wall pressures, the base shear and base moment in 
the wall, and the shear and moment exerted on the tank foundation. Both harmonic and earthquake- 
induced ground motions are considered. Special attention is paid to the effects of low-frequency, 
essentially static excitations. A maximum dynamic effect is then expressed as the product of the 
corresponding 'static' effect and an appropriate amplification or deamplification factor. 

Following are the principal conclusions of the study: 

1. For rigid, slender tanks with height-to-radius ratios H/R greater than about 3, the inertia forces for 
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2. 

all of the contained material are transmitted to the wall by horizontal extensional action, and 
practically the entire contained mass may be considered to be effective. With decreasing W R ,  a 
progressively larger portion of the inertia forces gets transferred by horizontal shearing action to 
the base, and the portion of the retained mass that contributes to the wall forces is reduced signif- 
icantly. 

For a system of a specified H/R, the dynamic amplification factor depends importantly on the 
fundamental natural period of the contained material. This dependence is similar to, but by no 
means identical to, that obtained for a similarly excited, viscously damped single-degree-of-free- 
dom oscillator. Specifically, for low-natural-period, stiff materials, the amplification factor, is 
unity. With increasing flexibility or period of. the contained material, the amplification factor 
increases and after attaining a nearly horizontal plateau, which for broad-banded earthquake 
ground motions may be of the order of 1.25 to 2.5, it decreases, reaching values less than unity. 
The larger amplification factors are attained for the slender tanks and for materials with low 
damping. 

3. By decreasing the horizontal extensional stiffness of the retained material relative to its shearing 
stiffness, the flexibility of the wall reduces the proportion of the inertia forces transmitted to it by 
extensional action and increases the proportion transmitted to the base by horizontal shearing 
action. The flexibility of the wall also decreases the effective damping of the retained medium, 
and this reduction tends to increase the amplification factor of the dynamic response. With the 
exception of rather tall, slender systems with low to moderate wall flexibilities, for which both 
the shearing capacity and effective damping of the retained material are quite low, the net effect 
of wall flexibility is a reduction in peak response. This result is in sharp contrast with that 
obtained for liquid-containing tanks, for which the effect of wall flexibility is to increase rather 
that decrease the response. 

4. For rigid tanks, the critical responses of solid-containing systems are generally substantially 
larger than those of liquid-containing systems of the same mass density, but for flexible tanks, 
particularly broad tanks of high wall flexibility, the opposite is likely to be true. 

The comprehensive numerical data presented and the analysis of these data provide not only valuable 
insights into the effects and relative importance of the numerous parameters involved, but also a 
conceptual framework for the analysis and interpretation of the solutions for more involved systems as 
well. 
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PART A. RIGID TANKS 



SECTION 1 

INTRODUCTION 

The study reported here is motivated by the need for improved understanding of the response to 
earthquakes of cylindrical tanks in nuclear facilities storing high-level radioactive wastes. The 
responses of these systems are normally evaluated on the assumption that the waste may be modeled 
as an incompressible, inviscid liquid. Although the mechanical properties of these wastes cannot 
accurately be defined at this time, their representation as ideal liquids may not generally be 
appropriate, and it is desirable to consider other idealizations. 

In this paper, the waste is modeled as a uniform viscoelastic solid that is free at its upper surface and is 
bonded to a non-deformable base undergoing a uniform horizontal motion. The tank is presumed to be 
vertical, of circular cross section and rigid, and the interface of the tank wall and the contained 
material may be either smooth or rough. The objectives of the paper are: (a) To present a simple, 
approximate, yet reliable method of analysis for this system; and (b) through the study of 
comprehensive numerical solutions, to elucidate the underlying response mechanisms and the effects 
and relative importance of the various parameters involved. The effects of wall flexibility, which may 
be quite important for realistic tanks, are examined in Part B of the report. 

In addition to the characteristics of the ground motion, the parameters governing the response of the 
system are the ratio of tank-height to tank-radius and the physical properties of the contained material. 
The response quantities examined are the dynamic wall pressures, the base shear and base moment in 
the wall, and the shear and moment exerted on the tank foundation. Both harmonic and earthquake- 
induced ground motions are considered. Special attention is paid to the effects of low-frequency, 
essentially static excitations. A maximum dynamic effect is then expressed as the product of the 
corresponding static effect and an appropriate amplification or deamplification factor. 

The information presented is also applicable to the evaluation of the dynamic response of grain- 
storage tanks. As far as it can be determined, the most comprehensive study of the latter problem is 
the one reported by Rotter and Hull (1989). Mthough of great value, however, this study was limited 
to the static effects of the rigid-body inertia forces and did not provide for the true dynamic aspects of 
the problem. 
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SECTION 2 

SYSTEM CONSIDERED 

The system examined is shown in Fig. 2.1. It is a vertical, rigid, circular cylindrical tank of radius R 
that is filled to a height H with a homogeneous, linear viscoelastic solid. The tank is presumed to be 
fixed to a rigid base undergoing a space-invariant, uniform horizontal motion. The acceleration of the 
ground motion at any time t is denoted by x,(t) and its maximum value by X, . The contained 
medium is considered to be free at its upper surface and bonded to its base. The interface conditions 
along the cylindrical boundary are identified later. Points on the tank or in the contained medium are 
defined by the cylindrical coordinate system, r, 0, z, the origin of which is taken at the center of the 
tank base, as shown in Fig. 2.1. 

The properties of the medium are defined by its mass density p , shear modulus of elasticity G 
Poisson's ratio v , and the damping factor 6 which is considered to be frequency-independent and 
the same for both shearing and axial deformations. The latter factor is the same as the tan6 factor 
used by the senior author and his associates in studies of foundation dynamics and soil-structure 
interaction (e.g., Veletsos and Verbic, 1973; Veletsos and Dotson, 1988), and twice as large as the 
percentage of critical damping used by other authors in related studies (e.g., Roesset et al. 1973; Pais 
and Kausel, 1988). 
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Fig. 2.1 System Considered 
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SECTION 3 ,  

METHOD OF ANALYSIS 

3.1 Governing Equations and Assumptions 

The method of analysis employed is similar to that used by Veletsos and Younan (1994a) for the 
evaluation of the dynamic soil pressures induced by horizontal base shaking on a cylinder embedded 
in a viscoelastic stratum. It assumes that, for the horizontal excitation considered, no vertical normal 
stresses develop anywhere in the medium, i.e. (T, = 0. It further assumes that the horizontal 
variations of the vertical displacements are negligibly small, so that the radial and circumferential 
components of the shearing stresses on the top and bottom faces of an infinitesimal element, T,, and 
T,e, may be expressed as 

G* aU z,, = -- 
H J?l 

where u and v are the radial and circumferential components of the displacement relative to the 
moving base of an arbitrary point of the contained material defined by the dimensionless position 
coordinates 5 = r/R and q = z/H , and G* = the complex-valued shear modulus for the material. 
This modulus is related to the corresponding real-valued modulus G by 

G* = G ( l  +i6) (3) 
where i = A. The radial and circumferential normal stress components or and (TO , and the 
shearing stress component T,, are related to u and v by 

where 
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v o  = J1 1 -v (7) 

The sign convention for stresses and displacements is that used in theory of elasticity. Specifically, 
displacements are positive when directed along the positive direction of the corresponding coordinate 
axis; normal stresses are positive when they induce tension; and the positive directions of the shearing 
stresses are as indicated in the inset diagrams of Fig. 2.1. The equations of motion for the medium in 
the radial and circumferential directions may then be expressed as 

= -[- P R ~  a t  - X s i n j  
G" a t 2  

(9) 

These equations differ from those reported in Veletsos and Younan (1994a) in that the factor yf,, 
replaces the factor yr, , the difference stemming from the use of the simplified relations defined by (1) 
,and (2). 

Equations (8) and (9) are solved subject to the boundary conditions ' 

of which the first set expresses the condition of complete bonding or rough interface between the 
medium and the base, and the second set expresses the vanishing of @e horizontal shearing stresses at 
the upper surface. At the interface of the medium and the curved boundary, there is presumed to exist 
complete continuity in radial displacements, i.e. 

which, by virtue of the approximation involved in (l), also implies the absence of any vertical 
shearing stresses z,, . Two different interface conditions are considered for the circumferential motion 
in the horizontal plane: a rough interface, for which 
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and a smooth interface, for which 

It should be noted that the equilibrium of vertical forces is not satisfied in this approach. For long 
rectangular tanks (Veletsos et aL, 1995), and for straight walls retaining a semi-infinite layer (Veietsos 
and Younan, 1994b), it has been shown that this violation, as well as the other approximations referred 
to, do not affect materially the magnitudes of the wall pressures and forces which are the quantities of 
primary interest in this study. The same is expected to be true of the cylindrical system considered 
here. 

3.2 Harmonic Response 

For a harmonic base motion of acceleration 

in which o = its circular frequency, the resulting steady-state harmonic displacements u and v can be 
expressed as 

v(5, e, q, t) = ~ ( 5 ,  qls ine eiot (17) 
where U and V are functions of the 5 and q coordinates. On expanding the unit functions associated 
with the ground acceleration terms on the right-hand members of (8) and (9) in the form 

the displacement amplitudes U and V may be expressed similarly as 

where U, and V, are functions of the radial position coordinate 5. It should be noted that the 
functions of q in (18), (19) and (20) represent the natural modes of vibration of the contained 
material when it is considered to act as an unconstrained, vertical, cantilever shear-beam, and that 
these functions satisfy the boundary conditions defined by (10) and (1 1). 

On substituting (15) through (20) into (8) and (9), one obtains for each value of n a system of coupled 
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ordinary differential equations in U, and V, . These equations may be decoupled by expressing U, 
and V, in terms of the potential functions P, and S ,  used by Tajimi (1973) as 

The solution of the resulting ordinary differential equations in P, and S ,  may then be expressed as 

in which I, and K, are modified Bessel functions of the first order and first and second kind, 
respectively; A,' through Di are integration constants that remain to be determined; a, and P, are 
dimensionless factors given by 

P n  a, = - 
YO 

with 

(2n - 1)n: V, 

2 H  
- 0, = 

and v, = = the shear wave velocity for the medium; and 

It should be noted that 0, represents the nth circular natural frequency of the contained material 
when it is considered to act as an unconstrained, cantilever shear-beam, and that U, represents the 
maximum displacement amplitude of the shear-beam to the specified base motion. The superscriptfin 
the latter symbol is used to emphasize the fact that the shear-beam displacement defines the far-field 
action of the stratum. Additional detgls of the method of analysis may be found in Veletsos and 
Younan (1 994a). 

f 

On deleting from (23) and (24) the terms with the function K, which increase without bound as 
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4 + 0 , and substituting the expressions for Pn and Sn into (21) and (22), one obtains 

where Io = the modified Bessel function of the first kind and zero order; and the constants An and Bn 
are related to A,' and B,' by 

A,' B,' f - -un 
An Bn 

- - - - -  

The integration constants An and Bn may now be determined by satisfying the boundary conditions 
defined by (12) and either (13) or (14). For the rough interface defined by (12) and (13), 

and 

whereas for the smooth interface defined by (12) and (14), 

and 

Dvnamic Wall Pressures and Shearing. Stresses 

The dynamic components of the radial or normal pressures, or , and of the circumferential shearing 
stresses, T~~ , induced on the medium-wall interface may be expressed in forms analogous to (16) and 
(17) as 
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where o(q) and z(q) are complex-valued amplitudes that are functions of the q coordinate. On 
substituting (35) and'(36) into (4) and (6), making use of (15) through (20) and (30) and (31), it is 
found that 

o(q) = -%pX,H 2 c 
n 

and 

where gn and hn are dimensionless factors which, for a rough interface, are given by 

g n  = ' An a n ~ I ( a n ) p ~ l  (Pn>- P n  IO(P~)] 

and 

and for a smooth interface, they are given by 

and 

h, = 0 

(37) 

Base Shear and Base Moment 

With the stress amplitudes along the wall-solid interface established, the amplitudes of the base shear 
Qb and of the overturning base moment M, induced by these stresses are determined by integration 
to be 

1 2; 

'0 0 
Qb = s [z(q)sin20-o(q)cos20]Rd0Hdq 

and 
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1 2n 

0 0  
M, = j 1 [z(q)sin28-o(q)cos28]Rde H2qdq 

where m = 'II: pR2H = the total mass of the contained solid. 

3.3 'Ikansient Response 

The response of the system to an arbitrary transient excitation is evaluated from the harmonic 
response by the Discrete Fourier Transform @FT) approach in combination with the Fast Fourier 
Transform (FFT) algorithm. In the application of this procedure, the duration of the forcing function 
should be increased by the addition of a sufficiently long band of zeros to eliminate the aliasing errors 
that may be introduced. For the solutions presented here, the duration of the band was taken equal to 
either the duration of the forcing function or 10 times the fundamental natural period of the system 
considered, whichever was larger. 
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SECTION 4 

WALL PRESSURES AND FORCES 

It is desirable to begin by examining the responses obtained for excitations the dominant frequencies 
of which are small compared to the fundamental natural frequency of the stratum (i.e. for values of 

+ 0). Such excitations and the resulting effects will be referred to as static, a term which should 
not be confused with that normally used to represent the effects of gravity forces. The static effects are 
identified with the subscript st. The maximum value of a dynamic effect is then expressed as the 
product of the corresponding static effect and an appropriate amplification or deamplification factor. 

4.1 Static Effects 

As indicated by (35) and (36), the circumferential variation of the normal wall pressures induced by 
either static or dynamic excitations is proportional to cos0 , whereas that of the circumferential 
shearing stresses is proportional to sin 0 . Accordingly, the maximum numerical values of the normal 
pressures occur at 8 = 0 and 180" , and those of the shearing stresses occur at 0 = 90" and 270". 

The heightwise variations of the static normal pressures and of the circumferential shearing stresses 
exerted on the wall are shown in Fig. 4.1 normalized with respect to the maximum or top values. 
Systems with both smooth and rough interfaces and several different values of the slenderness ratio 
WR are considered, with Poisson's ratio for the contained material taken as v = 1/3. The same 
value of v is used for all other solutions presented here. 

It is observed that for the relatively broad, stubby systems with low values of WR, the stress 
distributions increase from the base to the top approximately as a quarter-sine curve whereas for the 
taller, more slender systems, the distribution is practically uniform. 

The normalizing or top values of the stress amplitudes for systems with different slenderness ratios 
WR are listed in Table 4.1, and they are also plotted in Fig. 4.2. These values are normalized with 
respect to pX,R , the maximum normal wall pressure computed on the assumption that the medium- 
wall interface is smooth and that the full inertia of.the contained material per unit of tank height is 
transferred horizontally to the wall. Therefore, in comparing the stress values in tanks of different 
proportions, the tank radii rather than the medium heights must be considered to be the same. 
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Increasing the slenderness ratio WR increases the horizontal extensional stiff'ness of the contained 
medium relative to its shearing stifmess, and this increases the capacity of the medium to transfer the 
inertia forces horizontally to the wall. For the 'smooth interface, the normalized value of the normal 
pressure increases from zero for H/R + 0 to unity for H/R + 0 9 ,  whereas for the rough interface, it 
increases to a value of about 0.75, the difference between unity and 0.75 representing the normalized 
value of the shearing stress amplitude. Being the stiffer of the two, the rough interface attracts a higher 
proportion of the inertia forces than the smooth interface. However, because the rough interface resists 
these forces by a combination of normal pressures and circumferential shearing stresses while the 
smooth interface resists them entirely by normal pressures, the normal stresses for the rough interface 
are actually lower than for the smooth. 

That the total wall force or base shear for the rough interface is indeed greater than for the smooth can 
clearly be seen in Fig. 4.3, which compares the results obtained over a wide range of the slenderness 
ratio H/R. The forces in this case are normalized with respect to mXg, the total inertia of the 
contained medium when it is presumed to act as a rigid body. As would be expected, the effective or 
participating fraction of the contained mass increases with increasing H/R , reaching the full mass for 
the very tall, slender tanks. The normalized values of the base shear (Qb),, and of the components 
(Q,"),, and (Q,'),, contributed by the normal pressures and circumferential shearing stresses, 
respectively, are also listed in Table 4.1. 

The static value of the overturning base moment induced by the wall pressures, (Mb)st, may 
conveniently be expressed as the product of the base shear and an appropriate height h. The latter 
quantity, normalized with respect to the tank height H, is shown in Fig. 4.3 and is also listed in Table 
4.1. For broad systems with low values of €34, for which the vertical distributions of the interfacial 
wall stresses are approximately a quarter-sine, h/H = 0.599, a value close to the 2/n value obtained 
for the sinusoidal variation. As WR increases, h/H decreases, reaching the limiting value of 0.5 
corresponding to a uniform distribution. 

Effects for Very Broad Svstems 

For very broad systems with values of H/R + 0,  it is more instructive to express the interfacial 
stresses in terms of pX,H rather than in terms of pX,R . The maximum normal wall pressure at the 
top then reduces to 

~ , , ( l )  = 0.741v,pXgH = 1.406pXgH 

and the corresponding circumferential shearing stress reduces to 

(43) 

I 

~,.(l) = 0.741pXgH (4-4) 

Similarly, the base shear may more conveniently be expressed in terms of (xRH2) pX, rather than 
mX, = (xR2H) pX, . The values for a rough and a smooth interface are then 
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(QJS, = 1.571npX,RH2 (45) 
.- 

and 

(Qb),, = 1.029npX,RH2 

respectively. The pressure defined by (43) is identical to that reported in Veletsos and Younan (1994b) 
for the limiting case of a straight, rigid wall retaining a semi-infinite, uniform soil stratum. 

4.2 Harmonic Effects 

The steady-state amplitude of the total wall force or base shear in the wall of harmonically excited 
systems, (Qb)max , is plotted in Fig. 4.4 as a function of the frequency ratio o/ol , where o1 = the 
fundamental circular frequency of the contained material when it is considered to respond as a 
cantilever shear-beam. Systems with values of WR in the range between 0.3 and 3 are considered. 
The tank in these solutions is presumed to be massless; the interface between the tank wall and the 
contained material is considered to be rough; and Poisson's ratio and the damping factor for the 
contained material are taken as 1/3 and 0.1, respectively. As before, the results are normalized with 
respect to mXg . 

As would be expected, the curves are undulatory in nature, the peaks corresponding to the natural 
frequencies of the system. For broad systems with values of I-E/R of the order of 0.3 or less, the 
highest resonant peak is attained at a frequency o c- o1 , and the associated amplification factor 
(defined as the ratio of the dynamic to the corresponding static responses) is relatively small. By 
contrast, for the more slender systems with the higher values of WR , both the frequencies and the 
amplification factors of the fundamental resonant peaks are significantly higher, the larger 
amplification factors reflecting a reduced damping capacity for these systems. As the tank radius R is 
decreased, the waves in the medium must travel progressively shorter distances before they get 
reflected by the rigid boundary; accordingly, they are not affected as much by material damping as 
would be the case for the broader systems with the larger radii. As H/R + 0 , the amplification 
factor tends approximately to 1/& , a fact noted previously (Arias et uZ. 1981; Veletsos and Younan 
1994b), and as H/R + 00 , it tends to the value applicable to a long, rigid cylinder containing a 
viscoelastic solid. For the value of 6 = 0.1 considered here, these limiting values are 3.16 and 6.61, 
respectively. 

Within the framework of the approximations involved in the method of analysis considered, the radial 
and circumferential displacements of the medium for the mth radial and the nth vertical natural mode 
of vibration may be expressed as 
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where om, is the associated circular frequency, and U,(c) and Vm(c) are functions of the 
dimensional coordinate 5, the detailed expressions for which are given in the Appendix. The 
frequency a,, may be expressed in the form 

where ym = a dimensionless factor which, in addition to the order of the horizontal mode of vibration, 
depends on Poisson's ratio of the material v and the condition at the medium-wall interface; and o1 , 
as already noted, refers to the fundamental circular frequency of the contained material when it is 
considered to respond as an unconstrained cantilever shear-beam. f i e  first five values of ym for 
systems with v = 1/3 and either a rough or a smooth interface are listed in Table 4.2. As an 
illustration, it is noted that for a system with H/R = 1 and a rough interface, the first four values of 
oml/ol are 2.35, 3.57, 5.49 and 5.99. The first, second and fourth of these values practically 

coincide with the abscissas of the peaks of the relevant frequency response curve in Fig. 4.4. This fact, 
along the absence of any other peaks in the curve considered, indicate that the response of the system 
is dominated by the natural modes corresponding to the fundamental vertical mode and to several 
horizontal modes. .' i 

The validity of the latter statement can more clearly be seen in Fig. 4.5, in which the frequency 
'response cukes for the base shear in the tank wall presented previously in Fig. 4.4 using a sufficiently 
large number of terms are compared with those computed considering the contribution of the first 
term only. For improved clarity, the frequency scales in this case are normalized with respect to the 
fundamental circular frequency of the system under consideration, o1 , rather th& the corresponding 
frequency o1 of the unconstrained medium. The excellent agreement 'between the two solution sets 
suggests that the use of only the first term in the series should yield highly accurate results for broad- 
banded, transient ground motions as well. 

Peak Amulification Factor 

The variation with WR of the largest amplification factor for base shear in the tank wall is shown in 
Fig. 4.6 for systems with material damping factors in the range between 6 = 0.05 and 0.20. 
Poisson's ratio for the material is taken as 1/3, and both rough and smooth interface conditions are 
examined. As previously indicated, the effective damping of systems with a specified 6 decreases 
with increasing H/R , and this reduction leads to a corresponding increase in the amplification factor. 

It is worth noting that the amplification factors for systems with the smooth interface are, with minor 
exceptions, lower than those for the rough- interface. This unexpected result is attributed to the fact 

a 

A 4 4  



that, whereas for the rough interface, the response of the system is dominated by the contribution of 
the fundamental mode of vibration, for the smooth interface, the contribution of the second horizontal 
mode is almost as important as that of the first. The inertia forces for these two modes of vibration of 
a system with H/R = 1 are shown in Fig. 4.7. 

4.3 Seismic Effects 

The solid lines in Fig. 4.8(a) define the maximum values of the base shear in the wall of systems 
subjected to the N-S component of the 1940 El Centro, California earthquake ground motion record. 
The acceleration, velocity and displacement traces of this record are available in Veletsos and Tang 
(1990) and are not reproduced here. The maximum value of the ground acceleration is Xg = 0.312 g, 
where g = the gravitational acceleration, and the corresponding values of the velocity and 
displacement are X, = 35.61 c d s e c  (14.02 in/sec) and X, = 21.05 cm (8.29 in). As before, the 
tank in these solutions is presumed to be massless, the tank-medium interface is presumed to be 
rough, and Poisson’s ratio and the damping factor of the retained material are taken as v = 1/3 and 
6 = 0.1. The results are plotted as a function of the fundamental period of the system, 
TI, = 2no,, , where a,, is defined by (49), and they are normalized with respect to mXg , the 
maximum value of the total inertia of the contained material when the latter is considered to act as a 
rigid body. The same information expressed as amplification factors @e., normalized with respect to 
the low-natural-period or static response of the system under consideration) is displayed in Fig. 
4.8( b) . 

As an indication of the range of T,, values that may be encountered in practice, it is noted that for 
materials having shear-wave velocities in the range of 60 to 480 d s e c  (197 and 1570 ft/sec) and tank 
heights in the range of 6 to 15 m (20 to 49 ft), the fundamental period of the material idealized as an 
unconstrained cantilever shear beam would be in the range of 0.05 to 1 sec. Depending on the 
slenderness of the tank, WR , the fundamental period of the system would then fall in the following 
ranges: 

. For H/R = 0.3, T,, z 0.04 to 0.84 sec. 

. For H/R = 0.5, T,, 0.03 to 0.68 sec. 

. For H/R = 1, T,, E 0.02 to 0.42 sec. 

. For H/R = 3, T,, 0.01 to 0.15 sec. 
. I  

The boundaries of these ranges are identified in Fig. 4.8(a) with dots. 

The plots in Fig. 4.8 are similar to, but by no means the same as, the response spectra for similarly 
excited, viscously damped single-degree-of-freedom systems. Specifically, for low-natural-period, 
stiff materials, the maximum values of the dynamic base shear in the tank wall are equal to the static 
values listed in Table 4.1, and the amplification factors are unity. With increasing flexibility of the 
contained material, i.e., increasing natural period of the system, the dynamic effects increase, and 
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after attaining nearly horizontal plateaus, they decrease to values that may be substantially lower than 
the static effects. As already indicated, increasing WR decreases the damping capacity of the system 
and increases the dynamic amplification factor. 

Considering that the fundamental period of many practical, broad systems with values of H/R I 1 
falls in the highly amplified region of the plots presented in Fig. 4.8, it is of special interest to examine 
the largest values of the amplification factors. The variation with H/R of the absolute maximum 
amplification factor for base shear in the tank wall is shown in Fig. 4.9 for systems with three different 
values of the damping factor 6 .  The solid lines are for systems with a rough medium-wall interface, 
whereas the dashed lines are for a smooth interface. Also shown in Fig. 4.9 are the average values of 
the amplification factors over the range of natural periods from 0.1 to 0.5 sec. As would be expected, 
these factors are significantly smaller than those for the maximum resonant peak of the harmonically 
excited systems considered in Fig. 4.6. Additionally, the results for the earthquake ground motion are 
substantially less sensitive to variations in the slenderness ratio H/R than are those for the harmonic 
excitation. 

Overturning Base Wall Moment 

Following the approach used for statically excited systems, the maximum value of the overturning 
base moment induced by the wall pressures may be expressed as the product of the maximum total 
wall force or base shear (Qb)max and an appropriate height h. Normalized values of h for systems 
with a rough interface subjected to the El Centro ground motion record are plotted in Fig. 4.10 as a 
function of the fundamental period of the contained material T,, . It is observed that the results are 
insensitive to variations in T, and may, therefore, be taken equal to those reported earlier for the low- 
natural-period, statically excited systems. ' 

Relative Effects of Normal and Shearing: Stresses 

The base shear in the tank wall of systems with a rough interface is contributed partly by normal 
pressures and partly by circumferential shearing stresses. For the systems excited by the El Centro 
record, the component of the maximum base shear contributed by the normal pressures, (Qz)max , is 
plotted in Fig. 4.1 1 as a fraction of the corresponding total shear, ( . A range of natural periods 
T,, and three different values of the slenderness ratio H/R are considered. It is observed that the 
ratio varies from about 64% for very broad tanks with values of H/R + 0 to about 90% for relatively 
slender tanks with values of H/R = 3. 
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Table 4.1: Static Values of Top Stresses, Base Whears andEffective Heights for Systems with 
Different Slenderness Ratios and Interface Conditions; v = 1 /3 

H 
R 
- 

0.00 

0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1 .oo 
1.25 
1.50 
1.75 
2.00 
2.50 
3.00 
5.00 

10.00 

Rough Interface 

H H H H H 
..406- 0.7413 1.029- 0.5423 1.571- R R R 
0.365 0.162 
0.463 0.190 
0.540 0.209 
0.598 0.222 
0.640 0.230 
0.671 0.236 
0.693 0,240 
0.709 0.243 
0.731 0.246 
0.740 0.247 
0.744 0.248 
0.746 0.248 
0.745 0.247 
0.744 0.246 
0.740 0.245 
0.740 0.240 

0.269 0.122 0.391 
0.343 0.146 0.489 
0.404 0.163 0.567 
0.452 0.176 0.628 
0.491 0.186 0.677 
0.521 0.194 0.715 
0.545 0.200 0.745 
0.565 0.205 0.770 
0.602 0.214 0.816 
0.626 0.220 0.846 
0.644 0.224 0.868 
0.657 0.227 0.884 
0.675 0.231 0.906 
0.687 0.234 0.921 
0.710 0.240 0.950 
0.726 0.243 0.969 

(7) 

0.599 

0.595 
0.593 
0.590 
0.587 
0.583 
0.580 
0.576 
0.573 
0,565 
0.559 
0.553 
0.548 
0.540 
0.535 
0.524 
0.515 

Smooth Interface 

H H 
R R 1.406- 1.029- 0.599 

0.377 0.276 0.598 
0.492 0.361 0.598 
0.593 0.438 0.597 
0.677 0.503 0:595 
0.745 0.559 0.593 
0.800 0.605 0.591 
0.842 0.644 0.588 
0.876 0.677 0.585 
0.931 0.738 0.579 
0.962 0.781 0.573 
0.977 0.812 0.567 
0.986 0.835 0.562 
0.993 0.868 0.553 
0.993 0.889 0.547 
0.990 0.932 0.531 
0.980 0.962 0.519 



Table 4.2: Values of Factors ym , A, and Bm in Expressions for Natural Frequencies 
and Vibration Modes of Contained Material; v = 1/3. 

1 
2 

4 ,  
3 

5 

I Rough Interface I Smooth Interface 

1.9427 0.599 1 0.2845 1.3150 , 13.9875 -7.1976 
-3.1056 0.1271 -0.4452 2.0 125 0.3696 0.3604 

5.3559 0.5920 -0.1262 5.3259 0.3479 0.0159 
4.8982 0.0737 0.1932 3.8796 0.0178 -0.3079 

6.7603 0.0183 0.1602 5.7592 0.0 134 -0.2082 
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Fig. 4.2 Effect of Slenderness Ratio, WR, on Maximum Static Values of Normal Pressure 
and of Circumferential Shearing Stress Induced at Top of Tank, v = 1/3. 
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Fig. 4.5 Frequency Response Curves for Amplification Factors of Base Shear in Wall of 
Systems with Different Aspect Ratios Computed Using Only First and All Terms in 
Series; Rough Interface, v = 1/3,6 = 0.1. 
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Fig. 4.10 Normalized Effective Heights of Systems Subjected to El Centro Ground 
Motion Record; Rough Wall Interface, v = 1/3,6 = 0.1. 
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SECTION 5 

FOUNDATION FORCES 

For the design of the tank foundation, one needs to know the total shear and total overturning moment 
transmitted to it. The foundation shear is clearly equal to the sum of the base shear in the tank wall and 
the shear at the base of the contained material. Similarly, the foundation moment equals the sum of the 
base moments induced by the wall pressures and those acting on the tank base. Considering that the 
method of analysis employed presumes the absence of any vertical dynamic pressures, the component 
of the moment contributed by the base pressures cannot be computed. However, both the foundation 
shear 6 and the foundation moment M can be determined directly from the lateral inertia forces. In 
particular, their static values are given by 

.., 
Qst = -mXg (50) 

(51) 
1 
2 

.., 
Mst = --mX,H 

and the maximum dynamic values are given by the products of their corresponding static values and 
appropriate amplification factors. To a reasonable degree of approximation, the amplification factors 
may be taken equal to those for the base shear in the tank wall. This approximation is considered to be 
adequate for both harmonic and transient excitations. With the foundation shear 6 and the foundation 
moment M established, the components contributed by the dynamic stresses at the tank base may, if 
desired, be determined by substracting from 6 the base shear in the tank wall Qb , and from M the 
base moment M, due to the wall pressures. 

. 

The instantaneous values of the foundation shear and overturning moment can more accurately be 
computed from 

.., 
Q = - Ip[xg+ux]  dV 

V 

in which iix = the acceleration relative to the moving base of an arbitrary point of the contained mate- 
rial in the direction of the base motion (Le., along 8 = 0), and the integration is over the volume of 
the contained material. For a harmonic excitation, (52) and (53) can be rewritten as 
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1 1 2x 

Q = -I I I [pX,-co2U,]d0 R2cdcHdq eiot 
0 0  0 

where U, , the amplitude of the horizontal displacement relative to the moving base, is given by 

U, = Ucos0-Vsinf3 

(54) 

and U and V are the corresponding amplitudes of the radial and circumferential displacements, 
which are defined by (19) and (20), respectively. On making use of (19), (20) and (56), and perform- 
ing the indicated integrations, one obtains 

where the integrations constants An and Bn are defined by (33a) and (33b) for a rough interface and 
by (34a) and (34b) for a smooth interface. 

With the harmonic response established, the response to an arbitrary transient excitation may be deter- 
mined, as for all other response quantities considered, by Fourier transform techniques. 
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SECTION 6 

FINAL COMMENTS 

Fundamental to the analysis presented has been the assumption that the material in the tank is bonded 
to its base. This assumption is justified by the fact, that for realistic intensities of ground shaking, the 
maximum shearing stress at the interface of the contained material and the tank base can be shown to 
be lower than the corresponding shearing capacity. 

Finally, the base shears and base moments presented in the preceding section represent exclusively the 
effects of the normal pressures and circumferential shearing stresses induced by the inertia forces of 
the contained material. To these effects, must also be added the effects of the tank wall inertia. For the 
rigid tank considered, the latter effects, identified with a w superscript, are given simply by 

Qr = -m,Xg 

in which m, = the total mass of the tank wall. 
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SECTION 7 

CONCLUSIONS 

Following are some of the more important conclusions of this study. 

1. With the information that has been presented, the response to horizontal ground shaking of rigid 
circular cylindrical tanks containing a viscoelastic material may be evaluated readily. The com- 
prehensive numerical data included provide valuable insights not only into the magnitude and 
distribution of the wall pressures and the magnitude of the critical forces, but also a valuable 
framework for the interpretation of the results for the flexible tanks examined in Part B of the 
report. 

2. The maximum value of a dynamic effect is expressed as the product of the corresponding ‘static’ 
effect and an amplification factor. The ‘static’ effects, which refer to those induced by uniform 
lateral inertial forces equal in magnitude to the product of the mass density of the contained 
material and the maximum ground acceleration, depend on the ratio of the material height H and 
the tank radius R. For slender tanks with values of WR greater than about 3, the inertia forces for 
all of the contained material are transmitted to the wall by horizontal extensional action, and 
practically the entire contained mass may be considered to be effective. With decreasing WR, a 
progressively larger portion of the inertia forces gets transferred by horizontal shearing action to 
the base, and the portion of the retained mass that contributes to the wall forces is reduced signif- 
icantly. 

3. For a system of a specified WR, the dynamic amplification factor depends importantly on the 
fundamental natural period of the contained material. This dependence is similar to, but by no 
means identical to, that obtained for a similarly excited, viscously damped single-degree-of-fiee- 
dom oscillators. Specifically, for low-natural-period, stiff materials, the amplification factor is 
unity. With increasing flexibility or period of the contained material, the amplification factor 
increases and after attaining a nearly horizontal plateau, which for broad-banded earthquake 
ground motions may be of the order of 1.25 to 2.5, it decreases, reaching values less than unity. 
The larger amplification factors are attained for the slender tanks and for materials with low 
damping. 

4. Because of the assumption of vanishing vertical normal stresses that underlies the simplified 
method of analysis employed, the component of the foundation moment contributed by the 
dynamic pressures acting on the tank base cannot be evaluated. However, the total foundation 
moment and shear may be determined directly from the inertia forces of the retained medium. 
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SECTION 8 

APPENDIX: UNDAMPED FREE VIBRATION OF CONTAINED SOLID 

The natural modes of vibration considered here are those for which the radial displacements u vary in 
the circumferential direction as cos 8 and the circumferential displacements v vary as sine . For the 
excitation considered, these are the only modes that contribute to the response of the system. These 
displacements may be expressed as 

and the functions U(5) and V(5)  may be determined by application of the decoupling technique 
used in the body of the paper. The results are 

where A and fB are constants of integration, and the dimensionless frequency parameters a and P 
are defined by specialized forms of (25) and (26) as 

a = -  P 
w o  

(2n - 1)n R 
' =  2 H ** 

On satisfying the boundary conditions defined by (12) and either (13) or (14), and setting the determi- 
nant of the coefficients of the resulting system of homogeneous equations in A and B equal to zero, 
one obtains the characteristic equation of the system. The frequency o corresponding to the mth root 
of the latter equation is denoted by om, , and the corresponding values of a , P , 2, B and functions 
U(5) and "(5) are identified with the subscript m 
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Inasmuch as the values of a,, corresponding to a given n are greater than a, , the associated values 
of a, and p, are imaginary, and it is convenient to rewrite a as iy and p as iv0y  where y is a 
real-valued number. On further noting that 

where J, and J, are Bessel functions of the first type and zero and first order, respectively, the char- 
acteristic equation for a system with a rough interface becomes 

and that for a smooth interface becomes 

With the roots ym and the corresponding values of a, determined, the natural frequencies a,, are 
determined from (65.) or (49), and the relative magnitudes of the constants A, and 93, in (63) or (64) 
are determined from the expressions for the boundary conditions on U, and V, . The values of A, 
and 93, corresponding to the first five values of ym are listed in Table 4.2 normalized such that Urn 

at 5 = 0 isunity. 
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PART B. FLEXIBLE TANKS 



SECTION 1 

INTRODUCTION 

The study reported here is an extension of that presented in Part A. It deals with the effects of wall 
flexibility on the response to horizontal ground shaking of vertical, circular cylindrical tanks 
containing a uniform viscoelastic solid. The analysis is implemented approximately considering the 
tank wall to respond as a cantilever shear-beam with no change in its cross section. 

The expressions for the critical responses of these systems are formulated, and comprehensive 
numerical data are presented that elucidate the effects of the numerous parameters involved. The 
principal parameters examined include the flexibility of the wall relative to that of the contained 
material, the ratio of material height to tank radius, and the characteristics of the forcing function. In 
addition to long-period, effectively static excitations, both harmonic motions of different frequencies 
and an actual earthquake ground motion are considered. 

The principal effects of wall flexibility may be anticipated from purely physical considerations. Since 
the effective horizontal extensional stiffness of the retained material for a flexible tank is lower than 
that for a rigid tank, the flexibility of the wall should reduce the portion of the inertia forces 
transmitted to it by horizontal extensional action and increase the portion transmitted to the base by 
shearing action. Additionally, the wall flexibility should decrease the natural frequency of the tank- 
solid system and modify its effective damping. Depending on the characteristics of the system and the 
base motion, the latter changes may increase or decrease the critical responses from those obtained for 
a rigid tank. The primary objective of the study is to quantify these changes over the full range of the 
parameters involved. A secondary objective is to assess the relationship of these responses to those 
obtained for tanks containing an inviscid liquid of the same mass density. The maximum values of the 
critical responses are expressed as the products of those obtained under ‘static’ conditions of loading 
and appropriate amplification or deamplification factors. 

As indicated in Part A, the only known previous study of solid-containing tanks is the one reported by 
Rotter and Hull (1989), which dealt with long-period, effectively static excitations. 
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SECTION 2 

SYSTEM CONSIDERED 

Except for considering the tank wall to be flexible, the system examined is the same as that studied in 
Part A. It is a vertical, circular cylindrical tank of radius R that is filled to a height H with a 
homogeneous, linear viscoelastic solid. The tank is presumed to be fixed to a rigid base undergoing a 
space-invariant horizontal motion, the acceleration of which at any time t is x,(t) and its maximum 
value is if,. The contained medium is considered to be free at its upper surface and bonded at the 
base and along its cylindrical boundary. 

The properties of the medium are defined by its mass density p , Poisson’s ratio v , and the complex- 
valued shear modulus G* = G( 1 + i s ) ,  where G is the real-valued modulus, i = &. , and 6 is the 
damping factor, which is twice as large as the coefficient of damping normalized with respect to its 
critical value. The corresponding properties of the tank wall are denoted by p,, v,, and 
G,* = G,( 1 + is,) , and the wall is considered to be of uniform thickness t, . Points in the contained 
medium are defined by the cylindrical coordinate system, r, 0, z, the origin of which is taken at the 
center of the tank base, with 0 measured counterclockwise from the direction of the excitation. 
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SECTION 3 

METHOD OF ANALYSIS 

The method of analysis used is an extension of that described in Part A for rigid tanks and involves all 
the previously noted assumptions and approximations. It is further assumed that the tank wall 
responds as a cantilever shear-beam with no change in its cross section, and that there is complete 
bonding between the contained medium and the wall. It follows that along its cylindrical boundary, 
the radial and circumferential displacements of the medium relative to the moving base, u and v , are 
given by 

and 

VIg = 1 = - uw(q, t> sine (2) 

where 5 = r/R and q = z/H are dimensionless position coordinates, and u, = the,displacement 
relative to the base of an arbitrary point of the wall in the direction of the excitation. 

3.1 Harmonic Response 

For a harmonic base motion for which the acceleration 

zg(t) = XgeiWt (3) 

and o is its circular frequency, the steady-state values of the displacements u and v of an arbitrary 
point in the contained medium may be expressed, as for a rigid tank, in the form 

and the corresponding tank wall displacement, uw , may be expressed as 
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where U: are constants that remain to be determined. 

On expanding the unit function associated with the ground acceleration terms in the equations of 
motion defined by (8) and (9) of Part A in the form 

substituting (4) and (5) into the latter equations and satisfying the boundary conditions defined by (1) 
and ~~ (2), with u, expressed as in (6), the functions U, and Vn can be shown to be given by 

and 

where I, and I, are modified Bessel functions of the first kind and zero and first order, respectively, 
and the remaining quantities are the same as those in the corresponding expressions for rigid tanks. 
Specifically, a, and p, are defined by (25) and (26) of Part A, and Uf, , An and B, by (29), (33a) 
and (33b) of .the same part. 

Wall Stresses and Associated Forces 

The radial or normal pressures or and the circumferential shearing stresses T,e induced on the 
cylindrical wall may be expressed as 

where o(q) and ~ ( q )  and the amplitudes of their components, (or), and (Tre)n, are complex- 
valued quantities. On noting that Uf, in (8) and (9) is independent of 6 ,  and that theterms 

-- l & + v  
@e 4 l a v + U  - and 5% 4 

in the expressions for or and T,e [equations (4) and (6) in Part A] vanish along the medium-wall 
interface, it should be clear that (or)n and (%,e), may be determined from the corresponding terms 
in the solution for rigid tanks simply by multiplying the nth term of the appropriate expression in the 
latter solution by the reduction factor 
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un R, = 1-- 
uf, 

The sign convention for stresses is the same as that in Part A. Specifically, normal pressures are 
considered positive when tensile, and the positive directions of the shearing stresses are shown by the 
inset diagrams in Fig. 2.1 of Part A. The nth components of the total wall force and of the overturning 
moment at a section immediately above the base may be determined similarly from the corresponding 
components for rigid tanks. 

f The as yet undetermined reduction factors R, , and hence the values of U:/Un, are computed by 
considering the horizontal equilibrium of forces acting on a wall section of unit height. This requires 
that 

Fi(q) +F,(q) +Fc(q) = 0 (13) 

where Fi = the wall inertia force, F, = the resisting shearing force, and F, = the force exerted by the 
contained medium. These forces are given by 

Fi = -2nRt,pw(iiw + Xg) 

n 

and 

2x 

(16) 

where a dot superscript denotes one differentiation with respect to time, and ?:,, represents the 
horizontal shearing stress in the direction of the base motion. On substituting (14) through (16) into 
(13), making use of (6) and of the expressions for the reduced versions of o(q) and ~ ( q )  , the factor 
R, is found to be given by 

iwt  - F, = I (?:sin28 - ocos28)Rd0 e - xR(z - 0) eiwt 
0 

1 +isw mW 
1+i6  - d w m  

where $, = @/on ; on = the nth circular frequency of the contained material when it is considered to 
act as an unconstrained, cantilever shear-beam, given by 

(2n - 1)n - VS 

2 H  on = 
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v, = m p  = shear wave velocity of the retained material; mw/m = ratio of masses of the tank wall 

and the contained material, given by 

d, is a dimensionless measure of the wall flexibility, defined by 

and 

The quantities yfo , g, and h, in the latter expression are factors defined by (7), (39a) and (39b) of 
Part A. 

Effect of Wall Inertia 

The inertia of the tank wall has a two-fold effect: (a) It modifies the magnitude and distribution of the 
dynamic wall pressures and associated forces; and (b) it induces additional forces in the wall. The first 
effect has duly been provided for in the evaluation of the reduction factors R, , but the second has not 
been included in the expressions for base shear and base moment referred to in the preceding section. 

The instantaneous values of the base shear and base moment induced by the wall inertia, Qr ( t )  and 
M r  (t) , are given by 

1 

Qr(t)  = -2nRtWpw J(Uw + Xg)Hdq (22a) 
0 

and 
1 

2 M:(t) = -2nRtWpw I(Uw + Xg)H qdq 
0 

which, on making use of (3), (6) and (12), reduce to 

and 
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M:(t) = -- 1 mwXgH 
2 

respectively. For a rigid tank, the reduction factors R, tend to unity; the terms that include these 
factors vanish; and the amplitudes of the base shear and base moment reduce, as they should, to 
mwXg and mwXgH/2 , respectively. 

3.2 'Ikansient Excitation 

The response to an arbitrary transient excitation may be evaluated from the harmonic response by the 
discrete Fourier transform (DFT) approach as outlined in Part A. 
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SECTION 4 

CRITICAL RESPONSES OF SYSTEM 

Following the approach used in the analysis of rigid tanks, consideration is first given to the response 
of systems subjected to long-period, effectively static excitations. The maximum value of a critical 
response to an arbitrary excitation may then be obtained by multiplying the corresponding ‘static’ 
value by an appropriate amplification or deamplification factor. Unless otherwise indicated, the mass 
of the wall in the solutions presented is considered to be negligible compared to the mass of the 
retained material, a condition normally satisfied in practice. 

4.1 StaticEffects . 

The static value of the base shear in the tank wall, (Q& , is plotted in Fig. 4.1 as a function of the 
relative flexibility factor d, for systems with different slenderness ratios, H/R. It should be recalled 
that d, = 0 refers to rigid tanks. The results are normalized with respect to the product of the total 
contained mass m and the maximum ground acceleration X, , namely, the total inertia of the retained 
material when it is considered to act as a rigid body. Poisson’s ratio for the contained material is taken 
as V =  1/3. 

It is observed from Fig. 4.1 that the base shear, and hence the proportion of the contained mass 
contributing to this shear, is highly dependent on both the slenderness ratio H/R and the relative 
flexibility factor d, . For rigid, tall tanks with values of WR of the order of 3 or more, the inertia 
forces for all the retained material are effectively transmitted to the wall by horizontal shearing action, 
and practically the entire mass of the tank content may be considered to contribute to the wall force. 
With decreasing WRY a progressively larger portion of the inertia forces gets transferred by horizontal 
shearing action to the base, and the effective portion of the retained mass is reduced. 

The effect of wall flexibility is to reduce the horizontal extensional stiffness of the contained material 
relative to its shearing stiffness, and this reduction, in turn, reduces the magnitudes of the resulting 
pressures on and associated forces in the tank wall. The reduced response of the flexible tanks is in 
sharp contrast to the well established behavior of liquid-containing tanks, for which the effect of wall 
flexibility is to increase rather than decrease the impulsive components of the wall pressures and 
forces which dominate the response of such systems. This matter is considered further in a later 
section. 
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As for rigid tanks, the static value of the overturning base moment, , may be expressed as the 
product of the total wall force or base shear and an appropriate height, h. The variation of the ratio 
h/H for tanks with different values of d, and WR is shown in Fig. 4.2. Note that almost 
independently of the relative flexibility factor d, , the effective height varies from 0.6H for broad 
tanks with values of WR tending to zero to 0.5H for rather tall, slender tanks. This trend may be 
appreciated better from Fig. 4.3 which shows the heightwise variations of the normal wall pressures, 
oSt(q) , for tanks of different proportions and flexibilities. It is observed that for broad tanks, these 
pressures increase from base to top approximately as a quarter-sine wave, whereas for the rather 
slender tanks, the distribution is practically uniform. The distributions of the corresponding horizontal 
shearing stresses T J ~ )  are similar and are not shown. The top values of these stresses for systems 
with different d, and H/R values are listed in part (a) of Table 4.1. Also listed in this table are 
normalized values of the total wall force and its effective height. 

4.2 Harmonic Response 

The steady-state amplitude of the total wall force or base shear in the wall of harmonically excited 
systems, (Qb)max , is plotted in Fig. 4.4 as a function of the frequency ratio o/ol for systems with 
WR = 1. Four values of the wall flexibility factor d, in the range between zero and 3 are considered. 
The remaining parameters for the systems are identified on the figure heading. 

As would be expected, the peak values of these plots are attained at or close to the undamped natural 
frequencies of the system considered, with the absolute maximum values occurring at the 
fundamental frequency. Denoted by o1 , , the latter frequency is quite sensitive to the wall flexibility 
factor. For highly flexible walls with values of d, + , this frequency is practically equal, as it 
should be, to the natural frequency of the unconstrained medium o1 ; with decreasing wall flexibility, 
the frequency increases; and as d, + 0 , it tends to the value for rigid tanks defined by equation (49) 
of Part A. 

The fundamental natural frequency and the associated-period of the system T,, = 2n/o,, also 
depend on the slenderness ratio WR. This dependence'is shown in Fig. 415, in which the ratio T, ,/TI 
is plotted as a function of the relative wall flexibility factor d, for different values of WR. Some of 
the data are also listed in Table 4.2. Note that the effect on T,, of a change in d, is significantly 
larger for slender tanks than for broad tanks. As a matter of fact, for the limiting case of H/R + 0 , 
the results are independent of d, - 

In Fig. 4.6, the absolute maximum amplification factor for base shear, (AF)max , defined as the ratio 
of the highest peak of a frequency response curve such as those displayed in Fig. 4.4 to the 
corresponding response of the statically excited system, is plotted as a function of the wall flexibility 
factor d, for different values of H/R. The left-hand part of the figure is for systems with a damping 
factor for the tank wall 6, = 0.04 , whereas the right-hand part is for systems with 6 ,  = 0.08. All 
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other parameters are identified on the figure heading. It is observed that the amplification factors are 
generally quite large and sensitive to the values of H/R and d, involved. The larger factors are 
obtained for the more slender and more flexib'le systems (larger values of H/R and d, ), indicating 
that their effective damping in this case is relatively low. System damping is contributed partly by the 
tank wall and partly by the hysteretic action of the contained material. The latter source dominates the 
response of broad tanks, while the wall damping dominates the response of slender tanks. This fact is 
clearly demonstrated by the interrelationship of the solutions for the two values of wall damping 
considered. 

Further insight into the effect of wall flexibility may be gained from Fig. 4.7, where the information 
on the maximum response of systems examined in Fig. 4.6 is replotted with the absolute maximum 
value of the base shear amplitude, I(Qb)maxl, normalized with respect to the common factor mXg . 
Note that for the combination of parameters represented by points to the right of the heavy dots, the 
effect of wall flexibility is to reduce the response to levels that may be substantially lower than those 
applicable to rigid tanks. This reduction, which is due to the increased capacity of the material in 
flexible tanks to transfer the inertia forces by horizontal shearing action to the base, is, as already 
noted, in sharp contrast to the response of liquid-containing tanks, for which the effect of wall 
flexibility is to increase rather than decrease the response. Only for extremely slender tanks, for which 
the horizontal shearing stiffness of the contained material relative to its extensional stiffness is 
negligible as for a liquid, does the wall flexibility increase the response. For the range of parameters 
normally encountered in practice, the dynamic forces for tanks storing a viscoelastic material can be 
expected to decrease with increasing wall flexibility. Similar results, but with substantially lower 
response levels, can also be expected for transient excitations. 

4.3 Seismic Response 

Figure 4.8 shows the amplification factor for the base shear, AE in the wall of systems subjected to the 
N-S component of the 1940 El Centro, California earthquake ground motion record. Three values of 
the slenderness ratio WR and three values of the wall flexibility factor d, are considered. The results 
are plotted as a function of the fundamental natural period TI, = 27c/oI, of the system under 
consideration, which may be determined from the information presented in Table 4.2. As before, the 
tank wall in these solutions is presumed to be massless; Poisson's ratio and the damping factor of the 
retained material are taken as v = 1/3 and 6 = 0.1 ; and the damping factor for the wall is taken as 
8, = 0.04. As could have been anticipated from the information for harmonically excited systems 
presented in Fig. 4.6, the effect of wall flexibility is to reduce the effective damping of the system and 
increase the amplification factor of response, the latter increase being most pronounced in the 
practically important period range of 0.1 to 0.5 sec. 

In Fig. 4.9, the average value of the amplification factor for base wall-shear within the period range 
TI, from 0.1 to 0.5 sec is plotted as a function of the wall flexibility factor d, for four values of 
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WR. The same information is also displayed in Fig. 4.10, with the corresponding value of the 
maximum base shear normalized with respect to the common factor mXg . Except for the expected 
differences in the levels of amplification factor and the associated response (note that the absolute 
maximum value of the average amplification factor in this case is only 2.5), the interrelationship and 
general trends of these plots are impressively similar to those for the harmonically excited systems 
considered in Figs. 4.6 and 4.7. Specifically, for systems represented by points in Fig. 4.10 to the right 
of the heavy dots, the effect of wall flexibility is to reduce the response below the level applicable to 
rigid tanks. Only for very slender systems with moderate wall flexibility is the response of flexible 
tanks, like that of liquid-containing tanks, likely to be higher than for the corresponding rigid tanks. It 
should be noted, however, that .the maximum response of solid-containing rigid tanks is generally 
si-snificantly higher than that of tanks containing a liquid of the same mass density. This matter is 
addressed further in a later section. 

4.4 Relative Effects of Normal and Shearing Stresses 

For the bonded medium-wall interface considered, the base’shear in the tank wall is contributed partly 
by normal and partly by circumferential stresses. In Fig. 4.11, the maximum value of the base wall- 
shear contributed by the normal stresses, ( Qgkax , is plotted as a fraction of the corresponding total 
shear, (Qbhax. The results, which are again for the El Centro ground motion record, are plotted as a 
function of the fundamental period T, of the system under consideration. Three values of H/R in the 
range between 0.3 and 3.0 and two values of the wall flexibility factor are examined. For rigid tanks 
(d, = 0), similar plots were presented in Part A. It is observed that within the range of parameters 
considered, approximately 75 percent of the total base shear in the wall is contributed by ‘the normal 
pressures. 

4.5 

It has been shown (Veletsos and Younan, 1997) that satisfactory approximations to the critical 
responses of rigid tanks are obtained by considering in the governing series expressions only the terms 
associated with the fundamental vertical mode of vibration of the contained medium. It should be 
recalled that the contributions of all horizontal modes of vibration are duly provided for in the method 
of analysis. For the flexible tanks examined here, it can similarly be shown that the dominant 
contributor to each response quantity is the term associated with the fundamental mode of vibration of 
the tank-medium system. This is demonstrated in Fig. 4.12 in which the exact values of the maximum 
base shear induced by the El Centro ground ,motion record are compared with those computed 
considering only the first term in the series. The results are plotted against the fundamental natural 
period of the system T, for three values of the flexibility factor d, . It is observed that the agreement 
between the two solution sets is indeed excellent for all practical purposes. It should be added, 
however, that the assumption of shear-beam action for the tank wall which underlies the method of 
anhysis is not expected to be as appropriate for tall tanks as for broad tanks. 

Contribution of Higher Modes of Vibration 

1 

t 
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4.6 Overturning Base Moment 

Considering that the response of the system is dominated by the contribution of the fundamental mode 
of vibration and that the dynamic wall pressures for this mode increase approximately as a quarter- 
sine from zero at the base to a maximum at the top, and further recalling that the height to the centroid 
of this distribution is h = (2/z)H, the maximum overturning moment across a section immediately 
above the base may be taken as the product of the corresponding base shear and this value of h. For 
systems with WR = 1 subjected to the El Centro ground motion, the exact values of h are shown in 
Fig. 4.13. 

4.7 Effect of Wall Inertia 

In the numerical solutions presented so far, the wall mass was presumed to be negligible compared to 
the participating mass of the retained medium. While the effect of the wall inertia may be evaluated 
exactly from expressions presented in previous sections, the following simple, approximate procedure 
would be adequate for all practical purposes. 

The maximum base shear in the wall of a tank with mass, (Qbflx, may be related to that of the 
massless Wall, ( Qbhax, by 

(Qbc:x = ( Q b h a x  +moxg(AF) (24) 

where m, = the effective mass of the tank wall; and the amplification factor AF may be taken equal to 
that for the massless tank. The value of mo normalized with respect to the total mass of the tank wall, 
m, , is plotted as a function of the wall flexibility factor d, in Fig. 4.14. For rigid tanks, the ratio is 
naturally unity, but for flexible tanks, particularly for the more compliant systems with large values of 
WR and d, , it may be substantially smaller. For the computation of the effect of the wall inertia on 
the overturning base moment, the effective height h may be taken equal to that for the massless tank.. 
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Table 4.1: Static Values of Top Radial Pressure est( 1) , Base Shear 
' ( Qb)s t ,  and of Effective height h; Systems with massless walls 
a n d v  = 1/3. 

~~ 

H / R  d,=O d,= 0.5 d,= 1 ,d,= 1.5 d,= 2 d,= 3 

0.30 0.366 
0.50 0.541 
0.80 0.672 
1.00 0.710 
1.25 0.732 
1.50 0.742 
1.75 0.746 
2.00 0.748 
2.50 0.749 
3.00 0.749 

0.30 0.392 
0.50 0.567 
0.80 0.715 
1-00 0.771 
1.25 0.816 
1.50 0.847 
1.75 0.869 
2.00 0.885 
2.50 0.908 
3.00 0.923 

0.30 0.595 
0.50 0.590 
0.80 0.580 
1.00 0.573 
1.25 0.565 
1.50 0.558 
1.75 0.552 
2.00 0.547 
2.50 0.540 
3.00 0.534 

(a) Values of -est( 1 ) / ~ X , R  

0.293 0.245 0.210 0.183 
0.398 0.315 0.260 0.222 
0.466 0.356 0.288 0.24 1 
0.483 0.365 0.294 0.246 
0.492 0:370 0.297 0.247 
0.495 0.372 0.298 0.248 
0.496 0.372 0.298 0.248 
0.497 0.373 0.298 0.248 
0.497 0.372 0.298 0.248 
0.497 0.372 0.298 0.248 

(b) Values of -( Qb),t /mXg 

0.320 0.272 0.236 0.209 
0.430 0.348 0.293 0.253 
0.513 ' 0.402 0.33 1 0.282 
0.543 0.42 1 0.345 0.292 
0.567 0.436 0.355 0.300 
0.583 0.447, 0.362 0.305 
0.594 0.454 0.367 0.309 
0.603 0.459 0.371 0.3 12 
0.615 0.467 0.376 0.315 
0.623 0.472 0.380 0.318 

(c) Values of h / H  

0.584 0.580 
0.575 0.570 
0.562 0.557 
0.555 0.550 
0.548 0.543 
0.542 0.538 
0.537 0.533 
0.534 0.530 
0.528 0.525 
0.524 0.521 

0.589 
0.582 
0.570 
0.562 

.0.555 
0.548 
0.543 
0.539 
0.533 
0.528 

0.576 
0.565 
0.552 
0.546 
0.539 
0.534 
0.530 
0.527 
0.523 
0.519 

0.146 
0.170 
0.182 
0.185 
0.186 
0.186 
0.186 
0.186 
0.186 
0.186 

0.170 
0.199 
0.2 17 
0.224 
0.229 
0.232 
0.234 
0.236 
0.238 
0.240 

0.570 
0.558 
0.546 
0.539 
0.534 
0.529 
0.526 
0.523 
0.519 
0.517 
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Table 4.2: Fundamental Natural Period T I ,  of Solid-Containing Tanks; 
Systems with massless walls and v = 1/3. 

H / R  d,=O d,= 0.5 d,= 1 d,= 1.5 d,= 2 d,= 3 

0 
0.30 
0.50 
0.80 
1 .oo 
1.25 
1.50 
1.75 
2.00 
2.50 
3.00 

1 .o 
0.841 
0.682 
0.504 
0.423 
0.350 
0.297 
0.258 
0.227 
0.184 
0.154 

1 .o 
0.857 
0.746 
0.660 
0.633 
0.614 
0.603 
0.596 
0.592 
0.587 
0.584 

Values of T, , /T,  
1 .o 1 .o 

0.872 0.884 
0.794 0.828 
0.746 0.798 
0.733 0.790 
0.724 0.785 
0.719 0.782 
0.716 0.780 
0.7 14 0.779 
0.71 1 0.777 
0.710 0.776 

1.0 
0.895 
0.853 
0.832 
0.827 
0.823 
0.821 
0.820 
0.819 
0.8 18 
0.8 18 

1.0 
0.912 
0.886 
0.874 
0.871 
0.870 
0.868 
0.868 
0.867 
0.867 
0.867 
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Figure 4.1 Normalized Values of Base Shear for Statically Excited Systems with Different Wall 
Flexibilities and Slenderness Ratios; m, = 0 and v = 1/3. 
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Figure 4.2 Normalized Values of Effective Height for Statically Excited Systems with Different 
Wall Flexibilities and Slenderness Ratios; m, = 0 and v = 1/3. 
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Figure 4.5 Fundamental Natural Period of Tanks of Different Slenderness Ratios and Wall 
Flexibilities; m, = 0 and v = 1/3. 
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Figure 4.6 Maximum Amplification Factors for Base Shear in Wall of Harmonically Excited Tanks with Different Slenderness Ratios and 
Wall Flexibilities; m, = 0, 6, = 0.04 & 0.08, v = 1/3 and 6 = 0.1, 
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Figure 4.7 Normalized Values of Absolute Maximum Base Shear in Wall of Harmonically 
Excited Tanks with Different Slenderness Ratios and Wall Flexibilities; 
m, = 0,6, = 0.04, v = 113 and 6 = 0.1 
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Fi-we 4.9 Average Amplification Factors for Base Shear in Wall of Tanks with Different 
Slenderness Ratios and Wall Flexibilities Subjected to El Centro Record; m, = 0, 
6,  = 0.04, v = 1/3 and 6 = 0.1; AF averaged over period range TI1 = 0.1 to 0.5 sec. 
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Figure 4.10 Average Value of Maximum Base Shear in Wall of Tanks with Different Slenderness 
Ratios and Wall Hexibilities Subjected to El Centro Record; m, = 0,6, = 0, v = 1/3 
and 6 = 0.1; base shear averaged over period range T11= 0.1 to 0.5 sec. 

B4-17 



m 
I1  
3 

-c3 

B4-18 

3 
-c3 

.r 
0 

cu 
0 
9 

cu 

T- 

o 
24 
n * * 

Fu 

o 
22 
n * * 

Fu 

.r 
0 

cu 
0 
0 

0- 
I I  
3 rn 
0- 

I I  

E' 
9 
0 

2 
El 
8 
U 

V 
a 
0 
Y 

E: .- 
vl 

3 vl 
vl 
% 

E4 

3 
M 
E 



1.5 

mX, 

0.5 

0 

- All Terms Considered 
- - - First Term Only Considered 

I I I I I 1 1 1 1  I I I I I I111 I 
0.02 0.1 1 2 

Figure 4.12 Maximum Values of Base Shear in Wall of Tanks with Different Rexibilities 
Computed Using One and Many Vertical Modes of Vibration; Systems with 
€€/R = 1, m, = 0,6, = 0, v = 1/3 and 6 = 0.1 subjected to El Centro Record. 
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Figure 4.13 Normalized Effective Heights of Tanks of Different Wall Flexibilities Subjected to 
El Centro Record; WR = 1, m, = 0,6, = 0, v = 1/3 and 6 = 0.1. 
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Figure 4.14 Effective Wall Mass for Statically Excited Tanks of Different Slenderness Ratios 
and Wall Flexibilities; 6,  = 0, v = 1/3 and 6 = 0.1. 
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SECTION 5 

FOUNDATION FORCES 

As for rigid tanks, the maximum shearing force transmitted to the foundation of a flexible tank, 6 , 
and the corresponding moment, M , can most effectively be computed from the inertial forces acting 
on the tank and the contained material. To a reasonable degree of approximation, these forces may be 
expressed as 

(26) 
1 
2 M m a x  = --(m + m,)XgH(AF) 

where the amplification factor AF may be taken equal to that reported for the base shear in the tank 
wall. More precise expressions may be determined by evaluating the integrals defined by equations 
(54) and (55) of Part A and superimposing the effects of the wall inertia forces defined by (22b) and 
(23b). 
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SECTION 6 

INTERRELATIONSHIP OF RESPONSES 
OF SOLID- AND LIQUID-CONTAINING TANKS 

In assessing the interrelationship of the responses of tanks containing a solid or a liquid, it is important 
that the following properties of the two materials be kept in mind: 

1. Possessing no shearing resistance, an inviscid liquid transmits its horizontal inertia forces 
directly to the wall. By contrast, a portion of the inertia forces for a solid-containing tank is trans- 
mitted by horizontal shearing action to the base. 

2. With the liquid being for all practical purposes incompressible, the impulsive component of the 
liquid mass acts as if it were rigidly attracted to the tank wall and experiences the same motion as 
the wall. By contrast, a solid acts as a multi-degree-of-freedom elastic medium with its own nat- 
ural frequencies and modes, and, depending on the relationship of its properties and the charac- 
teristics of the forcing function, it may amplify or deamplify the wall motion. 

3. In a tank for which the upper surface of the contained liquid is rigidly capped, the entire mass of 
the liquid acts impulsively as a rigidly attached body. However, for a liquid with a free upper sur- 
face, only a fraction of the contained mass acts impulsively; the remaining part, known as the 
convective component, experiences rocking or sloshing motions. The convective component may 
be quite substantial for broad, shallow tanks. There is, of course, no counterpart of this convec- 
tive or sloshing action in a solid-containing tank. 

c For a liquid-containing rigid tank, the instantaneous value of the total wall force or base shear, Qb(t) , 
may be expressed as 

where mi = the impulsive component of the contained mass, mcn = the nth convective component, 
and Acn(t) = the instantaneous pseudoacceleration of the latter component. The sum of mi and all 
mcn is equal to the total liquid mass m. 

For representative earthquake ground motions and for tanks of the proportions normally encountered 
in practice, the maximum values of the pseudoacceleration Acn( t) are substantially smaller than the 
maximum ground acceleration Xg , with the result that the contribution of the convective components 
is for most practical purposes negligible. Within.the bounds of this approximation, the maximum val- 
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ues of the base shear for rigid tanks containing either a solid or liquid may be expressed as 

where me = the effective mass of the contained material (mi for a liquid-containing tank), and AF = 
an appropriate amplification or deamplification factor. 

The values of me normalized with respect to the total contained mass rn are plotted in Fig. 6.1 as a 
function of the slenderness ratio H/R for both liquid- and solid-containing tanks. The elastic solid in 
these solutions is presumed to be bonded to the base and the tank wall, and its Poisson's ratio 
v =1/3 . It is observed that the effective mass of a solid-containing tank is larger than that of the 
same tank containing a liquid of the same total mass. Considering that a portion of the inertia forces 
for the solid gets transferred by horizontal shearing action to the base and that a liquid does not pos- 
sess such capacity, the 1,arger effective mass for the solid-containing system may be surprising. It must 
be recalled, however, that only the impulsive component of the liquid mass is considered in this com- 
parison and that there is no counterpart of the convective or sloshing component for a solid. 

The normal and circumferential stresses induced by the solid on the wall increase from the base to the 
top as indicated in Fig. 4.3, while the impulsive normal pressures induced by the liquid increase from 
zero at the top to a maximum at the base. The normalized values of the height h to the centroid of 
these pressures for the two materials are compared Fig. 6.1. The solid in these like all other solutions 
presented is presumed to be bonded to the wall. 

For an incompressible liquid, the amplification factor AF in (28) is unity, whereas for a compressible 
elastic solid it may have the much larger values identified in Fig. 4.9 of Part A. Considering that the 
effective mass me for a solid-containing system is also greater than for the liquid-containing system, 
it should be clear that the dynamic wall pressures and associated forces induced by the solid may be 
substantially larger that those induced by a liquid of the same density. This conclusion, however, is 
limited to rigid tanks. 

For flexible tanks, the interrelationship of the critical responses of solid- and liquid-containing sys- 
tems is considerably more involved, and its precise definition requires further study. However, the fol- 
lowing qualitative conclusions may be drawn by assuming, as it is reasonable to do, that (28) also 
approximates the response of flexible tanks. 

For liquid-containing flexible tanks, the effective mass me is effectively equal to or only somewhat 
smaller than that for the corresponding rigid tanks, while the amplification factor AF may be substan- 
tially larger than the unit value applicable to rigid tanks. By contrast, for solid-containing flexible 
tanks, not only is the effective mass significantly smaller than for the corresponding rigid tanks (see 
Fig. 4.1), but the AF, as demonstrated in Fig. 4.8, is of the same order of magnitude or substantially 
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higher than for the corresponding rigid tanks. Because of these opposing effects on the values of me 
and AE the critical responses of the solid-containing systems may be higher than, equal to, or lower 
than those induced in tanks of the same dimensions by liquids of the same density. The following 
more specific predictions can also be made: 

1. For tall, slender tanks with low to moderate wall flexibilities, the effective damping of the 
retained material in a solid-containing tank is quite low and so is its ability to transmit the result- 
ing inertial forces by horizontal shearing action to the base. The critical responses of such tanks 
are not likely to be much different from those induced by a liquid of the same mass density. 

2. For shallow, broad tanks of moderate to high wall flexibilities, on the other hand, both the effec- 
tive damping and the shearing resistance of the retained medium in solid-containing tanks are 
quite high, with the result that the critical responses of such tanks are likely to be smaller than 
those of the corresponding liquid-containing tanks. 
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Figure 6.1 Normalized Values of Effective Mass and Effective Height for Solid- and Liquid- 
Containing Rigid Tanks; m, = 0, solid with v = 1/3. 
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SECTION 7 

CONCLUSIONS 

Following are some of the more important conclusions of this study. 

1. The relatively simple method of analysis presented is believed to define with good accuracy the 

2. 

3. 

4. 

effects of wall flexibility on the critical dynamic responses of horizontally excited, solid-contain- 
ing cylindrical tanks. The method is expected to be particularly reliable for relatively broad sys- 
tems with ratios of content-height to tank-radius of the order of unity or less. 

By decreasing the horizontal extensional stiffness of the retained material relative to its shearing 
stiffness, the flexibility of the wall reduces the proportion of the inertia forces transmitted to it by 
extensional action and increases the proportion transmitted to the base by horizontal shearing 
action. The flexibility of the wall also decreases the effective damping of the retained medium, 
and this reduction tends to increase the amplification factor of dynamic response. With the 
exception of rather tall, slender systems with low to moderate wall flexibilities, for which both 
the shearing capacity and effective damping of the retained material are quite low, the net effect 
of wall flexibility is a reduction in peak response. This result is in sharp contrast with that 
obtained for liquid-containing tanks, for which the effect of wall flexibility is to increase rather . 
than decrease the response. 

For rigid tanks, the critical responses of solid-containing tanks are generally substantially larger 
than those of in tanks storing a liquid of the same mass density, but for flexible tanks, particularly 
broad tanks of high wall flexibility, the opposite is likely to be true. 

The comprehensive numerical data presented and the analysis of these data provide not only 
valuable insights into the effects and relative importance of the numerous parameters involved, 
but also a conceptual framework for the analysis and interpretation of the solutions for more 
involved systems as well. 
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