PNNL-11299 UC-606

TANK VAPOR CHARACTERIZATION PROJECT

Headspace Vapor Characterization of Hanford Waste Tank 241-B-105: Results from Samples Collected on 7/30/96

K. H. Pool J. C. Evans B. L. Thomas K. B. Olsen J. S. Fruchter K. L. Silvers

January 1997

Prepared for Westinghouse Hanford Company under a Related Services Agreement with the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory Richland, Washington 99352

[A

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

٠,٠

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Summary

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-105 (Tank B-105) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMATM canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

Table S.1.

Summary Results of Samples to Characterize the Headspace of Tank B-105 on 7/30/96

Category	Sample <u>Medium</u>	Analyte	Vapor ^(a) Concentration	Units
Inorganic Analytes ^(b)	Sorbent Traps	NH ₃	5.6 ± 0.3	ppmv
		NO ₂	< 0.16	ppmv
		NO	< 0.16	ppmv
,		H_2O	10.8 ± 0.9	mg/L
		TT	< 17	
Permanent Gases	SUMMA™			ppmv
• •	Canister	CH ₄	< 25	ppmv
		CO ₂	1147	ppmv
		CO	< 17	ppmv
		N ₂ O	27	ppmv
Total Non-Methane	SUMMA™	Non-Methane Organic	0.77	mg/m ³
Organic Compounds (TO-12)	Canister	Compounds		
Organics	SUMMA™	Trichlorofluoromethane	0.168	ppmv
(TO-14)	Canister	Acetone	0.084	ppmv
		Methanol	0.081	ppmv
Ormina	Sorbent Trong	Trichlorofluoromethane	0.173	00001/
Organics	Sorbent Traps	Acetone	0.060	ppmv
(PNL-TVP-10)				ppmv
		Octamethylcyclotetrasiloxane (TIC)	0.059	ppmv
•				

· (a)

Vapor concentrations were determined using sample-volume data provided by Westinghouse Hanford Company and are based on averaged data.

(b)

Inorganic analyte concentrations are based on dry tank air at standard temperature and pressure (STP).

• · · · · · ·

Acknowledgments

The authors gratefully acknowledge the support of other project staff at Pacific Northwest National Laboratory (PNNL) who contributed to the successful completion of this sampling and analysis activity. J. A. Edwards served as the PNNL single-point-of-contact for sample preparation and shipping. J. L. Julya assisted with organic laboratory work. S. O. Slate, K. P. Schielke, L. M. P. Thomas, and G. W. Dennis supported inorganic laboratory work.

Glossary

% D	% Difference
CAS	Chemical Abstracts Service
CCV	continuing calibration verification
COC	chain-of-custody
C _v	concentration by volume
DIW	deionized water
EPA	U.S. Environmental Protection Agency
GC/FID	gas chromatography/flame ionization detector
GC/MS	gas chromatograph/mass spectrometer
GC/TCD	gas chromatography/thermal conductivity detection
IC	ion chromatography
IL	impact level
IS	internal standard
ISVS	in situ vapor sampling system
MDL	method detection limit
NIST	National Institute for Standards and Technology
PNL	previous designation for Pacific Northwest Laboratory
PNNL	Pacific Northwest National Laboratory
ppbv	part per billion by volume
ppm	parts per million
ppmv	part per million by volume
QA	quality assurance
RPD	relative percent difference
RSD	relative standard deviation
SAP	sample and analysis plan
SCIC	suppressed-conductivity ion chromatography
SRM	standard reference material
STP	standard temperature and pressure
SUMMA™	stainless steel, passivated interior canister
TEA	triethanolamine
TIC	tentatively identified compound
TNMOC	total non-methane organic compounds
TST	triple sorbent trap
UHP	ultra high purity
VAL	Vapor Analytical Laboratory
WHC	Westinghouse Hanford Company

. . • *

Contents

Summary	,	iii
Acknowledg	nents	v
Glossary		vii
1.0 Introduct	on	
2.0 Analytica 2.1 2.2 2.3 2.4 2.5	Inorganic Analytes Permanent Gases Total Non-Methane Organic Organic Analytes by SUMM	3
3.0 Conclusi	ons	
4.0 Reference	e and Further Reading	
		Inorganic Analytes A.1
Appendix B:	Tank Vapor Characterization:	Permanent Gases
Appendix C:	Tank Vapor Characterization:	Total Non-Methane Organic Compounds C.1
Appendix D:	Tank Vapor Characterization:	Organic Analytes by SUMMA [™] Method D.1
Appendix E:	Tank Vapor Characterization:	Organic Analytes by Triple Sorbent Trap Method . E.1
Appendix F:	Tank Vapor Characterization:	Chain of Custody Sample Control Forms F.1

Tables

S .1	Summary Results of Samples to Characterize the Headspace of Tank B-105 on 7/30/96 iii
A.1	Analytical Procedures, Quantification Detection Limits, and Notification Levels for Selected Inorganic Analytes A.5
A.2	List of PNNL Inorganic Samples, Controls, and Gravimetric Results Obtained from the Headspace of Tank B-105 on 7/30/96 A.7
A.3	Inorganic Vapor Sample Results Obtained from the Headspace of Tank B-105 on 7/30/96
B.1	Analytical Procedures and Detection Limits for Permanent Gases B.2
B.2	Permanent Gas Analysis Results for Samples Collected from the Headspace of Tank B-105 and for Ambient Air and Ambient Air Through the ISVS Collected Near Tank B-105 in SUMMA TM Canisters on 7/30/96 B.3
C.1	TO-12 Results for Samples Collected Through the ISVS from the Headspace of Tank B-105 and from Ambient Air Near Tank B-105 in SUMMA [™] Canisters on 7/30/96
D.1	Target Organic Analytes
D.2	Positively Identified and Quantitated Target Analytes and Tentatively Identified Compounds and Estimated Concentrations for Samples from the Headspace in Tank B-105 in SUMMA [™] Canisters Collected on 7/30/96 D.6
D.3	Positively Identified and Quantitated Target Analytes and Tentatively Identified Compounds and Estimated Concentrations of Replicate Analysis of a Single SUMMA [™] Canister Collected from the Headspace of Tank B-105 on 7/30/96 D.8
D.4	Positively Identified and Quantitated Target Analytes and Tentatively Identified and Estimated Compounds Concentrations in Ambient Air and Ambient Air Through the ISVS Collected Near Tank B-105 in SUMMA TM Canisters on 7/30/96 D.10
E.1	Target Organic Analytes E.2
E.2	Positively Identified and Quantitated Target Analytes and Tentatively Identified Compounds and Estimated Concentrations for Triple Sorbent Traps Collected from the Headspace of Tank B-105 on 7/30/96 E.7

Tables (Cont)

E.3	Positively Identified and Quantitated Target Analytes and Tentatively Identified		
	Compounds and Estimated Concentrations of Replicate Analysis of a Single		
	Triple Sorbent Trap Collected from the Headspace of Tank B-105 on 7/30/96	.]	E.9

Figures

D.1	Total Ion Chromatogram for Hanford Waste Tank B-105 SUMMA [™] Canister Sample S6075-A04-282 Collected on 7/30/96	D.12
E.1	Total Ion Chromatogram for Hanford Waste Tank B-105 Triple Sorbent Trap Sample S6075-A12-1096 Collected on 7/30/96	. E.10

1.0 Introduction

This report describes the results of vapor samples taken from the headspace of waste storage tank 241-B-105 (Tank B-105) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL)^(a) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was "Vapor Sampling and Analysis Plan" (Homi 1995), and the sample job was designated S6075. Samples were collected by WHC on July 30, 1996 using the In Situ Vapor Sampling System (ISVS).

Sampling devices and controls provided for this job included six sorbent trains for selected inorganic analytes (four sample trains and two field blanks), five SUMMA[™] canisters for permanent gases and organic analytes (three samples and two ambient canisters), and eight triple sorbent traps (TSTs) for organic analytes (four samples, two field blanks, and two trip blanks). The samples and controls were provided to WHC on July 23, 1996. Exposed samples and controls were returned to PNNL on August 7, 1996. Samples and controls were handled, stored, and transported using chain-of-custody (COC) forms to ensure sample quality was maintained.

Samples and controls were handled and stored as per PNNL technical procedure PNL-TVP-07^(b), and, upon return to PNNL, were logged into PNNL Laboratory Record Book 55408. Samples were stored at the VAL under conditions (e.g., ambient, refrigerated) required by technical procedures. Access to the samples was controlled and limited to PNNL staff trained in the application of specific technical procedures to handle samples for the tank vapor characterization project. Analyses were performed in the 300 Area at Hanford; specific analytical methods are described in the text. In summary, sorbent traps for inorganic analytes were either weighed (for water analysis) or weighed and desorbed with the appropriate aqueous solutions for analyzing inorganic analytes by either selective electrode or ion chromatography (IC).

Tank headspace samples were analyzed for

- *permanent gases* using gas chromatography/thermal conductivity detection (GC/TCD)
- *total non-methane organic compounds* using cryogenic preconcentration followed by gas chromatography/flame ionization detection (GC/FID)
- organic analytes analyses using cryogenic preconcentration followed by gas chromatograph/mass spectrometer (GC/MS)

(b)

⁽a) Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by Battelle under Contract DE-AC06-76RLO 1830. The previous name of the laboratory was Pacific Northwest Laboratory (PNL), which is used when previously published documents are cited.

PNL-TVP-07, Rev. 2, December 1995, Sample Shipping and Receiving Procedure for PNL Waste Tank Samples, PNL Technical Procedure, Tank Vapor Project, Pacific Northwest Laboratory, Richland, Washington.

• organic analytes (TST samples) using thermal desorption followed by GC/MS.

This report provides summary and detailed analytical information related to the samples and controls. Section 2.0 provides a summary of analytical results. Section 3.0 provides conclusions. Descriptions of samples, analytical methods, quality assurance (QA) and quality control issues, and detailed sample results are provided for each category of samples and analyses in Appendices A, B, C, D, and E. Appendix F contains the completed COC forms.

2.0 Analytical Results

Samples obtained by WHC from the headspace of Tank B-105 on July 30, 1996 (Sample Job S6075) were analyzed in the PNNL Vapor Analytical Laboratory. Summarized results are described in this section; details of samples, analyses, and data tables are provided in the appendices.

2.1 Inorganic Analytes

The vapor concentrations of selected inorganic analytes (NH₃, NO₂, and NO) and vapor mass concentration (primarily H₂O) were determined. The average and one standard deviation of concentration results from inorganic sorbent sample trains used to sample headspace vapors were 5.6 ± 0.3 ppmv (NH₃), < 0.16 ppmv (NO₂), < 0.16 ppmv (NO), and 10.8 ± 0.9 mg/L (primarily H₂O). The vapor concentration results were based on four samples for each compound. All samples (100%) were successfully analyzed and used in the averages. Representative field blanks were also analyzed and used to correct data.

Results provided above are estimated to be accurate to within $\pm 10\%$ (assuming negligible error in the sample volume measurements) and are within the $\pm 30\%$ specified by the SAP. Measurement precision, as indicated by the relative standard deviation, was < 9% for the compounds found to be present at concentrations greater than the analytical method estimated quantitation limit (EQL), and within the 25% specified by the SAP. These uncertainties were confirmed by evaluation of spikes and continuing calibration standards (NH₃ and NO₂) and evaluation of the variability of field blanks (H₂O). All samples were analyzed within 17 days after being collected. No deviations from standard procedures were noted. Data and additional information on samples, analyses, and results are described in Appendix A. The chain-of-custody form used to control samples, 100264, is included in Appendix F.

2.2 Permanent Gases

The complete results of the permanent gas analysis for Tank B-105 can be found in Appendix B. In summary, carbon dioxide at 1147 ppmv and nitrous oxide at 27 ppmv were the only permanent gases detected in the tank headspace samples.

2.3 Total Non-Methane Organic Compounds

The complete results of the TO-12 analysis for Tank B-105 can be found in Appendix C. In summary, the average concentration in three of the tank headspace samples was 0.77 mg/m^3 . This average value compares to 2.49 mg/m³ for the sum of all target compounds identified in the analysis of the SUMMATM canisters.

3

2.4 Organic Analytes by SUMMA[™] Method

The complete results of the SUMMATM analysis for Tank B-105 can be found in Appendix D. In summary, 65 target analytes above the IDL were detected in the tank headspace samples. No tentatively identified compounds (TICs) were observed in the tank headspace samples. Trichlorofluoromethane at 1.03 mg/m³ and acetone at 0.217 mg/m³ accounted for 50% of the target compounds. The total concentration of the target analytes was 2.49 mg/m³. This compares to a total concentration of 0.77 mg/m³ identified in the TO-12 analysis of the three tank headspace samples.

SUMMA^m canister PNL 323 was analyzed in replicate for target analytes and TICs to determine analytical precision. Twenty-eight of 62 target compounds had RPDs of less than 10%. No TICs were identified in the analysis.

Sixty-four target compounds and one TIC were observed in one or both of the ambient air samples. Many of the compounds were identified at trace levels. Trace levels of many of the target analytes may be false positives due to the fact that some of the compounds were found in the continuing calibration blank (CCB) above the EQL and are greater than 20 times the concentration found in the sample. These compounds are flagged with a "B" in the tables.

2.5 Organic Analytes by Triple Sorbent Trap Method

The complete results of the sorbent trap analysis for Tank B-105 can be found in Appendix E. In summary, 29 target analytes above the IDL and seven TICs were detected in the tank headspace samples. Twenty-five of the target analytes and all seven TICs were observed in two or more sorbent traps. Two TICs were not identified and were labeled as unknowns. Trichlorofluoromethane at 1.06 mg/m³ and acetone at 0.16 mg/m³ accounted for 65% of the target analytes and 32% of the total concentration identified by the analysis. The total concentration of the target analytes was 1.87 mg/m³ or 49% of the total concentration identified by the analyses. The predominant TICs observed in these samples were octamethylcyclotetrasiloxane at 0.78 mg/m³, an unknown C12 alkane at 0.51 mg/m³, and 2,2,3,3-tetramethylbutane at 0.23 mg/m³. The total concentration of the TICs was found to be 1.93 mg/m³ or 51% of the total concentration identified by analysis. The total concentration of all the compounds identified was 3.80 mg/m³.

Triple sorbent trap sample PNL 1096 was analyzed in replicate for target analytes and TICs to determine analytical precision. Twenty of 25 target compounds and six of seven TICs had RPDs of less than 10%.

3.0 Conclusions

The concentrations of inorganic and organic analytes were determined from samples of the headspace of Tank B-105 on July 30, 1996 (Sample Job S6075). The vapor concentrations were based either on whole-volume samples (SUMMATM canisters) or on sorbent traps exposed to sample flow. In the case of the canisters, the concentrations were based on analytical results and the tracking of dilution/concentration of sample volumes obtained directly from the canisters. In the case of the sorbent traps, concentrations were based on analytical results and sample volumes reported by WHC. Known sampling and analytical variances from established quality assurance requirements, where significant, were documented in this report, as required by the SAP (Homi 1995). No immediate notification levels; notification levels and notification procedures are described in the SAP (Homi 1995).

. . .

•

4.0 Reference and Further Reading

Reference

Homi, C.S. 1995. Vapor Sampling and Analysis Plan. WHC-SD-WM-TP-335, Rev. 2A, Westinghouse Hanford Company, Richland, Washington.

Further Reading

Pacific Northwest Laboratory. Analytical Laboratory Procedure Compendium. Procedure PNL-ALO-271. PNL-MA-599, Pacific Northwest Laboratory, Richland, Washington.

Pacific Northwest Laboratory. Quality Assurance Manual, Part 3: Procedures for Quality Assurance Program. PNL-MA-70, Part 3, Pacific Northwest Laboratory, Richland, Washington.

Pacific Northwest National Laboratory. Quality Assurance Plan for Activities Conducted by the Pacific Northwest National Laboratory Vapor Analytical Laboratory (VAL) and the Pacific Northwest National Laboratory Tank Vapor Characterization Project. ETD-002, Rev. 0, Pacific Northwest National Laboratory, Richland, Washington.

U.S. Department of Energy. Hanford Analytical Services Quality Assurance Plan (HASQAP). DOE/RL-94-55, Rev. 2, U. S. Department of Energy, Richland, Washington.

Westinghouse Hanford Company. Quality Assurance Project Plan for Tank Vapor Characterization. WHC-SD-WM-QAPP-013, Rev. 1, Westinghouse Hanford Company, Richland, Washington.

Appendix A

Tank Vapor Characterization:

Inorganic Analytes

Appendix A

Tank Vapor Characterization: Inorganic Analytes

Solid sorbent traps, prepared in multi-trap sampling trains, were supplied to Westinghouse Hanford Company (WHC) for sampling the tank headspace using the In Situ Vapor Sampling System (ISVS). Blanks, spiked blanks (when requested), and exposed samples were returned to Pacific Northwest National Laboratory (PNNL) for analysis. Analyses were performed to provide information on the tank headspace concentration of the following analytes: ammonia (NH₃), nitrogen dioxide (NO₂), nitric oxide (NO), and water (H₂O). Procedures were similar to those developed previously during sample jobs performed with the VSS connected to the headspace of Tank C-103 (Ligotke et al. 1994). During those sample jobs, control samples provided validation that the sorbent tubes effectively trapped NH₃ and mass. Samples were prepared, handled, and disassembled as described in Technical Procedure PNL-TVP-09^(a). Analytical accuracy was estimated based on procedures used. Sample preparation and analyses were performed following PNNL quality assurance (QA) impact level II requirements.

A.1 Sampling Methodology

Standard glass tubes containing sorbent materials to trap vapors of selected analytes of NH_3 , NO, NO₂, and H₂O (supplied by SKC Inc., Eighty Four, Pennsylvania) were obtained, prepared, and submitted for vapor sampling. The sorbent traps were selected based on their use by the Occupational Safety and Health Administration to perform workplace monitoring and because of available procedures and verification results associated with that particular application. The typical sorbent traps used consisted of a glass tube containing a sorbent material specific to the compound of interest. In general, the tubes contained two sorbent layers, or sections; the first layer was the primary trap, and the second layer provided an indication of breakthrough. In the tubes, sorbent layers are generally held in packed layers separated by glass wool. The sorbent traps, with glass-sealed ends, were received from the vendor.

The type and nominal quantity of sorbent material varied by application. Sorbent traps were selected for the tank sample job and included the following products. The NH₃ sorbent traps contained carbon beads impregnated with sulfuric acid; nominally, 500 mg were contained in the primary and 250 mg in the breakthrough sections. The NH₃ was chemisorbed as ammonium sulfate $[(NH_4)_2SO_4]$. The NO₂ traps contained a zeolite impregnated with triethanolamine (TEA), with 400 mg in the primary and 200 mg in the breakthrough sections. The NO₂ was absorbed and disproportionated to equi-molar quantities of nitrite ions (NO₂) and nitrate ions (NO₃). Glass tubes containing 800 mg of an oxidant such as chromate were used to convert NO to NO₂. The converted NO was then collected as nitrite and nitrate in an NO₂ trap. The water traps contained 300 mg of silica gel in the primary and 150 mg in the breakthrough sections.

(a)

Pacific Northwest Laboratory. 12/95. Sorbent Trap Preparation for Sampling and Analysis: Waste Tank Inorganic Vapor Samples, PNL-TVP-09 (Rev. 2), PNL Technical Procedure, Pacific Northwest Laboratory, Richland, Washington.

Sorbent trains provided to trap inorganic compounds included all or some of the following: samples, spiked samples, spares, blanks, and spiked blanks. Sorbent trains were prepared from samelot batches, with the oxidizer sections of the NO_x sorbent trains having been stored previously in a freezer. After sample preparation, sorbent trains were stored at $\leq 10^{\circ}$ C because of handling recommendations for the oxidizer tubes attached to some samples. After receipt of exposed and radiologically cleared samples from WHC and disassembly of the sorbent trains, samples were provided to the analytical laboratory at ambient temperature.

The sorbent traps were prepared in multi-trap sorbent trains configured so sample flow passed in order through the traps, targeting specific analytes, and then through a desiccant trap. The specific order of traps within the various sorbent trains is described in Section A.4. The ends of the glasstube traps were broken, and the traps were weighed and then connected to each other using uniform lengths of 3/8-in. perfluoroalkoxy-grade Teflon[®] tubing. The tubing was heated in hot air and forced over the open ends of the traps to form a tight seal. The inlets of the sorbent trains each consist of a short section of tubing that has a 3/8-in. stainless steel Swagelok[®] nut, sealed using a Swagelok[®] cap. The trailing ends of the sorbent trains (the downstream end of the traps containing silica gel) were each sealed with red plastic end caps provided by the manufacturer. The sorbent-tube trains remained sealed other than during the actual sampling periods. During vapor sampling, C-Flex[®] tubing was provided by WHC to connect the downstream ends of the sorbent trains to the sampling manifold exhaust connections.

A.1.1 Concentration Calculations. The concentrations of target compounds in the tank headspace were determined from sample results, assuming effective sample transport to the sorbent traps. Concentration, in parts per million by volume (ppmv), was determined by dividing the mass of the compound, in μ mol, by the volume of the dried tank air sampled in moles. The micromolar sample mass was determined by dividing the compound mass, in μ g, by the molecular weight of the compound, in g/mol. The molar sample volume was determined, excluding water vapor, by dividing the standard sample volume (at 0°C and 760 torr), in L, by 22.4 L/mol. For example, the concentration by volume (C_v) of a 3.00-L sample containing 75.0 μ g of NH₃ equals

$$C_{v} = \frac{75.0 \ \mu g}{17.0 \ g/mol} \left[\frac{3.00 \ L}{22.4 \ L/mol} \right]^{-1} = 32.9 \ ppmv \tag{A.1}$$

This calculational method produces concentration results that are slightly conservative (greater than actual) because the volume of water vapor in the sample stream is neglected. The volume of water vapor is not included in the measured sampled volume because of its removal in desiccant traps upstream of the mass flowmeter. However, the bias is generally expected to be small. For a tank headspace temperature of 35°C, the magnitude of the bias would be about 1 to 6%, assuming tank headspace relative humidities of 20 to 100%, respectively. The concentration of mass (determined gravimetrically) was also per dry-gas volume at standard conditions.

A.2 Analytical Procedures

The compounds of interest were trapped using solid sorbents and chemisorption (adsorption of water vapor). Analytical results were based on extraction and analysis of selected ions. Analytical procedures used are specified in the text.

A.2.1 Ammonia Analysis. The sorbent material from the NH₂-selective sorbent traps was placed into labeled 20-mL glass scintillation vials. Vials containing front-, or primary-, section sorbent material were treated with 10.0 mL of deionized water (DIW), and vials containing back-upsection sorbent material were treated with 5.0 mL of DIW. After extraction, the NH₃ sorbent traps were analyzed using the selective ion electrode procedure PNL-ALO-226 Rev. $0^{(a)}$. Briefly, this method includes 1) preparing a 1000- μ g/mL (ppm) NH₃ stock standard solution from dried reagentgrade NH₄Cl and DIW, 2) preparing 0.1-, 0.5-, 1.0-, 10-, and 100-ppm NH₃ working calibration standards by serial dilution of the freshly made stock standard, 3) generating an initial calibration curve from the measured electromotive force signal versus NH₃ concentration data obtained for the set of working standards, 4) performing a calibration-verification check, using a mid-range dilution of a certified National Institute for Standards and Technology (NIST)-traceable 0.1 M NH₄Cl standard from an independent source, after analyzing every five or six samples, 5) continuing this sequence until all samples of the batch have been measured, including duplicates and spiked samples, and 6) remeasuring the complete set of calibration standards (at the end of the session). Electromotive force (volts) signal measurements obtained for samples are compared to those for standards, either graphically or algebraically (using linear regression) to determine NH_3 concentration in the samples.

A.2.2 Nitrite Analysis. The sorbent traps for NO₂ and NO were desorbed in an aqueous TEA and n-butanol solution and analyzed by suppressed-conductivity ion chromatography (SCIC) for nitrite according to PNL-ALO-212, Rev. 1^(b) modified to obviate interferences by concentrations of non-target analytes. Specifically, the modifications used were 1) eluent 1.44 mM Na₂CO₃ + 1.8 mM NaHCO₃ at 2.0 mL/min, 2) one guard column (AG4A) and two separator columns (AS4A) in series instead of just one separator column, and 3) all standards, samples, and blanks were injected into the IC sample loop through 0.45- μ m syringe filters.

For the analysis, the sorbent materials were placed into labeled 20-mL glass scintillation vials. To each vial, 3.0 mL of desorbing solution (15 g TEA + 1 mL n-butanol in 1.0 L of DIW) was added. Primary sorbent-tube sample materials and back-up (breakthrough) sorbent-trap materials were analyzed separately using identical procedures. Each analytical session was conducted as follows. Working nitrite standards (0, 0.1, 0.25, and 0.5 ppm) were prepared by diluting a stock nitrite standard with desorbing solution. An initial calibration curve was prepared from the instrument response (chromatographic peak height) versus nitrite standard concentration data for the set of working standards. A calibration verification check using one of the midrange standards was

Procedure entitled "Ammonia (Nitrogen) in Aqueous Samples," PNL-ALO-226, in the Analytical Chemistry Laboratory (ACL) Procedure Compendium, Vol. 3: Inorganic Instrumental Methods. Pacific Northwest Laboratory, Richland, Washington.

⁽b) Procedure entitled "Determination of Inorganic Anions by Ion Chromatography," PNL-ALO-212, in the Analytical Chemistry Laboratory (ACL) Procedure Compendium, Vol. 3: Inorganic Instrumental Methods. Pacific Northwest Laboratory, Richland, Washington.

performed after the analysis of every six samples. If the instrument response indicated that sample nitrite concentration was outside the calibration range (> 0.5 ppm nitrite), the sample was diluted with desorbing solution and reanalyzed. After all samples of a batch were analyzed, the complete set of calibration standards was remeasured to verify consistent instrument response, and the analytical session was terminated.

Instrument responses (peak height) observed for samples were compared to those for standards to determine the nitrite concentration of the samples. Because NO_2 and NO converted to NO_2 were collected on the sorbent as equal quantities of nitrite and nitrate, and the analysis was specific for nitrite, the molar masses of NO_2 and NO were determined by doubling the analytically determined molar mass of nitrite.

A.2.3 Mass (Water) Analysis. Sorbent traps used to make each sample train were weighed using a semi-micro mass balance, after labeling and breaking the glass tube ends, without plastic end caps in accordance with procedure PNL-TVP-09. After receipt of exposed samples, the sorbent traps were again weighed to determine the change in mass. Records of the measurements were documented on sample-preparation data sheets. The mass concentration, generally roughly equal to the concentration of water, was determined by dividing the combined change in mass from all traps in a sorbent train by the actual volume of gas sampled. Field blanks were used to correct results.

A.3 Quality Assurance/Quality Control

Analytical work was performed according to quality levels identified in the project QA plan and several PNNL documents including PNL-MA-70 (Part 3), PNL-ALO-212, PNL-ALO-226, and Quality Assurance Plan ETD-002. The samples were analyzed following PNNL Impact Level II. A summary of the analysis procedures and limits for the target inorganic compounds is provided in Table A.1. The table also shows generic expected notification ranges and describes related target analytical precision and accuracy levels for each analyte; the information in the table is based on the data quality objective assessment by Osborne et al. (1995). From the table, it can be seen that the EQL required to resolve the analyte at one-tenth of the recommended exposure limit for each of the target analytes is achieved using current procedures and with a vapor-sample volume of 3 L and a desorption-solution volume of 3 mL (10 mL for NH_3).

The accuracy of concentration measurements depends on potential errors associated with both sampling and analysis (see Section A.4). Sampling information, including sample volumes, was provided by WHC; sample-volume uncertainty was not provided. The uncertainty of analytical results, which depends on the method used, was estimated to be within allowable tolerances (Osborne et al. 1995; Table A.1). For NH₃ analyses, the accuracy of laboratory measurements by selective ion electrode was estimated to be \pm 5% relative, independent of concentration at 1 µg/mL or greater levels. The uncertainty includes preparation of standards, purity of the ammonium salt used to prepare standards, potential operator bias, ambient temperature variations, etc. Working standards are traceable to NIST standard reference material (SRM) by using an independent calibration verification standard certified to be NIST traceable. Nitrite analyses (for NO₂ and NO) are performed using certified but not NIST-traceable SRM; this is because NIST does not make a nitrite SRM. Based on experience in comparing nitrite working standards prepared from several different sources and factors mentioned for NH₃ above, the estimated maximum bias for samples derived from sampling for NO₂ is \pm 10%, and for samples derived from sampling for NO it is \pm 5% relative.

Table A.1. Analytical Procedures, Quantification Limits, and Notification Levels for Selected Inorganic Analytes^(a)

			EQL ^(b)	EQL ^(b)	Level ^(c)
Analyte	<u>Formula</u>	Procedure	<u>(µg)</u>	(ppmv)	(ppmv)
Ammonia	$\rm NH_3$	PNL-ALO-226	1.0	0.71	≥ 150
Nitrogen Dioxide	NO ₂	PNL-ALO-212	0.3	0.16	≥ 10
Nitric oxide	NO	PNL-ALO-212	0.3	0.16	≥ 50
Mass (water) ^(d)	n/a	PNL-TVP-09	0.6 mg	0.3 mg/L	n/a

(a) Analytical precision and accuracy targets for results in the expected ranges equal $\pm 25\%$ and 70 to 130\%, respectively (Osborne et al. 1995).

(b) The lowest calibration standard is defined as the EQL.

(c) As per Table 7-1 in Osborne et al. (1995), Notification levels require verbal and written reports to WHC on completion of preliminary analyses.

(d) The vapor-mass concentration, thought to be largely water vapor, is determined gravimetrically.

n/a = not applicable.

The accuracy of measurements of sample mass is typically ± 0.1 mg, or much less than 1% of the mass changes of most samples. The analytical accuracy of measurements of the change in mass of sorbent trains, based on the variability in mass change of field-blank sorbent trains, is determined for each sample job and is typically about ± 1 mg per five-trap sorbent train.

A.4 Inorganic Sample Results

Samples were obtained by WHC from the tank headspace of Tank B-105 on July 30, 1996 using the ISVS. The sample job designation number was S6075. Samples were prepared, submitted to WHC for the sample job, and then returned to PNNL and analyzed to provide information on the concentrations of NH_3 , NO_2 , NO, and mass (primarily H_2O). Samples were controlled using COC form 100264 (Appendix F). The inorganic samples and the sample volume information were received from WHC on August 7, 1996. Analyses were completed on August 7, 1996 (gravimetric, 9 days elapsed), August 15, 1996 (ammonia, 17 days elapsed), and August 8, 1996 (nitrite, 10 days elapsed).

A list of samples, sampling information, sample volumes, and gravimetric results is shown in Table A.2. The types of sample trains used and the order of sorbent traps within each train are also shown in the table. For example, the sorbent train $NH_3/NO_x/H_2O$ contained an NH_3 trap at the inlet end, a NO_x series in the middle (Section A.4.2), and a desiccant trap at the outlet end. Analytical mass and concentration results are shown in Table A.3. Sample volumes were provided by WHC; sample-volume uncertainty was not provided. Tank headspace concentration results (Table A.3) are based on this information, and the listed uncertainties equal plus or minus one standard deviation of the individual results from each set of samples. Percentage relative standard deviation (RSD) may be determined by dividing the standard deviation by the average result and multiplying by 100. Where analytical results from samples, corrected for blanks, were less than the EQL in Table A.1, the concentration results (Table A.3) are listed as "less-than" the EQL value. Results of control samples,

such as trip blanks, field blanks, and spiked blanks, are discussed in this section. Spiked blanks, when used, were transported to the field but not opened. Spiked samples, when used, were opened in the field and used to collect tank vapors. Sample results were not corrected for the percentage recoveries of spiked blanks.

A.4.1 Ammonia Results. The concentration of NH₃ was 5.6 \pm 0.3 ppmv, based on all four samples. The blank-corrected NH₃ quantities in the sorbent traps ranged from 0.43 to 0.49 µmol in front sections; blank-corrected NH₃ was not found ($\leq 0.01 \mu$ mol) in back sorbent sections. Blank corrections, 0.096 µmol in front and 0.059 µmol in back sections, were about 17% of collected quantities. The analysis of one sample was duplicated and yielded a repeatability of $\pm 0.0\%$. One blank sorbent trap was spiked with 17 µmol of NH₃ and yielded a percentage recovery of 99%. One sample leachate was spiked after initial analysis with roughly the quantity of ammonia in the sample and yielded a percentage recovery of 92%. The initial and continuing calibration verification standards, using NIST-traceable material, yielded percentage recoveries of 101% (ICV) and 107 and 109% (CCV) during the analytical session. A 5-point calibration was performed over an NH₃ range of 0.1 to 100 µg/mL.

A.4.2 Nitrogen Oxides Results. The concentrations of NO₂ and NO were both < 0.16 ppmv based on all four samples. Blank-corrected NO₂⁻ quantities in the sorbent traps were all $< 0.013 \mu$ mol. Nitrite blank levels used to correct data were 0.0069 μ mol in front (four of four blanks analyzed) and 0.0042 μ mol in back (two of four blanks analyzed) sorbent sections. The analyses of two samples were duplicated and yielded repeatabilities of $\pm 0\%$ and $\pm 2.5\%$. Two sample leachates were spiked with 0.25 and 0.125 ppm NO₂⁻ and both yielded percentage recoveries of 100%. A 4-point calibration was performed over a concentration range of 0 to 0.5 μ g NO₂⁻ per mL in the desorbing matrix. Although spiked blanks were not tested, blanks spiked with 0.0064, 0.047, 0.11, and 0.74 μ mol NO₂⁻ during previous sample jobs yielded percentage recoveries of 153 \pm 14, 103 \pm 4, 106 \pm 8, and 111 \pm 7%, respectively (Clauss et al. 1994; Ligotke et al. 1994).

A.4.3 Gravimetric Results. Gravimetric results yield water vapor concentrations. This is because the total mass concentration of other vapors in the headspaces of Hanford waste tanks, measured in $\mu g/L$, are typically two or three orders of magnitude less than the mg/L mass concentrations of the water vapor found in even relatively dry tanks. The water vapor mass concentration collected in the 5-trap sorbent trains was 10.8 ± 0.9 mg/L, based on dry air sample volumes (0°C and 760 torr). The result was determined from an average mass gain of 33.8 mg from all four sample trains. The blank correction applied to the results was -13.6 mg per train, based on a mass gain of 13.6 ± 0.2 mg per two 5-trap field-blank sorbent trains. A control mass was measured and indicated a measurement accuracy of ± 0.1 mg. Although no spiked blanks were tested, the percentage recovery of mass from three blank H₂O traps spiked with 51 mg water was $103 \pm 2\%$ during a previous sample job (Clauss et al. 1994).

Corrected for a measured tank headspace temperature of 18.6° C and pressure of 750.8 torr, the actual water vapor mass concentration from the gravimetric results was 9.9 ± 0.8 mg/L. Also based on analytical results, the partial pressure of water vapor was 10.0 ± 0.8 torr, the relative humidity was $62 \pm 5\%$, and the dew point was $11.2 \pm 0.9^{\circ}$ C.

· ·		Sample Port and Volume Information ^(a)					
·		Sample	Flow Rate	Duration	Volume	Mass Gain	
Sample Number	Sorbent Train Type	Port	(mL/min)	(min)	(L)	(g)	
Samples:							
S6075-A07-52R	NH3/NOx/H2O	1	200.0	10.0	1.86	0.0328	
S6075-A07-53R	NH3/NOx/H2O	2	200.0	10.0	1.86	0.0341	
S6075-A07-54R	NH3/NOx/H2O	3	200.0	10.0	1.86	0.0323	
S6075-A07-55R	NH3/H2O/H2O	4	200.0	10.0	1.86	0.0359	
Controls:							
S6075-A15-56R	NH3/NOx/H2O Field Blank	n/a ^(b)	n/a	n/a	n/a	0.0134	
S6075-A16-57R	NH3/NOx/H2O Field Blank	n/a	n/a	n/a	n/a	0.0137	

Table A.2List of PNNL Inorganic Samples, Controls, and Gravimetric ResultsObtained from the Headspace of Tank B-105 on 7/30/96

(a) Sampling information and dry-gas sample volumes, corrected to 0°C and 760 torr, were provided by WHC. Uncertainty values were not provided with sample-volume results.

(b) n/a = not applicable.

_	Ana	alytical Resul		Sample	Vapor ^(a)
,	Front	Back	Total ^(b)	Volume	Concentration
Sample	Section	Section	Blank-Corrected	(L)	(ppmv)
<u>NH₃ Samples:</u>			<u>0.46</u>	<u>1.86</u>	5.6 ± 0.3
S6075-A07-52R	0.53	0.06	0.43	1.86	5.2
S6075-A08-53R	0.54	NA ^(c)	0.44	1.86	5.3
S6075-A09-54R	0.59	0.06	0.49	1.86	5.9
S6075-A10-55R	0.57	NA	0.47	1.86	5.7
NO2 Samples:		•	<u><0.013</u>	<u>1.86</u>	<u><0.16</u>
S6075-A07-52R	0.0067	NA	<0.013	1.86	<0.16
S6075-A08-53R	0.0059	0.0037	<0.013	1.86	<0.16
S6075-A09-54R	0.0060	NA	<0.013	1.86	<0.16
S6075-A10-55R	0.0060	0.0041	<0.013	1.86	< 0.16
NO Samples:			<u><0.013</u>	<u>1.86</u>	<u><0.16</u>
S6075-A07-52R	0.0127	0.0032	<0.013	1.86	<0.16
S6075-A08-53R	0.0087	NA	<0.013	1.86	<0.16
S6075-A09-54R	0.0082	0.0037	<0.013	1.86	<0.16
S6075-A10-55R	0.0096	NA	<0.013	1.86	<0.16
Gravimetric Samples			<u>20.2 mg</u>	<u>1.86</u>	10.8 ± 0.9 mg/L
S6075-A07-52R	n/a ^(c)	n/a	19.2	1.86	10.3
S6075-A08-53R	n/a	n/a	20.5	1.86	11.0
S6075-A09-54R	n/a	n/a	18.7	1.86	10.1
S6075-A10-55R	n/a	n/a	22.3	1.86	12.0

Table A.3Inorganic Vapor Sample Results Obtained from the Headspace of
Tank B-105 on 7/30/96

(a) Blank-corrected vapor concentrations were calculated using WHC-reported dry-air sample volumes (Table A.2). In the calculation for concentration, the nitrite values (listed) were doubled to account for unanalyzed nitrite. Sample results were not corrected for percentage recovery of spiked samples or spiked blanks. Underlined values represent the average of the set of samples. Concentration uncertainty equals ± 1 standard deviation (absolute) for each set of samples. Percentage RSD may be determined by dividing standard deviation by the average and multiplying the result by 100. The use of "<" is defined in Section A.4.</p>

(b) Total blank-corrected analyte masses (nitrite for NO₂ and NO) were determined, when significant, by subtracting the quantity of analyte found in blanks from that found in samples. The level of analytes found in blanks is described in the subsections of Section A.4.

(c) NA = not analyzed; n/a = not applicable.

A.8

A.5 References

Clauss, T. W., M. W. Ligotke, B. D. McVeety, K. H. Pool, R. B. Lucke, J. S. Fruchter, and S. C. Goheen. 1994. Vapor Space Characterization of Waste Tank 241-BY-104: Results from Samples Collected on 6/24/94. PNL-10208. Pacific Northwest National Laboratory, Richland, Washington.

Ligotke, M. W., K. H. Pool, and B. D. Lerner. 1994. Vapor Space Characterization of Waste Tank 241-C-103: Inorganic Results from Sample Job 7B (5/12/94 - 5/25/94). PNL-10172, Pacific Northwest National Laboratory, Richland, Washington.

Osborne, J. W., J. L. Huckaby, E. R. Hewitt, C. M. Anderson, D. D. Mahlum, B. A. Pulsipher, and J. Y. Young. 1995. *Data Quality Objectives for Generic In-Tank Health and Safety Vapor Resolution*. WHC-SD-WM-DQO-002, Rev. 1, Westinghouse Hanford Company, Richland, Washington.

Appendix B

Tank Vapor Characterization:

Permanent Gases

Appendix B

Tank Vapor Characterization: Permanent Gases

B.1 Sampling Methodology

Before sending SUMMATM canisters out to the field for sampling, the canisters are cleaned and verified contaminant-free according to Pacific Northwest National Laboratory (PNNL) Technical Procedure PNL-TVP-02^(a). The cleaning procedure uses an EnTech 3000 cleaning system that controls 1) filling the canisters with purified humid air and 2) evacuating, for several cycles with applied heat, before allowing the canister to evacuate overnight. The canister is filled a final time with purified humid air for analysis. If the canister is verified as clean by TO-12, the canister is evacuated to 5 mtorr, tagged, and stored for use in the field. Before sending the canisters out to the field for sampling, the canister vacuum is measured to determine if any leakage has occurred. If the vacuum has remained constant during storage, the canisters are prehumidified with 100 μ L of distilled water and labeled with a field-sampling identification. Canisters stored more than 30 but less than 60 days are re-evacuated and rehumidified before use.

B.2 Analytical Procedure

The SUMMATM canister samples were analyzed for permanent gases according to PNNL Technical Procedure PNL-TVP-05^(b) with the exceptions listed in the following text and in the quality assurance/quality control section of this report. This method was developed in-house to analyze permanent gases, defined as hydrogen (H₂), carbon dioxide (CO₂), carbon monoxide (CO), methane (CH₄), and nitrous oxide (N₂O), by gas chromatograph/thermal conductivity detection (GC/TCD). Aliquots of sampled air are drawn directly from each canister into a 5-mL gas-tight syringe and injected into a Hewlett-Packard 5890 GC/TCD fitted with a loop injector valve and a column switching valve. An aliquot of 5 mL is used so that the 1.0-mL injection loop is completely purged with sample air, ensuring that no dilution of the sample takes place within the injection loop. One set of GC conditions is used to analyze for CO, CO₂, N₂O, and CH₄ using Helium (He) as the carrier gas. A second GC analysis is performed for H₂ (using nitrogen as the carrier gas) to enhance the signal sensitivity and lower the detection limit for this analyte. The permanent gases and associated EQLs are listed in Table B.1.

⁽a)

Pacific Northwest Laboratory. 8/94. Cleaning SUMMA[™] Canisters and the Validation of the Cleaning Process, PNL-TVP-02 (Rev. 0), PNL Technical Procedure, Pacific Northwest Laboratory, Richland, Washington.

⁽b) Pacific Northwest Laboratory. 5/96. Analysis Method for the Determination of Permanent Gases in Hanford Waste Tank Vapor Samples Collected in SUMMA[™] Passivated Stainless Steel Canisters, PNL-TVP-05 (Rev. 2). PNL Technical Procedure, Pacific Northwest Laboratory, Richland, Washington.

			Estimated Quantitation
Analyte	<u>Formula</u>	Procedure	Limit (ppmv)
Carbon Dioxide	CO_2	PNL-TVP-05	17
Carbon Monoxide	CO	PNL-TVP-05	- 17
Methane	CH ₄	PNL-TVP-05	25
Hydrogen	H_2	PNL-TVP-05	17
Nitrous Oxide	N ₂ O	PNL-TVP-05	17

 Table B.1.
 Analytical Procedures and Detection Limits for Permanent Gases

B.3 Quality Assurance/Quality Control

Standards for the permanent gas analysis were blended from commercially prepared and certified standards for each of the analytes reported in Table B.1. The instrument was calibrated for CH_4 over a range of 25 to 2100 parts per million by volume (ppmv) and for CO, CO₂, and N₂O over a range of 17 to 2100 ppmv using standards at five different concentrations and He as a carrier gas. A similar procedure was followed for H₂ with a range of 17 to 2120 ppmv, except the carrier gas was changed to N₂. An average response factor from the calculation was used for quantification of compound peak area.

Each analyte was quantitated by comparison of sample analyte peak area to the calibration plot generated for the compound. The estimated quantitation limit (EQL) for the method has been established as the low level calibration standard. Before and after each sample analysis set, a gas standard was run to evaluate system performance and to measure system accuracy. The calculated concentration of the individual gases in the standards fell within $\pm 25\%$ of the expected concentrations. One sample was run in duplicate to provide a measure of method precision. Results of the replicate analysis are presented in Table B.2. An N₂ reagent blank, an ambient-air sample collected ~ 10 m upwind of Tank B-105 and the ambient air collected through the In Situ Vapor Sampling System (ISVS) were used as method blanks and used to determine the potential for analyte interferences in the samples.

B.4 Permanent Gases Sample Results

Table B.2 lists results of the permanent gas analysis from samples collected from the headspace of Tank B-105, ambient air collected ~ 10 m upwind of the tank, and ambient air collected through the ISVS. Samples were analyzed on August 23 and 26, 1996. Carbon dioxide at an average concentration of 1147 ppmv and nitrous oxide at an average concentration of 27 ppmv were the only permanent gases observed above the EQL in the tank headspace samples. A replicate analysis was performed on SUMMATM canister PNL 323; however, only the results from the first analysis are included in the average concentration reported for the tank headspace samples.

Table B.2

Permanent Gas Analysis Results for Samples Collected from the Headspace of Tank B-105 and for Ambient Air and Ambient Air Through the ISVS Collected Near Tank B-105 in SUMMA ^(TM) Canisters on 7/30/96

		Ambient Air Ambient Air		Tank Samples					
		Upwind S6075-A01.165 ^(a) PNL 165 ^(b)	Through Bundle S6075-A02.222 ^(a) PNL 222 ^(b)	S6075-A04.282 ^(a) PNL 282 ^(b)	S6075-A05.323 ^(a) PNL 323 ^(b)	S6075-A06.324 ^(a) PNL324 ^(b)	S6075-A05.323 ^(a) PNL 323 ^{(b)(c)}	Average Concentration	
	Permanent Gas	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Tank Samples	
	Analyte	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	
	Hydrogen	<17	<17	<17	<17	<17	<17	<17	
	Methane	<25	<25	<25	<25	<25	<25	<25	
	Carbon Dioxide	392	379	1139	1145	1156	1146	1147	
μ	Carbon Monoxide	<17	<17	<17	<17	<17	<17	<17	
ω	Mitana Ouida	<17	<17	30	31	19	29	27	

Footnotes

(a) WHC sample identification number.

(b) PNL canister number.

(c) Replicate analysis for PNL 323; results are not included in the calculation of average concentrations.

Appendix C

Tank Vapor Characterization:

Total Non-Methane Organic Compounds

Appendix C

Tank Vapor Characterization: Total Non-Methane Organic Compounds

C.1 Sampling Methodology

Before sending SUMMATM canisters out to the field for sampling, the canisters are cleaned and verified contaminant-free according to Pacific Northwest National Laboratory (PNNL) Technical Procedure PNL-TVP-02^(a). The cleaning procedure uses an EnTech 3000 cleaning system that controls 1) filling the canisters with purified humid air and 2) evacuating, for several cycles with applied heat, before allowing the canister to evacuate overnight. The canister is filled a final time with purified humid air for analysis. If the canister is verified as clean by TO-12, the canister is evacuated to 5 mtorr, tagged, and stored for use in the field. Before sending the canisters out to the field for sampling, the canister vacuum is measured to determine if any leakage has occurred. If the vacuum has remained constant during storage, the canisters are prehumidified with 100 μ L of distilled water and labeled with a field-sampling identification. Canisters stored more than 30 but less than 60 days are re-evacuated and rehumidified before use.

C.2 Analytical Procedure

The SUMMA[™] canister samples were analyzed according to PNNL Technical Procedure PNL-TVP-08^(b), which is similar to U.S. Environmental Protection Agency (EPA) compendium Method TO-12. The method detection limits in the sub mg/m³ are required to determine total non-methane organic compounds (TNMOC) concentration in the tank samples.

The method uses an EnTech 7000 cryoconcentration system interfaced with a Hewlett-Packard 5890 gas chromatograph/flame ionization detector (GC/FID). The EnTech concentrator is used to pull a metered volume of 50 to 100 mL of sample air from the SUMMATM canister mounted on an EnTech 7016CA 16-canister autosampler. The sample is cryogenically concentrated, and constituents are trapped in a stainless steel tube containing glass beads and Tenax. The glass bead/Tenax trap is heated to 180°C and purged with ultra high purity (UHP) helium (He). The purged TNMOCs are carried by a UHP He stream to the GC equipped with an FID where gross organic content is detected and measured.

The GC oven is programmed to run at a 150°C isothermal temperature. Chromatographic separation is not needed in this method since quantitation is from the entire FID response over the run time.

(b) Pacific Northwest Laboratory. 12/95. Determination of TO-12 Total Nonmethane Organic Compounds in Hanford Waste Tank Headspace Samples Using SUMMA[™] Passivated Canister Sampling and Flame Ionization Detection, PNL-TVP-08 (Rev. 1), PNL Technical Procedure, Pacific Northwest Laboratory, Richland, Washington.

⁽a) Pacific Northwest Laboratory. 8/94. Cleaning SUMMA[™] Canisters and the Validation of the Cleaning Process, PNL-TVP-02 (Rev. 0), PNL Technical Procedure, Pacific Northwest Laboratory, Richland, Washington.

Twenty-four hours before the analysis, the SUMMATM canister samples are pressurized with purified air (supplied by Aadco Instruments, Inc., 1920 Sherwood St., Clearwater, Florida 34625). The starting pressure was first measured using a calibrated diaphragm gauge (Cole Parmer), then pressurized to a level exactly twice the original pressure. For example, if the canister had a starting pressure of 740 torr, it was pressurized to 1480 torr. The sample dilution was taken into account when calculating the analysis results.

C.3 Quality Assurance/Quality Control

This method requires user calibration (category 2 measuring and test equipment) of the analytical system in accordance with QA plan ETD-002.

The TNMOC is calibrated by using propane as the calibration standard. The instrument calibration mixture for the PNL-TVP-08 analysis consists of National Institute for Standards and Technology (NIST) 99.999% propane analyzed using a five-point, multi-level, linear regression curve.

A continuing calibration verification (CCV) standard of 100 ppmv propane is analyzed to confirm acceptability of instrument performance. The initial calibration is then used to quantify the samples.

Immediately before running the analysis sequence, a leak-check procedure, which includes evacuating the transfer lines and monitoring the pressure, must be performed on the sample manifold tower. The control limits on this test require that the change in pressure is <1.5 psi, and the absolute pressure after evacuation is <3 psi for each manifold position specified in the sequence table. If this criterion is not met, it must be corrected before the samples are analyzed.

Before the tank samples were analyzed, a diagnostic check was performed on the GC/FID instrument by running a system cleanliness procedure and an instrument continuing calibration as described in PNL-TVP-08. First, two blank volumes of Aadco purified air were analyzed to check the cleanliness of the system. This demonstrates through the analysis of a zero-air blank that the level of interference is acceptable in the analytical system. The system should be cleaned to 0.1 mg/m³ of TNMOCs. Second, an instrument continuing calibration is run using 100-mL UHP propane analyzed using the response factor as an external standard method followed by one blank volume of Aadco air.

C.3.1 Quantitation Results of Target Analytes. The mg/m^3 was derived from the fivepoint multilevel calibration curve from the propane standard using the following equation:

$$mg/m^{3} = \frac{(ng \text{ TNMOC}) \times (dilution \text{ factor})}{mL \text{ sampled volume}}$$
(C.1)

The ng/m³ concentrations are calculated from mg/m³ using the equation:

$$ng/m^{3} \text{ TNMOC} = \frac{(ng \text{ TNMOC})}{(mL \text{ sampled})} \text{ x Dilution Factor x } \frac{(mg)}{(1 \text{ x } 10^{6} \text{ mL})} \text{ x } \frac{(1 \text{ x } 10^{6} \text{ mL})}{(m^{3})}$$
(C.2)

C.4 Total Non-Methane Organic Compounds Sample Results

Table C.1 lists results of the TO-12 gas analysis from samples collected from the headspace of Tank B-105, ambient air collected ~10 m upwind of the tank, and ambient air collected through the ISVS. Samples were analyzed on September 3, 1996. Concentrations in the ambient air samples were both <0.59 mg/m³. Concentrations in the three tank headspace samples ranged from 0.75 mg/m³ to 0.78 mg/m³ with an average concentration of 0.77 mg/m³. This compares to 2.49 mg/m³ for the sum of all target compounds and TICs identified in the analysis of the SUMMATM canisters. A replicate analysis was performed on SUMMATM canister PNL 323; however, only the results from the first analysis are included in the average concentration reported for the tank headspace samples.

A deviation was made to the current procedure (PNL-TVP-08) and documented in Vapor Deviation Reports #JAE082996 and #KLS102496. The following is a discussion of the deviations:

In accordance with the current method past TO-12 analyses used a calibration method based on an average response factor spanning the full dynamic range. Because the low level standards are impacted to some extent by the small amount of system blank always present, the average response factor method generates a large apparent nonlinearity introducing an unnecessary amount of level dependent error. To correct this situation, data included in this and all subsequent calibrations shall use a linear regression fit which includes both a slope and intercept. The correlation coefficient for this ten point calibration curve is 0.99996, an extremely well ordered data set. In conjunction with the change made to use a linear regression fit for calibration, the low level standard will be used as the EQL. Sample results will be flagged with a less-than symbol (<) when below the EQL value. A new revision to procedure PNNL-TVP-08 currently under preparation will reflect these amendments. Table C.1.

TO-12 Results for Samples Collected Through the ISVS from the Headspace of Tank B-105 and from Ambient Air Near Tank B-105 in SUMMA^(TM) Canisters on 7/30/96.

	Ambient Air	Ambient Air		Tank S	amples		
	Upwind	Through Bundle					
	S6075-A01.165 ^(a)	S6075-A02.222 ^(a)	S6075-A04.282 ^(a)	S6075-A05.323 ^(a)	S6075-A06.324 ^(a)	S6075-A05.323 ^(a)	Average
	PNL 165 ^(b)	PNL 222 ^(b)	PNL 282 ^(b)	PNL 323 ^(b)	PNL 324 ^(b)	PNL 323 ^{(b) (c)}	Concentration
	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Tank Sample
	(mg/m3)	(mg/m3)	(mg/m3)	(mg/m3)	(mg/m3)	<u>(mg/m3)</u>	(mg/m3)
TO-12	<0.59	<0.59	0.78	0.77	0.75	0.76	0.77
Footnotes							,

(a) WHC sample identification number.

(b) PNL canister number.

C.4

(c) Replicate analysis for PNL 323; results are not included in the calculation of average concentrations.

Appendix D

Tank Vapor Characterization: Organic Analytes by SUMMA[™] Method

Appendix D

Tank Vapor Characterization: Organic Analytes by SUMMA[™] Method

D.1 Sampling Methodology

Before sending SUMMATM canisters out to the field for sampling, the canisters are cleaned and verified contaminant free according to Pacific Northwest Laboratory (PNNL) Technical Procedure PNL-TVP-02^(a). The cleaning procedure uses an EnTech 3000 cleaning system that controls 1) filling the canisters with purified humid air and 2) evacuating, for several cycles with applied heat, before allowing the canister to evacuate overnight. If the canister is verified as clean, free of TO-14 and unknown contaminants to a level of 5 parts per billion by volume (ppbv), the canister is evacuated to 5 mtorr, tagged, and stored for use in the field. Before sending the canisters out to the field for sampling, the canister vacuum is measured to determine if any leakage has occurred. If the vacuum has remained constant during storage, the canisters are prehumidified with 100 μ L of distilled water and labeled with a field-sampling identification. Cleaned canisters stored more than 30 but less than 60 days are re-evacuated and rehumidified before use.

D.2 Analytical Procedure

The SUMMA[™] canister sample was analyzed according to PNNL Technical Procedure PNL-TVP-03^(b), which is a modified version of EPA compendium Method TO-14. The method uses EnTech 7000 cryoconcentration systems interfaced with a 5972 Hewlett-Packard benchtop gas chromatograph/mass spectrometer (GC/MS). The EnTech concentrator is used to pull a metered volume of sample air from the SUMMA[™] canister, cryogenically concentrate the air volume, then transfer the volume to the GC/MS for analysis. A 100-mL volume of sample is measured and analyzed from the tank headspace. The organic components in the sampled air are separated on an analytical column, J&W Scientific DB-1 phase, 60-m by 0.32-mm internal diameter with 3-µm film thickness. The GC oven is programmed to run a temperature gradient beginning at 40°C, hold for 5 min, and ramp at 4°C per min to a final temperature of 260°C, with a 5-min hold. Twenty-four hours before the analysis, the SUMMA[™] canister samples were pressurized with purified air (supplied by Aadco Instruments, Inc., 1920 Sherwood St., Clearwater, Florida 34625). The starting pressure was first measured using a calibrated diaphragm gauge (Cole Parmer), then pressurized to a level exactly twice the original pressure. For example, if the canister had a starting pressure of 740 torr, it was pressurized to 1480 torr. This dilution was an effort to improve the precision of the analysis. The sample dilution was taken into account when calculating the analysis results.

(a) (b)

Pacific Northwest Laboratory. 8/96. Determination of TO-14 Volatile Organic Compounds in Hanford Tank Headspace Samples Using SUMMA[™] Passivated Canister Sampling and Gas Chromatographic-Mass Spectrometric Analysis, PNL-TVP-03 (Rev. 2), PNL Technical Procedure, Richland, Washington.

Pacific Northwest Laboratory. 8/94. Cleaning SUMMA[™] Canisters and the Validation of the Cleaning Process, PNL-TVP-02 (Rev. 0), PNL Technical Procedure, Richland, Washington.

The instrument calibration mixture for the PNL-TVP-03 analysis consists of 67 organic analytes. These 67 compounds that are directly quantified in this analysis make up the target analyte list (these 67 compounds will be referred to as target analytes). A summary of the target analytes is provided in Table D.1. The calibration mixture was prepared by blending a commercially prepared TO-14 calibration mixture with a mixture created using a Kin-Tek[®] permeation-tube standard

Table D.1Target Organic Analytes

Dichlorodifluoromethane Chloromethane 1,2-Dichloro-1,1,2,2-tetrafluoroethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1.1-Dichloroethene Methylene Chloride 1,1,2-Trichloro-1,2,2-trifluoroethane 1.1-Dichloroethane cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 1.1.1-Trichloroethane Benzene Carbon Tetrachloride 1.2-Dichloropropane Trichloroethene cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene 1.2-Dibromoethane Tetrachloroethylene Chlorobenzene Ethylbenzene Undecane Tridecane Butane 1-Butanol Methanol^(a) 1,3-Butadiene^(a) Hexanenitrile

p/m-Xylene 4-Ethyl-2-methylbenzene Styrene 1,1,2,2-Tetrachloroethane o-Xylene 1,3,5-Trimethylbenzene 1.2.4-Trimethylbenzene 1,3-Dichlorobenzene 1.4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachloro-1.3-butadiene 2-Butanone Acetone Acetonitrile Heptane Tetrahydrofuran Pyridine Butanenitrile Cyclohexane Decane Hexane 4-Methyl-2-pentanone Propanenitrile Cyclohexanone Propanol Nonane Dodecane Tetradecane Pentane Octane Ethanol^(a) Pentanenitrile

(a) The low level standard is used as the EQL for these compounds

generation system. The operation of the permeation-tube system follows the method detailed in PNNL Technical Procedure PNL-TVP- $06^{(a)}$. The standard calibration mix was analyzed using four aliquot sizes ranging from 30 mL to 200 mL, and a response factor for each compound was calculated. The GC/MS response for these compounds has been previously determined to be linearly related to concentration. Instrument detection limits and EQLs have been determined. Methanol, ethanol, and 1,3-butadiene are not currently included in the method performance section of the procedure for System 1; however, these analytes were analyzed by this method. The low level standard is used as the EQL for this compound. Sample results are flagged with a less-than symbol (<) when less than the EQL.

D.3 Quality Assurance/Quality Control

Before the tank sample was analyzed, a diagnostic check was performed on the GC/MS instrument by running an instrument "high-sensitivity tune," as described in PNL-TVP-03. Upon satisfactory completion of the instrument diagnostic check, a blank volume of purified nitrogen was analyzed to check the cleanliness of the system. The instrument was then calibrated using a standard gas mixture containing 67 organic compounds. A gas mixture containing bromochloromethane, 1,4-difluorobenzene, chlorobenzene-d₅, and bromofluorobenzene was used as an internal standard (IS) for all blank, calibration standard, and sample analyses. Analyte responses from sample components, ISs, and standards were obtained from the extracted ion plot from their selected mass ion. The calibration was generated by calculating the relative response ratios of the IS to calibration standard responses and plotting the ratios against the ratio of the calibration-standard concentration (in ppbv) to the IS concentration. Once it is determined that the relative response is linear with increasing concentration, an average response factor is calculated for each target analyte and used to determine the concentration of target compounds in each sample. Method blanks are analyzed before and after calibration standards and tank headspace samples are analyzed.

D.3.1 Quantitation Results of Target Analytes. The quantitative-analysis results for the target analytes were calculated using the average response factors generated using the IS method described above and in PNL-TVP-03. The conversion from ppbv to mg/m³ assumes standard temperature and pressure (STP) conditions of 760 torr and 273K and was calculated directly from the following equation:

$$mg/m^{3} = \frac{(ppbv/1000) \times g \mod wt \text{ of compound}}{22.4 \text{ L/mol}}$$
(D.1)

D.3.2 Identification and Quantitation of Tentatively Identified Compounds. The tentatively identified compounds (TICs) are determined by mass-spectral interpretation and comparison of the spectra with the EPA/National Institute for Standards and Technology (NIST) and WILEY electronic mass spectra libraries. Chromatographic peaks with an area count greater than, or equal to, one-tenth of the total area count of the nearest eluting IS are tentatively identified and quantitatively estimated. This is roughly equivalent to 10 ppby, depending on the relative response

(a)

Pacific Northwest Laboratory. 11/94. Preparation of TO-14 Volatile Organic Compounds Gas Standards, PNL-TVP-06 (Rev. 0). PNL Technical Procedure, Richland, Washington.

factor of the individual TIC as compared with the nearest elution IS. The quality of the mass-spectral searches was then reviewed by the principal investigators before the identification was assigned to each chromatographic peak.

The concentration of each TIC was estimated using a relative response factor calculated using the total peak area for the nearest eluting IS. The IS peak area was used to calculate a response factor using the IS concentration in mg/m^3 :

Response Factor =
$$\frac{\text{IS conc. } (\text{mg/m}^3)}{\text{IS peak area}}$$
 (D.2)

The calculated response factor was then multiplied by the TIC peak area to give an estimated concentration for that compound.

The ppbv concentrations are calculated from mg/m^3 and the molecular weight of the analyte.

$$TIC in ppbv = \frac{TIC (mg/m^3) \times 22.4 \text{ L/mol } \times 1000}{TIC \text{ g mol wt}}$$
(D.3)

All calculated sample concentrations were multiplied by a factor of 2 to account for the dilution step described in Section D.2.

D.4 Organic Sample Results

Five SUMMA[™] canisters were returned to the laboratory on August 7, 1996 under WHC COC form 100282 (see Appendix F). Samples were analyzed on September 13, 1996.

The results from the GC/MS analysis of the tank headspace SUMMATM samples are presented in Table D.2. The results of replicate analyses on a single SUMMATM canister are presented in Table D.3. The results of the GC/MS analysis of the ambient air sample collected upwind of Tank B-105 and through the ISVS near Tank B-105 are presented in Table D.4.

Table D.2 lists the quantitative results for compounds listed as target analytes and TICs. Target compounds not listed in Table D.2 were not detected in any of the tank headspace samples above the compound IDL. Sixty-five target analytes above the IDL were detected in the tank headspace samples. No TICs were observed in the tank headspace samples. Trichlorofluoromethane at 1.03 mg/m³ and acetone at 0.217 mg/m³ accounted for 50% of the target compounds. The total concentration of the target analytes was 2.49 mg/m³. This compares to a total concentration of 0.77 mg/m³ identified in the TO-12 analysis of the three tank headspace samples.

SUMMATM canister PNL 323 was analyzed in replicate for target analytes and TICs to determine analytical precision. Twenty-eight of 62 target compounds had RPDs of less than 10%. No TICs were identified in the analysis.

Sixty-four target compounds and one TIC were observed in one or both of the ambient air samples. Many of the compounds were identified at trace levels. Trace levels of many of the target analytes may be false positives due to the fact that some of the compounds were found in the CCB

above the EQL and are greater than 20 times the concentration found in the sample. These compounds are flagged with a "B" in the tables.

The following procedural changes and observations were noted during the analysis of Tank B-105:

Case narrative for samples analyzed on September 13, 1996.

This analytical sequence was run using 100 ml volumes to quantify target compounds in each tank and ambient sample.

Two target compounds (1,2-dichloro-1,1,2,2-tetrafluoroethane at 37.51%, tetradecane at 40.68%) exceeded the 30% RSD acceptance criteria for the initial calibration. Tetradecane was detected in only one ambient sample at a concentration above the EQL. Due to the initial calibration performance, the uncertainty associated with the results is higher than normal. Eight target compounds (1,2-dichloro-1,1,2,2-tetrafluoroethane, ethanol, acetonitrile, pentane, propanol, propanenitrile, butanenitrile, and cyclohexane) were outside the 25% difference (% D) acceptance criteria for the continuing calibration verification (CCV) sample. However, the CCV passed the procedural criterion requiring +25% D passage for 85\% of all target compounds. Ethanol, acetonitrile, pentane, propanol, butanenitrile, and cyclohexane were detected in both the tank and ambient samples. Due to the CCV performance for these compounds, a higher than normal uncertainty is associated with the results. The compounds 1,2-dichloro-1,1,2,2-tetrafluoroethane and propanenitrile were detected in all tank samples and one ambient sample. Once again, due to CCV performance for these analytes, a higher than normal uncertainty is associated with the results. Six target compounds (methylene chloride, decane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, and 1,2,4-trichlorobenzene) were found in the initial calibration blank above its EQLs.

Three target compounds (methylene chloride, 1,2-dichlorobenzene, and 1,2,4-trichlorobenzene) were detected in the CCB above the EQLs. These compounds were also detected in the samples at comparable concentration. Therefore, these analytical results may be biased high.

The analysis of sample S6075-A06.324 fell outside the 12 hour clock for System 1. The sample was reanalyzed on System 2. The analytical results were comparable. Therefore, the analytical results from System 1 have been reported.

Methanol, ethanol, and 1,3-butadiene are not currently included in the method performance section of the procedure for System 1; however, these analytes were analyzed by this method. The low level standard is used as the EQL for this compound. Sample results are flagged with a less-than symbol (<) when less than the EQL.

Table D.2. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and Estimated Concentrations^(b) for Samples from the Headspace in Tank B-105 in SUMMA Canisters Collected on 7/30/96

D.6

													Mean and	I		
			Ret	S6075	-A04.28	32 ^(c) ISVS	S6075-	A06.32	4 ^(c) ISVS	S S6075-A0	5.323 ^(c)	^(d) ISVS	Standard	Deviation		
Target Analytes ^(a)	CAS	MW	Time	(mg/m^3)	(ppbv) Flag	(mg/m^3)	(ppbv)	Flag	(mg/m ³)	(ppbv)	Flag	(mg/m^3)	St. Dev.	(ppbv)	St. Dev.
Dichlorodifluoromethane	75-71-8	121	4.6	0.016	3.0	·J	0.016	3.0	J	0.015	2.8	J	0.016	0.001	2.9	0.13
Chloromethane	74-87-3	50	5.0	0.007	3.0	J	0.007	3.0	J	0.007	3.1	J	0.007	0.000	3.1	0.079
12 dichloro 1 122-tetrafluoroethane	76-14-2	171	5.2	0.019	2.5	J	0.018	2.3	J	0.019	2.5	J	0.019	0.001	2.4	0.10
Methanol	67-56-1	32	5.3	0.124	87	Y	< 0.110	< 77	Y	0.119	83	Y	0.122	e	85	e
Vinyl Chloride	75-01-4	63	5.5	0.002	0.57	U	0.007	2.5	J	0.006	2.3	J	0.007	e	2.4	e
Butane	106-97-8	58	5.9	0.024	9.4		0.023	8.9	J	0.022	8.3	J	0.023	0.001	8.9	0.54
Bromomethane	74-83-9	95	6.4	0.010	2.4	J	0.009	2.1	J	0.010	2.3	J	0.010	0.000	2.2	0.12
Chloroethane	75-00-3	65	6.8	0.005	1.9	U	0.004	1.4	J	0.007	2.5	J	0.006	e	1.9	e
Acetonitrile	75-05-8	41	7.4	0.088	48		0.079	43		0.084	46		0.084	0.004	46	2.3
Acetone	67-64-1	58	7.9	0.221	85		0.196	76		0.235	91		0.217	0.020	84	7.6
Trichlorofluoromethane	75-69-4	137	8.3	1.087	177		0.960	156		1.039	169		1.029	0.064	168	11
Pentane	109-66-0	72	9.0	0.012	3.7	J	0.011	3.4	J	0.010	3.2	J	0.011	0.001	3.4	0.26
1,1-Dichloroethene	75-35-4	97	9.6	0.011	2.4	J	0.010	2.4	J	0.010	2.4	J	0.010	0.000	2.4	0.036
Methylene Chloride	75-09-2	85	9.7	0.025	6.5	В	0.027	7.0	В	0.026	6.8	В	0.026	0.001	6.8	0.26
112trichloro122trifluoroethane	76-13-1	187	10.2	0.052	6.2		0.050	6.0		0.048	5.8		0.050	0.002	6.0	0.22
Propanol	71-23-8	60	10.9	0.019	7.2	J	0.018	6.7	J	0.019	7.3	J	0.019	0.001	7.1	0.31
Propanenitrile	107-12-0	55	11.0	0.038	16		0.039	16		0.038	15	J	0.038	0.000	16	0.15
1,1-Dichloroethane	75-34-3	99	11.9	0.011	2.5	J	0.012	2.7	J	0.011	2.4	J	0.011	0.001	2.5	0.15
2-Butanone	78-93-3	72	12.5	0.067	21	•	0.066	21		0.066	20		0.066	0.001	21	0.16
cis-1,2-Dichloroethene	156-59-2	97	13.4	0.009	2.1	J	0.010	2.4	J	0.009	2.2	J	0.010	0.001	2.2	0.16
Hexane	110-54-3	86	13.8	0.015	3.9	J	0.015	4.0	J	0.015	3.8	J	0.015	0.000	3.9	0.12
Chloroform	67-66-3	119	14.0	0.017	3.1	J	0.018	3.3	J	0.015	2.8	J	0.016	0.001	3.1	0.24
Tetrahydrofuran	109-99-9	72	14.7	0.023	7.3		0.024	7.3		0.022	6.8		0.023	0.001	7.1	0.27
1,2-Dichloroethane	107-06-2	99	15.4	0.012	2.7	J	0.011	2.5	J	0.011	2.4	J	0.011	0.001	2.5	0.13
Butanenitrile	109-74-0	69	15.9	0.023	7.6	J	0.023	7.5	J	0.020	6.4	J	0.022	0.002	7.2	0.66
1,1,1-Trichloroethane	71-55-6	133	15.9	0.020	3.3	J	0.019	3.2	J	0.018	3.0	J	0.019	0.001	3.2	0.14
1-Butanol	71-36-3	74	16.4	0.150	45		0.169	51		0.200	60		0.173	0.025	52	7.6
Benzene	71-43-2	78	16.8	0.011	3.0	J	0.010	2.8	J	0.010	2.7	J	0.010	0.001	2.9	0.17
Carbon Tetrachloride	56-23-5	154	17.1	0.020	3.0	J	0.019	2.8	J	0.019	2.7	J	0.019	0.001	2.8	0.13
Cyclohexane	110-82-7	84	17.4	0.020	5.4	J	0.011	2.8	J	0.014	3.8	J	0.015	0.005	4.0	1.3
1,2-Dichloropropane	78-87-5	113	18.4	0.017	3.4	J	0.015	3.1	J	0.014	2.7	J	0.015	0.002	3.0	0.35
Trichloroethene	79-01-6	131	18.8	0.012	2.0	J	0.012	2.1	J	0.011	1.9	J	0.012	0.001	2.0	0.091
Heptane	142-82-5	100	19.3	0.011	2.5	J	0.011	2.3	J	0.010	2.2	J	0.010	0.001	2.3	0.16
4-Methyl-2-Pentanone	108-10-1	100	20.5	0.014	3.1	J	0.012	2.8	J	0.014	3.1	J	0.013	0.001	3.0	0.17
cis-1,3-Dichloropropene	10061-01-5	111	20.5	0.008	1.6	J	0.008	1.7	J	0.008	1.5	J	0.008	0.000	1.6	0.060
Pyridine	110-86-1	79	20.7	0.010	3.0	J	0.007	1.9	J	0.008	2.3	J	0.008	0.002	2.4	0.53
trans-1,3-Dichloropropene	10061-02-6	111	21.6	0.008	1.6	J	0.008	1.6	J	0.007	1.5	J	0.008	0.000	1.5	0.085
Pentanenitrile	110-59-8	83	21.6	0.015	4.1	J	0.015	4.0	J	0.014	3.9	J	0.015	0.001	4.0	0.14

Revision 0;11/11/96

Table D.2. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and Estimated Concentrations^(b)

for Samples from the Headspace in Tank B-105 in SUMMA Canisters Collected on 7/30/96

														Mean and			
	•			Ret	S6075-	A04.282	2 ^(c) ISVS	S6075	A06.324	4 ^(c) ISVS	S6075-A0	5.323 ^{(c)(}	^{d)} ISVS	Standard	Deviation		
	Target Analytes ^(a)	CAS	MW	Time	(mg/m ³)	(ppbv)	Flag	(mg/m ³)	(ppbv)	Flag	(mg/m ³)	(ppbv)	Flag	(mg/m^3)	St. Dev.	(ppbv)	St. Dev.
	1,1,2-Trichloroethane	79-00-5	133	22.0	0.014	2.4	J	0.015	2.4	J	0.012	2.0	J	0.014	0.001	2.3	0.24
	Toluene	108-88-3	92	22.7	0.043	10		0.039	9.5		0,042	10		0.041	0.002	10.0	0.43
	1,2-Dibromoethane	106-93-4	188	24.2	0.019	2.2	Ĵ	0.020	2.4	J	0.019	2.2	J	0.019	0.001	2.3	0.098
	Octane	111-65-9	114	24.8	0.007	1.4	J	0.007	1.3	J	0.006	1.2	J	0.007	0.000	1.3	0.087
	Tetrachloroethylene	127-18-4	166	25.3	0.045	6.1		0.042	5.7	J	0.044	6.0		0.044	0.002	5.9	0.21
	Chlorobenzene	108-90-7	113	26.9	0.013	2.7	J	0.014	2.9	J	0.013	2.5	J	0.014	0.001	2.7	0.17
	Hexanenitrile	628-73-9	97	27.1	0.015	3.4	J	0.018	4.1	J	0.016	3.7	J	0.016	0.002	3.7	0.36
	Ethylbenzene	100-41-4	106	27.8	0.008	1.7	J	0.008	1.8	J	0.008	1.6	J	0.008	0.000	1.7	0.091
	p/m-Xylene	106-42-3	106	28.2	0.017	3.6	J	0.017	3.7	J	0.016	3.4	J	0.017	0.001	3.6	0.14
	Cyclohexanone	108-94-1	98	28.6	0.012	2.8	J	0.012	2.8	J	0.006	1.3	U	0.012	e	2.8	. е
	Styrene	100-42-5	104	29.1	0.007	1.4	J	0.007	1.4	J	0.006	1.3	J	0.006	0.000	1.4	0.044
	1,1,2,2-Tetrachloroethane	79-34-5	168	29.3	0.025	3.3	J	0.027	3.6	J	0.025	3.3	J	0.026	0.001	3.4	0.15
	o-Xylene	95-47-6	106	29.4	0.010	2.0	J	0.010	2.0	J	0.009	1.9	J	0.010	0.000	2.0	0.061
	Nonane	111-84-2	128	29.8	0.008	1.3	J	0.008	1.3	J	0.002	0.31	U	0.008	e	1.3	e
	1-Ethyl-2-Methyl-Benzene	611-14-3	120	33.0	0.009	1.6	J	0.009	1.6	J	0.008	1.5	J .	0.008	0.001	1.6	0.10
	1,3,5-Trimethylbenzene	108-67-8	120	33.0	0.008	1.4	J	0.008	1.4	J	0.008	1.4	J	0.008	0.000	1.4	0.023
U	1,2,4-Trimethylbenzene	95-63-6	120	34.3	0.008	1.5	J	0.008	1.6	J	0.008	1.5	J	0.008	0.000	1.6	0.017
-	Decane	124-18-5	142	34.5	0.020	3.1	J	0.019	3.0	J	0.019	2.9	J	0.019	0.001	3.0	0.095
	1,3-Dichlorobenzene	541-73-1	147	34.8	0.011	1.6	J	0.011	1.7	J	0.010	1.5	J	0.011	0.001	1.6	0.11
	1,4-Dichlorobenzene	106-46-7	147	35.0	0.010	1.5	J	0.010	1.5	J	0.010	1.5	J	0.010	0.000	1.5	0.049
	1,2-Dichlorobenzene	95-50-1	147	36.2	0.011	1.7	B,J	0.011	1.7	B,J	0.010	1.5	B,J	0.011	0.001	1.6	0.12
	Undecane	1120-21-4	156	38.9	0.015	2.2	J	0.012	1.7	J	0.012	1.7、	J	0.013	0.002	1.8	0.28
	1,2,4-Trichlorobenzene	120-82-1	181	42.4	0.011	1.4	B,J	0.010	1.2	B,J	0.010	1.2	B,J	0.010	0.001	1.2	0.11
	Dodecane	112-40-3	170	42.9	0.023	3.1	J	0.014	1.8	J	0.016	2.2	J	0.018	0.005	2.3	0.66
	Hexachloro-1,3-butadiene	87-68-3	261	44.2	0.024	2.1	J	0.024	2.1	J	0.024	2.1	J	0.024	0.000	2.1	0.020
	Tridecane	629-50-5	184	46.6	0.015	1.8	J	0.009	1.1	J	0.014	1.7	J	0.013	0.003	1.5	0.37

Data Quality Flags

B Compound found in associated laboratory blank.

J Target compound detected above the IDL but below the EQL.

U Target compound not detected at or above the IDL.

Y Initial calibration and CCV was performed; however, the analyte was not part of the current operating procedure.

Footnotes

(a) Detected target analytes.

(b) Semi-quantitative estimate calculated using concentration of closest eluting IS.

(c) WHC sample identification number.

(d) Replicates of this sample are found in Table D.3.

(e) Mean and/or standard deviation are not meaningful for this analyte.

Table D.3. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and Estimated Concentrations^(b) of Replicate Analysis of a Single SUMMATM Canister Collected from the Headspace of Tank B-105 on 7/30/96

	Ret \$6075-A05.323 ^(c) ISVS							Relative Percent Difference ^(d)		
Target Analytes ^(a)	CAS	MW	Time	(mg/m^3)	(ppbv)	Flag	(mg/m^3)	(ppbv)	Flag	%
Dichlorodifluoromethane	75-71-8	121	4.6	0.014	2.7	J	0.015	2.8	J	4
Chloromethane	74-87-3	50	5.0	0.006	2.7	J	0.007	3.1	J	15
12dichloro1122-tetrafluoroethane	76-14-2	171	5.2	0.017	2.3	J	0.019	2.5	J	9
Methanol	67-56-1	32	5.3	0.117	82	Y	0.119	83	Y	1
Vinyl Chloride	75-01-4	63	5.5	0.006	2.3	J	0.006	2.3	J	2
Butane	106-97-8	58	5.9	0.020	7.8	J	0.022	8.3	J	6
Bromomethane	74-83-9	95	6.4	0.007	1.7	J	0.010	2.3	J	27
Chloroethane	75-00-3	65	6.8	0.005	1.9	U	0.007	2.5	J	<i>2</i> ,
Acetonitrile	75-05-8	4 1	7.4	0.084	46	U	0.084	46	5	· 0
Acetone	67-64 - 1	58	7.9	0.230	89		0.235	91		2
Trichlorofluoromethane	75-69-4	137	8.3	1.024	167		1.039	169		1
Pentane	109-66-0	72	9.0	0.010	3.2	J	0.010	3.2	J	1
		97	9.0 9.6		2.0	J		5.2 2.4	J	16
1,1-Dichloroethene	75-35-4			0.009		-	0.010		•	
Methylene Chloride	75-09-2	85	9.7	0.025	6.6	В	0.026	6.8	В	3
112trichloro122trifluoroethane	76-13-1	187	10.2	0.049	5.9	. .	0.048	5.8	T .	2
Propanol	71-23-8	60	10.9	0.016	5.8	J	0.019	7.3	J	22
Propanenitrile	107-12-0	55	11.0	0.036	15	J	0.038	15	J	4
1,1-Dichloroethane	75-34-3	99	11.9	0.010	2.3	l	0.011	2.4	J	6
2-Butanone	78-93-3	72	12.5	0.065	20		0.066	20	_	1
cis-1,2-Dichloroethene	156-59-2	97	13.4	0.009	2.1	J	0.009	2.2	J	2
Hexane	110-54-3	86	13.8	0.014	3.7	J	0.015	3.8	J	1
Chloroform	67-66-3	119	14.0	0.015	2.9	J	0.015	2.8	J	2
Tetrahydrofuran	109-99-9	72	14.7	0.023	7.0		0.022	6.8		2
1,2-Dichloroethane	107-06-2	99	15.4	0.009	2.0	J	0.011	2.4	J	17
Butanenitrile	109-74-0	69	15.9	0.021	6.9	J	0.020	6.4	l	. 8
1,1,1-Trichloroethane	71-55-6	133	15.9	0.016	2.7	J	0.018	3.0	J	10
1-Butanol	71-36-3	74	16.4	0.112	34		0.200	60		56
Benzene	71-43-2	78	16.8	0.009	2.4	J	0.010	2.7	J	11
Carbon Tetrachloride	56-23-5	154	17.1	0.017	2.5	J	0.019	2.7	J	7
Cyclohexane	110-82-7	84	17.4	0.011	3.0	J	0.014	3.8	J	25
1,2-Dichloropropane	78-87-5	113	18.4	0.013	2.6	J	0.014	2.7	J	3
Trichloroethene	79-01-6	131	18.8	0.011	1.8	J	0.011	1.9	Ĵ	6
Heptane	142-82-5	100	19.3	0.009	2.1	J	0.010	2.2	J	4
4-Methyl-2-Pentanone	108-10-1	100	20.5	0.010	2.2	J	0.014	3.1	J	31
cis-1,3-Dichloropropene	10061-01-5	111	20.5	0.007	1.3	J	0.008	1.5	J	14
Pyridine	110-86-1	79	20.7	0.006	1.6	·J	0.008	2.3	J	38
trans-1,3-Dichloropropene	10061-02-6	111	21.6	0.007	1.3	J	0.007	1.5	J	9
Pentanenitrile	110- 59-8	83	21.6	0.013	3.5	J	0.014	3.9	J	10
1,1,2-Trichloroethane	79-00-5	133	22.0	0.011	1.9	J	0.012	2.0	J	6
Toluene	108-88-3	92 [·]	22.7	0.038	9.2		0.042	10		10
1,2-Dibromoethane	106-93-4	188	24.2	0.016	1.9	J	0.019	2.2	J	14
Octane	111-65-9	114	24.8	0.006	1.1	J	0.006	1.2	l	7
Tetrachloroethylene	127-18-4	166	25.3	0.039	5.3	J	0.044	6.0		12
Chlorobenzene	108-90-7	113	26.9	0.011	2.2	J	0.013	2.5	J	15
Hexanenitrile	628-73-9	97	27.1		3.5	J.	0.016	3.7	J	5 5
Ethylbenzene	100-41-4	106	27.8	0.007	1.4	J	0.008	1.6	J	16
p/m-Xylene	106-42-3	106	28.2	0.014	2.9	J.	0.016	3.4	J	16
Cyclohexanone	108-94-1	98	28.6	0.014	3.3	J	0.006	1.3	U	
Styrene	100-42-5	104	29.1	0.005	1.1	J	0.006	1.3	J	23
1,1,2,2-Tetrachloroethane	79-34-5		29.3	0.021	2.8	J	0.025	3.3	J	17
.,.,	,,,,,,,			0.021				- 10		

Table D.3. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and Estimated Concentrations^(b) of Replicate Analysis of a Single SUMMATM Canister Collected from the Headspace of Tank B-105 on 7/30/96

			Ret		S	6075-A)5.32	3 ^(c) ISVS				Relative Percent Difference ^(d)
Target Analytes ^(a)	CAS	MW	Time	(mg	/m ³)	(ppbv)	Flag	(mg/m^3)	(ppbv)	Flag	-	%
o-Xylene	95-47-6	106	29.4	0.0	800	1.6	J	0.009	1.9	J		16
Nonane	111-84-2	128	29.8	0.0	06	1.0	J	0.002	0.31	U		· · · · · ·
1-Ethyl-2-Methyl-Benzene	611-14-3	120	33.0	0.0	06	1.2	J	0.008	1.5	J		20
1,3,5-Trimethylbenzene	108-67-8	120	33.0	0.0	06	1.1	J	0.008	1.4	J		21
1,2,4-Trimethylbenzene	95-63-6	120	34.3	0.0	07	1.2	J	0.008	1.5	J		22
Decane	124-18-5	142	34.5	0.0	15	2.3	J	0.019	2.9	J		24
1,3-Dichlorobenzene	541-73-1	147	34.8	0.0	09	1.3	J	0.010	1.5	J		14
1,4-Dichlorobenzene	106-46-7	147	35.0	0.0	08	1.2	J	0.010	1.5	J		18
1,2-Dichlorobenzene	95-50-1	147	36.2	0.0	08	1.3	B,J	0.010	1.5	B,J		14
Undecane	1120-21-4	156	38.9	0.0	09	1.3	J	0.012	1.7	J		23
1,2,4-Trichlorobenzene	120-82-1	181	42.4	0.0	07	0.91	B,J	0.010	1.2	B,J		26
Dodecane	112-40-3	170	42.9	0.0	09	1.2	J	0.016	2.2	J		54
Hexachloro-1,3-butadiene	87-68-3	261	44.2	0.0	18	1.6	J	0.024	2.1	J		30
Tridecane	629-50-5	184	46.6	0.0	08	1.0	J	0.014	1.7	J		50

Data Quality Flags

B Compound found in associated laboratory blank.

J Target compound detected above the IDL but below the EQL.

U Target compound not detected at or above the IDL.

Y Initial calibration and CCV was performed; however, the analyte was not part of the current operating procedure.

Footnotes

(a) Detected target analytes.

(a) TO-14 plus 26 additional target analytes.

(b) Semi-quantitative estimate calculated using concentration of closest eluting IS.

(c) WHC sample identification number.

(d) Relative percent differences (RPDs) based on mg/m3 values.

Table D.4. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and Estimated Concentrations^(b) in Ambient Air and Ambient Air Through the ISVS Collected Near Tank B-105 in SUMMATM Canisters on 7/30/96

							/S S6075-		
- (a)			Ret		Bundle A			mbient A	
Target Analytes ^(a)	CAS	MW	Time	(mg/m^3)	(ppbv)			(ppbv)	Flag
Dichlorodifluoromethane	75-71-8	121	4.6	0.016	2.9	J	0.004	0.70	J
Chloromethane	74-87-3	50	5.0	0.007	2.9	J	0.002	0.82	J
12dichloro1122-tetrafluoroethane	76-14-2	171	5.2	0.018	2.3	J	0.013	1.7	U
Vinyl Chloride	75-01-4	63	5.5	0.007	2.4	J	0.002	0.57	U
Butane	106-97-8	58		0.010	3.9	J	0.002	0.60	J
Bromomethane	74-83-9	95	6.4	0.010	2.3	J	0.005	1.2	U
Acetonitrile	75-05-8	4 1	7.4	0.011	6.0	J	0.004	2.3	J
Acetone	67-64-1	58	7.9	0.047	18		.0.035	14	J
Trichlorofluoromethane	75-69-4	137	8.3	0.016	2.7	J	0.004	0.63	J
Pentane	109-66-0	72	9.0	0.008	2.6	J	0.002	0.71	J
1,1-Dichloroethene	75-35-4	97	9.6	0.010	2.4	J	0.004	0.88	U
Methylene Chloride	75-09-2	85	9.7	0.023	6.2	В	0.016	4.1	B,J
12trichloro122trifluoroethane	76-13-1	187	10.2	0.124	15		0.007	0.87	J
Propanol	71-23-8	60	10.9	0.012	4.4	J	0.005	1.7	J
Propanenitrile	107-12-0	55	11.0	0.012	5.0	J	0.004	1.6	U
1,1-Dichloroethane	75-34-3	99	11.9	0.011	2.4	J	0.002	0.45	U
2-Butanone	78-93 - 3	72	12.5	0.020	6.3	J	0.042	13	
cis-1,2-Dichloroethene	156-59-2	97	13.4	0.010	2.4	J	0.003	0.63	J
Hexane	110-54-3	86	13.8	0.013	3.5	J	0.005	1.2	J
Chloroform	67-66-3	119	14.0	0.013	2.4	J	0.004	0.82	J
Tetrahydrofuran	109 - 99-9	72	14.7	0.006	1.9	J	0.002	0.50	U
Butanenitrile	109-74-0	69	15.9	0.012	3.7	J	0.003	1.1	J
1,1,1-Trichloroethane	71-55-6	133	15.9	0.017	2.9	J	0.003	0.54	U
1-Butanol	71-36-3	74	16.4	0.019	5.7	J	0.026	7.8	J
Benzene	71-43-2	78	16.8	0.010	2.7	J	0.004	1.2	J
Carbon Tetrachloride	56-23-5	154	17.1	0.019	2.8	J	0.007	0.95	J
Cyclohexane	110-82-7	84	17.4	0.015	3.9	J	0.005	1.3	J
Trichloroethene	79-01-6	131	18.8	0.011	1.9	J	0.004	0.75	J
Heptane	142-82-5	100	19.3	0.008	1.7	J	0.006	1.4	J
4-Methyl-2-Pentanone	108-10-1	100	20.5	0.012	2.6	J	0.005	1.0	J
cis-1,3-Dichloropropene	10061-01-5	111	20.5	0.008	1.5	J	0.002	0.48	U
Pyridine	110-86-1	79	20.7	0.008	2.1	J	0.007	2.0	J
trans-1,3-Dichloropropene	10061-02-6	111	21.6	0.007	1.4	J	0.002	0.36	U
Pentanenitrile	110-59-8	83	21.6	0.011	2.8	J	0.003	0.88	J
1,1,2-Trichloroethane	79-00-5	133	22.0	0.012	2.0	J	0.005	0.76	J
Toluene	108-88-3	92	22.7	0.012	2.4	J	0.007	1.8	J
1,2-Dibromoethane	106-93-4	188	24.2	0.020		J	0.007	0.86	J
Octane	111-65-9	114	24.8	0.006	1.2	J	0.002	0.47	U
Tetrachloroethylene	127-18-4	166	24.8 25.3	0.000	2.5	J	0.002	0.57	U
Chlorobenzene	108-90-7	113	25.5 26.9	0.019	2.5	J	0.004	1.0	J
Hexanenitrile	628-73-9	97	20.9 27.1	0.014	2.7	J	0.005	0.99	J
Ethylbenzene	100-41-4	106	27.8	0.010	1.7	J	0.004	0.58	J
p/m-Xylene	106-42-3	106	27.8	0.008	3.1	J	0.005	1.2	J
Cyclohexanone	108-94-1	98	28.6	0.013	1.9	J	0.006	1.2	J U
-	108-94-1	98 104	28.8 29.1	0.008	1.5	J	0.000	0.55	J
Styrene 1,1,2,2-Tetrachloroethane	79-34-5	168	29.1 29.3	0.007	3.3	J	0.003	1.0	J
			29.3 29.4	0.023	3.3 1.7	J	0.003	0.62	J
o-Xylene Nonane	95-47-6 111-84-2	106	29.4 29.8	0.008	1.7	l	0.003	0.02	J U
(NOR) AND	111-04-2	128	47.0	0.000	1.1	3	0.002	0.51	0

 Table D.4. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and

 Estimated Concentrations^(b) in Ambient Air and Ambient Air Through the ISVS Collected Near Tank B-105 in SUMMATM Canisters on 7/30/96

			Ret	B	undle A	ir .	A	mbient A	Air
Target Analytes ^(a)	CAS	MW	Time	(mg/m^3)	(ppbv)	Flag	(mg/m^3)	(ppbv)	Flag
1,3,5-Trimethylbenzene	108-67-8	120	33.0	0.008	1.5	J	0.003	0.50	J
1,2,4-Trimethylbenzene	· 95-63-6	120	34.3	0.007	1.4	J	0.002	0.44	J
Decane	124-18-5	142	34.5	0.017	2.6	J	0.005	0.74	J
1,3-Dichlorobenzene	541-73 - 1	147	34.8	0.010	1.5	J	0.004	0.53	J
I,4-Dichlorobenzene	106-46-7	147	35.0	0.009	1.4	J	0.003	0.52	J
1,2-Dichlorobenzene	95-50-1	147	36.2	0.010	1.6	B,J	0.003	0.51	B,J
Undecane	1120-21-4	156	38.9	0.010	1.4	J	0.006	0.84	J
1,2,4-Trichlorobenzene	120-82-1	181	42.4	0.009	1.1	B,J	0.003	0.35	B,J
Dodecane	112-40-3	170	42.9	0.015	2.0	J	0.106	14	
Hexachloro-1,3-butadiene	87-68-3	261	44.2	0.024	2.0	J	0.008	0.69	J
Fridecane	629-50-5	184	46.6	0.006	0.73	U	0.233	28	
Tetradecane	629-59-4	198	50.1	0.004	0.47	U	0.075	8.5	

Tentatively

Identified Compounds^(b)

Unknown Alkane	· · · · · · ·	45.8	nd	nd	0.285	f	
Dete Onelity Elect					········		

Data Quality Flags

B Compound found in associated laboratory blank.

J Target compound detected above the IDL but below the EQL.

U Target compound not detected at or above the IDL.

Y Initial calibration and CCV was performed; however, the analyte was not part of the current operating procedure.

Footnotes

(a) Detected target analytes.

(b) Semi-quantitative estimate calculated using concentration of closest eluting IS.

(c) WHC sample identification number.

(d) No molecular weight available for calculation.

nd Not detected

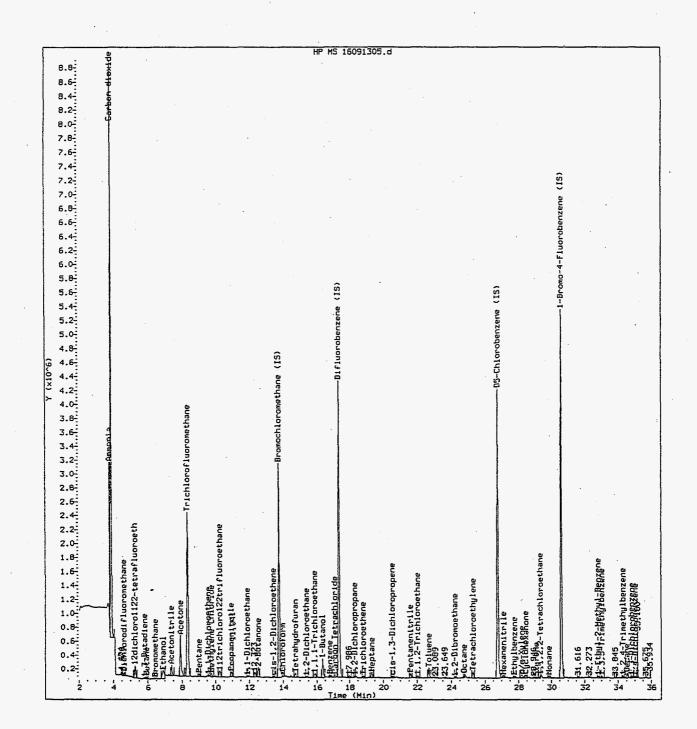


Figure D.1a Total Ion Chromatogram (2 - 36 min) for Hanford Waste Tank B-105 SUMMA[™] Canister Sample S6075-A04-282 Collected on 7/30/96

D.12

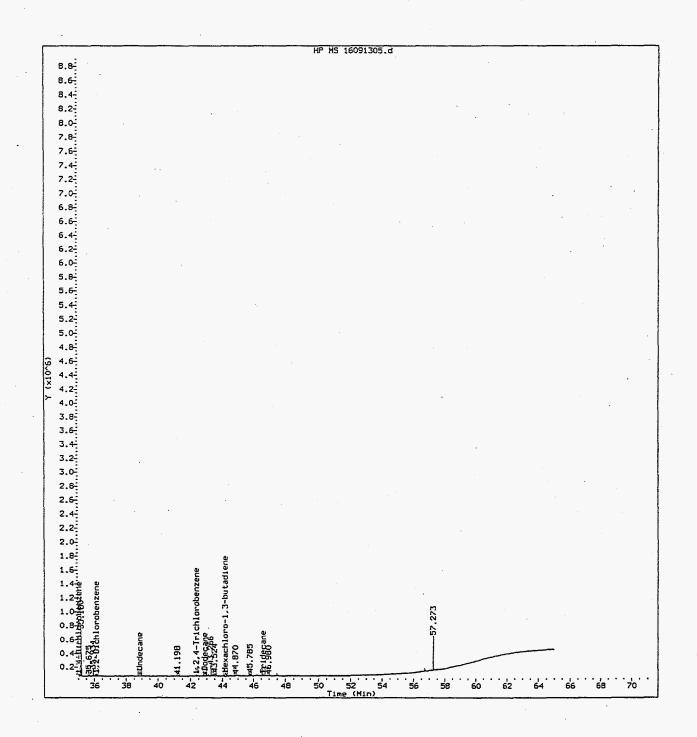


Figure D.1b Total Ion Chromatogram (36 - 70 min) for Hanford Waste Tank B-105 SUMMA[™] Canister Sample S6075-A04-282 Collected on 7/30/96

D.13

Appendix E

Tank Vapor Characterization:

Organic Analytes by Triple Sorbent Trap Method

Appendix E

Tank Vapor Characterization: Organic Analytes by Triple Sorbent Trap Method

E.1 Sampling Methodology

Samples are collected on Supelco 300 graphite based triple sorbent traps (TST). Before field deployment, each trap is heated to 380°C under inert gas flow for a minimum of 60 min. Tubes are prepared in batches with each tank sampling job constituting one batch. One tube is selected from each batch and run immediately to verify cleanliness. All remaining tubes in the batch receive equal amounts of 3 surrogate compounds (hexafluorobenzene, toluene-d8, and bromobenzene-d5). One per batch tube is run immediately to verify successful addition of surrogate spikes to that batch. Tubes are then placed in individually labeled plastic shipping tubes (Supelco TD³), which are sealed with gasketed end caps, thus providing a rugged, headspace-free shipping and storage medium. As a precautionary measure, sample tubes are kept in refrigerated storage before and after sampling.

E.2 Analytical Procedure

The Supelco 300 tubes were analyzed according to Pacific Northwest National Laboratory (PNNL) Technical Procedure PNL-TVP-10^(a), with the exceptions noted in Section E.4. The method employs Supelco Carbotrap[™] 300 traps for sample collection and preconcentration. The traps are ground-glass tubes (11.5 cm long X 6 mm OD, 4 mm ID) containing a series of sorbents arranged in order of increasing retentivity. Each trap contains 300 mg of Carbotrap[™] C, 200 mg of Carbotrap[™] B, and 125 mg of Carbosieve[™] S-III. The first 2 sorbents are deactivated graphite with limited sorption power for less volatile compounds. The final trapping stage, the Carbosieve[™] S-III, is a graphetized molecular sieve used to retain the most volatile components, including some permanent gases such as Freon-12. Following sample collection and addition of internal standard (IS), the traps are transferred to a Dynatherm ACEM 900 thermal desorber unit for analysis. The trap on the ACEM 900 is then desorbed by ballistic heating to 350°C with the sample then transferred to a smaller focusing trap. A 10:1 split is used during the transfer with 10% of the sample analyzed and the rest retained for reanalysis. The split sample collected on a second identical Carbotrap[™] 300 trap is used for repeat analysis on at least one sample per batch. Since the IS also follows the same path, quantitation may be performed directly on the repeat run without changing the calibration. Following desorption from the Carbotrap[™] 300 trap, the analyte is transferred to a long, thin focusing trap filled with the same type of trapping materials as the CarbotrapTM 300 traps and in approximately the same ratios. The purpose of the focusing trap is to provide an interface to a capillary gas chromatography (GC) column, which may be thermally desorbed at a helium (He) flow rate compatible with the column and mass spectrometry (MS) interface (1.2 mL/min). The focusing trap is

(a)

Pacific Northwest Laboratory. 2/96. Determination of Volatile Organic Compounds in Hanford Waste Tank Headspace Samples Using Triple Sorbent Trap Sampling and Gas Chromatograph-Mass Spectrometer Analysis, PNL-TVP-10 (Rev. 2), PNL Technical Procedure, Richland, Washington.

ballistically heated to thermally desorb components onto a capillary GC column. The column is subsequently temperature programmed to separate the method analytes, which are then detected by MS.

The instrument calibration mixture for the TST analysis consists of 67 compounds. These 67 compounds that are directly quantified in this analysis make up the target analyte list (these 67 compounds will be referred to as target analytes). A summary of the target analytes is provided in Table E.1. The calibration mixture is prepared in common with the mixture used for the SUMMATM analysis (see Section D.2). The standard calibration mix was analyzed using 4 aliquot sizes ranging from 100 mL to 1200 mL, and a response factor for each compound was calculated. Volumes of

Table E.1Target Organic Analytes

Dichlorodifluoromethane Chloromethane 1,2-Dichloro-1,1,2,2-tetrafluoroethane Vinyl Chloride Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane cis-1,2-Dichloroethene Chloroform 1.2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride 1,2-Dichloropropane Trichloroethene cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene 1.2-Dibromoethane Tetrachloroethylene Ethylbenzene Tetradecane Butane Acetone 1-Butanol Octane Nonane Undecane Tridecane 1,3-Butadiene^(a)

p/m-Xylene Styrene 1,1,2,2-Tetrachloroethane o-Xylene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachloro-1,3-butadiene 2-Butanone Chlorobenzene Acetonitrile Heptane Tetrahydrofuran Pyridine Butanenitrile Cyclohexane Decane Hexane 4-Methyl-2-pentanone Propanenitrile Cyclohexanone Propanol Methanol^(a) Ethanol^(a) Pentane Pentanenitrile Hexanenitrile 2-Ethyl-2-methyl benzene Dodecane Tributyl Phosphate

(a) The low level standard is used as the EQL for these compounds.

Note: Compounds shown in italics have an exceptionally high volatility. They are routinely included in the standard and are quantified, but have a restricted linear dynamic range because of the potential for trap breakthrough.

standard added to the traps are measured by pressure difference on a SUMMA^m canister of known volume. The GC/MS response for these compounds has been previously determined to be linearly related to concentration. Instrument detection limits and EQLs have been determined. Methanol, ethanol, and 1,3-butadiene are not currently included in procedure PNL-TVP-10; however, these compounds were analyzed per this method. The low level standard is used as the EQL for these compounds. Sample results are flagged with a less-than symbol (<) when less than the EQL.

E.3 Quality Assurance/Quality Control

Before the tank sample was analyzed, a diagnostic check was performed on the GC/MS instrument by running a full auto tune, as described in PNL-TVP-10. Upon satisfactory completion of the instrument diagnostic check, a blank tube was analyzed to check the cleanliness of the system. The instrument was then calibrated using a 300-mL volume of standard gas mixture containing 67 compounds shown in Table E.1. A gas mixture containing difluorobenzene, chlorobenzene-d₅, and 1,4 bromofluorobenzene was used as an IS for all calibration standard and sample analyses. Analyte responses from sample components, ISs, and standards were obtained from the extracted ion plot from their selected mass ion. A continuing calibration was generated by calculating the relative response ratios of the IS to calibration standard responses and plotting the ratios against the ratio of the calibration-standard concentration (in ppbv) to the IS concentration. Once it is determined that the relative response is linear with increasing concentration, an average response factor is calculated for each target analyte and used to determine the concentration of target compounds in each sample.

E.3.1 Quantitation Results of Target Analytes. The quantitative-analysis results for the target analytes were calculated directly from the calibration curve generated using the IS method described above and in PNL-TVP-10. The conversion from ppbv to mg/m³ assumes standard temperature and pressure (STP) conditions of 760 torr and 273K and was calculated directly from the following equation:

 $mg/m^{3} = \frac{(ppbv/1000) \times g \text{ mol wt of compound}}{22.4 \text{ L/mol}}$ (E.1)

E.3.2 Identification and Quantitation of Tentatively Identified Compounds. The tentatively identified compounds (TICs) are determined by mass-spectral interpretation and comparison of the spectra with the U.S. Environmental Protection Agency (EPA)/National Institute for Standards and Technology (NIST) and WILEY Libraries, which are a part of the Hewlett-Packard 5971/5972 instrument operating system. Chromatographic peaks with an area count greater than, or equal to, one-tenth of the total area count of the nearest eluting IS are tentatively identified and quantitatively estimated. The quality of the mass-spectral searches was then reviewed by the principal investigators before the identification was assigned to each chromatographic peak.

The concentration of each TIC was estimated using a relative response factor calculated using the total peak area for the nearest eluting IS. The IS peak area was used to calculate a response factor using the IS concentration in mg/m^3 :

Response Factor =
$$\frac{\text{IS conc. } (\text{mg/m}^3)}{\text{IS peak area}}$$
 (E.2)

The calculated response factor was then multiplied by the TIC peak area to give an estimated concentration for that compound.

The ppbv concentrations are calculated from mg/m^3 and the molecular weight of the analyte.

$$TIC in ppbv = \frac{TIC (mg/m^3) \times 22.4 L/mol \times 1000}{TIC g mol wt}$$
(E.3)

E.4 Organic Sample Results

Eight triple sorbent traps consisting of four samples, two field blanks and two trip blanks were returned to the laboratory on August 7, 1996 under WHC COC form 100283. Samples were analyzed on August 27 and 28, 1996.

The results from the GC/MS analysis of the tank headspace TST samples are presented in Table E.2. The results of replicate analyses on a single TST are presented in Table E.3.

Table E.2 lists the quantitative results for compounds listed as target analytes and TICs. Target compounds not listed in Table E.2 were not detected in any of the tank headspace samples above the compound IDL. Twenty-nine target analytes above the IDL and seven TICs were detected in the tank headspace samples. Twenty-five of the target analytes and all seven TICs were observed in two or more sorbent traps. Two TICs were not identified and were labelled as unknowns. Trichlorofluoromethane at 1.06 mg/m³ and acetone at 0.16 mg/m³ accounted for 65% of the target analytes and 32% of the total concentration identified by the analysis. The total concentration of the target analytes was 1.87 mg/m³ or 49% of the total concentration identified by the analyses. The predominant TICs observed in these samples were octamethylcyclotetrasiloxane at 0.78 mg/m³, an unknown C12 alkane at 0.51 mg/m³, and 2,2,3,3-tetramethylbutane at 0.23 mg/m³. The total concentration of all the compounds identified was 3.80 mg/m³.

Triple sorbent trap sample PNL 1096 was analyzed in replicate for target analytes and TICs to determine analytical precision. Twenty of 25 target compounds and six of seven TICs had RPDs of less than 10%.

The following procedural changes and observations were noted during the analysis of Tank B-105:

Methanol, ethanol, and 1,3-butadiene are not currently included in procedure PNL-TVP-10; however, these compounds were analyzed per this method. The low level standard is used as the EQL for these compounds. Sample results are flagged with a less-than symbol (<) when less than the EQL value.

Tributyl phosphate (TBP) is included in the analysis target list based on a calibration performed on January 5 and 9, 1996. The TBP was introduced onto a series of double sorbent traps as a methanolic solution standard rather than a vapor standard. This served to determine the retention time and verify the mass spectral characteristics of the compound. However, verification of the calibration acceptability was not performed because the compound is not present in the CCV. At present, it is not possible to prepare a gas standard from this material. The calibration information on TBP demonstrated that detectability at 0.8 ppbv (based on 200 mL sample) was possible. Tributyl phosphate was not detected in the tank samples.

Very narrow air spikes (mass 32) occasionally are present in chromatograms from this period. This problem has been traced to high frequency air bursts from the surface of MS vacuum system o-rings. Attempts at permanently eliminating this problem have been unsuccessful to date, and the matter has been referred to Hewlett Packard for further investigation. It has no known impact on data quality but the spikes do appear as features on the total ion chromatogram.

Field blanks, one trip blank, and all samples contained minor amounts of 1-chloro-1,1-difluoroethane. This compound has appeared persistently in most samples sent to the field in the past including blanks. It is believed to be a fugitive refrigerant. This material is never present in tubes archived for a similar amount of time in the 326 Vapor Lab or 329 Building temporary storage. The origin of the material is unclear, but since it has shown up in trip blanks as well as field blanks, the most likely candidate is one of the refrigerators used for interim storage.

Batch 8/13/96:

Samples included in this batch consisted of the two field blanks and two trip blanks.

The CCV showed acceptable performance as specified in the procedure for all target compounds with the exception of 1,2-dichloro-1,1,2,2-tetrafluoroethane (28%), 1,3-butadiene (29%), butanol (36%), trichloroethene (39%), trans-1,3 dichloropropene (46%), cis-1,3-dichloropropene (46%), 1,2 dibromoethane (51%), cyclohexanone (38%), and 1,1,2,2-tetrachloroethane (47%). Internal standard responses were acceptable for all six runs in the batch. Surrogate recoveries ranged from 94% to 106%. The CCB contained a trace amount (below EQL) of methylene chloride. It was otherwise clean of all target and TIC compounds.

Target compounds observed in at least one field blank at levels in excess of the EQL included 2-butanone, tetrahydrofuran, 4-methyl-2-pentanone, and toluene. The trip blanks showed only

tetrahydrofuran. Environmental contamination problems apparently associated in past work with field bundle preparation were evident but relatively minimal in this sampling job.

Both field blanks, one of the trip blanks, and all of the samples contained minor amounts of 1-chloro-1,1-difluoroethane. This compound has appeared persistently in most samples sent to the field in the past including blanks. It is believed to be a fugitive refrigerant. This material is never present in tubes archived for a similar amount of time in the 326 Vapor Lab or 329 Building temporary storage. The origin of the material is unclear but since it has shown up in trip blanks as well as field blanks, the most likely candidate is one of the refrigerators used for interim storage. Other TICs present in the field blanks included 2-methyl propene, 1-fluoro-1,1-dichloroethane, some alkanes, and two siloxane compounds believed to be originating from the C-Flex tubing used in the ISVS sample bundle.

Batch 8/28/96:

Samples included in this batch consisted of the three tanks samples and one repeat analysis of a tank sample.

The CCV was within nominal limits for all compounds with the exception of 1,2-dichloro-1,1,2,2-tetrafluoroethane (32%), 1,3-butadiene (49%), butane (29%), and propanol (26%). Internal standard responses were within method specifications for response relative to the CCV.

Organic loading in Tank B-105 was relatively low. Target compounds found at levels in excess of the EQL in at least one of the samples included acetonitrile, acetone, trichlorofluoromethane, propanenitrile, 2-butanone, tetrahydrofuran, 1-butanol, 4-methyl-2-pentanone, toluene, and p/m xylene. A number of other target compounds were detected in at least one of the samples at trace levels (below EQL). The TICs detected were essentially the same as in the field blanks and probably represent environmental contamination associated with assembly of the ISVS sampling bundle.

Sample volumes for all ISVS tank samples have been corrected to STP from the 21°C calibration used on the sampling cart flowmeters. The correction was included in the reported data to provide seamless compatibility with past VSS data that were collected using a 0°C calibration.

•			Ret		A11.109	5 ^(c) ISVS		12.109	6 ^{(c)(d)} ISVS	S6075-A	13.1097	^(c) ISVS	Mean and Standard		ı	
Target Analytes ^(a)	CAS	MW	Time	(mg/m ³)	(ppbv)	Flag	(mg/m^3)	(ppbv)	Flag	(mg/m^3)	(ppbv)	Flag	(mg/m^3)	St. Dev.	(ppbv)	St. Dev.
Acetonitrile	75-05-8	41	13.1	0.053	29		0.056	30		0.058	32		0.056	0.002	30	1.3
Acetone	67-64-1	58	13.7	0.155	60		0.152	59		0.160	62		0.156	0.004	60	1.6
Trichlorofluoromethane	75-69-4	137	14.2	1.029	168		1.043	170		1.113	181		1.062	0.045	173	7.3 *
Pentane	109-66-0	72	15.0	0.005	1.4	J	0.003	0.89	U	0.003	0.89	U	e	е	e	e
Methylene Chloride	75-09-2	85	15.8	0.038	10	J	0.040	11	J	0.038	10	J	0.039	0.001	10	0.32
112trichloro122trifluoroethane	76-13-1	187	16.3	0.023	2.7	J	0.022	2.6	J	0.018	2.2	J	0.021	0.002	2.5	0.30
Propanenitrile	107-12-0	55	17.1	0.025	10		0.027	11		0.029	12		0.027	0.002	11 -	0.89
Propanol	71-23-8	60	17.1	0.024	9.0	J	0.023	8.6	J	0.024	9.0	J	0.024	0.001	8.9	0.21
2-Butanone	78-93-3	72	18.6	0.061	19		0.058	18		0.058	18	,	0.059	0.002	18	0.58
Hexane	110-54-3	86	19.9	0.007	1.8	J	0.007	1.7	J	0.008	2.1	J	0.007	0.001	1.8	0.20
Tetrahydrofuran	109-99-9	72	20.8	0.044	14		0.046	14		0.051	16		0.047	0.004	15	1.1
1-Butanol	71-36-3	74	22.4	0.076	23		0.086	26		0.098	30	•	0.087	0.011	26	3.4
Heptane	142-82-5	100	25.2	0.014	3.1	J	0.013	3.0	J	0.015	3.3	J	0.014	0.001	3.1	0.18
4-Methyl-2-Pentanone	108-10-1	100	26.4	0.021	4.8		0.020	4.4	J	0.021	4.7		0.021	0.001	4.6	0.21
Toluene	108-88-3	92	28.5	0.071	17		0.075	18		0.084	20		0.076	0.007	19	1.7
Tetrachloroethylene	127-18-4	166	31.1	0.008	1.1	J	0.012	1.6	J	0.016	2.2	J	0.012	0.004	1.6	0.53
Hexanenitrile	628-73-9	97	32.8	0.003	0.66	U	0.003	0.73	J	0.005	1.1	J	0.004	е	0.93	e
Ethylbenzene	100-41-4	106	33.5	0.007	1.5	J.	0.009	1.8	J.	0.009	1.9	J .	0.008	0.001	1.7	0.23
p/m-Xylene	106-42-3	106	33.9	0.027	5.8	J	0.034	7.3		0.035	7.4		0.032	0.004	6.8	0.91
Cyclohexanone	108-94-1	98	34.4	0.012	2.8	U	0.033	7.6	J .	0.013	2.9	U	e	e	e	e
Styrene	100-42-5	104	34.8	0.010	2.2	J	0.011	2.4	J	0.010	2.2	J	0.010	0.001	2.2	0.15
o-Xylene	95-47-6	106	35.1	0.013	2.7	J	0.018	3.7	J	0.016	3.3	J	0.015	0.002	3.3	0.50
1-Ethyl-2-methyl benzene	611-14-3	120	38.5	0.002	0.44	U	0.005	0.93	J	0.002	0.44	U	e	e	e	e
1,3,5-Trimethylbenzene	108-67-8	120	38.7	0.002	0.44	U	0.003	0.53	J	0.002	0.44	U	е	e	e	e
1,2,4-Trimethylbenzene	95-63-6	120	40.0	0.009	1.6	J	0.010	1.8	J	0.008	1.4	J	0.009	0.001	1.6	0.17
Decane	124-18-5	142	40.1	0.021	3.3	J	0.022	3.5	J	0.020	3.2	J	0.021	0.001	3.4	0.15
Undecane	1120-21-4	156	44.5	0.012	1.8	J	0.010	1.5	J	0.013	1.9	J	0.012	0.001	1.7	0.21
Tridecane	629-50-5	184	52.3	0.029	3.5	J	0.023	2.8	J	0.026	3.2	J	0.026	0.003	3.1	0.32
Tetradecane	629-59-4	198	55.8	0.021	2.4	J	0.013	1.5	U	0.028	3.2	J	0.025	e	2.8	e

 Table E.2. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and Estimated Concentrations^(b)

 for Triple Sorbent Traps Collected from the Headspace of Tank B-105 on 7/30/96

E.7

Table E.2. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and Estimated Concentrations^(b) for Triple Sorbent Traps Collected from the Headspace of Tank B-105 on 7/30/96

			Ret	S6075-	A11.109	5 ^(c) ISVS	S6075-A	12.1096	5 ^{(c)(d)} ISV	S S6075-A	13.1097	^(c) ISVS	Mean and Standard	d Deviatior	n	
Target Analytes ^(*)	CAS	MW	Time	(mg/m ³)	(ppbv)	Flag	(mg/m ³)	(ppbv)	Flag	(mg/m ³)	(ppbv)	Flag	(mg/m^3)	St. Dev.	(ppbv)	St. Dev.
Tentatively																
Identified Compounds ^(b)																
Ethane, 1-chloro-1,1-difluoro-	75-68-3	100	8.8	0.048	11 ⁻	Ν	0.071	16	N	0.054	12	N	0.058	0.012	- 13	2.7
1-Propene, 2-methyl-	115-11-7	56	10.4	0.091	36	N	0.069	27	N	0.050	20	N	0.070	0.020	28	8.2
1-Fluoro-1,1-dichloro-ethane		116	14.4	0.112	22	N	0.120	23	N	0.098	19	Ν	0.110	0.011	21	2.2
Butane, 2,2,3,3-tetramethyl-	594-82-1	114	24.8	0.249	49	N	0.222	44	Ν	0.218	43	Ν	0.229	0.017	45	3.3
Unknown C9 Alkane		128	31.7	0.134	24	N	0.211	37	N	0.158	28	N	0.168	0.039	30	6.7
Cyclotetrasiloxane, octamethyl-	556-67-2	296	39.4	0.976	74	N	0.609	46	N	0.760	58	N	0.782	0.185	59	14
Unknown C12 Alkane		170	42.9	0.516	68	N	0.565	74	N	0.455	60	N	0.512	0.055	67	7.0
Dete Quality Elago															-	

Data Quality Flags

J Target compound detected above the IDL but below the EQL.

N Denotes tentatively identified compound

U Target compound not detected at or above the IDL.

Footnotes

(a) Detected target analytes.

(b) Semi-quantitative estimate calculated using concentration of closest eluting IS.

(c) WHC sample identification number.

(d) Replicates of this sample are found in Table D.3.

(e) Mean and/or standard deviation are not meaningful for this analyte.

(f) No molecular weight available for calculation.

nd Not detected

 Table E.3. Positively Identified and Quantitated Target Analytes^(a) and Tentatively Identified Compounds and Estimated Concentrations^(b) of Replicate Analysis of a Single Triple Sorbent Trap Collected from the Headspace of Tank B-105 on 7/30/96

Ret S6075-A12.1096 ^(c) ISVS										Difference ^(d)		
Farget Analytes ^(a)	CAS	MW	Time	(mg/m^3)	(ppbv)		(mg/m ³)	(ppbv)	Flag	 %		
Acetonitrile	75-05-8	41	13.1	0.056	30		0.057	31	<u>~</u>	 2		
Acetone	67-64-1	58	13.7	0.152	59		0.110	42		33		
Frichlorofluoromethane	75-69-4	137	14.2	1.043	170		1.029	168		1		
Methylene Chloride	75-09-2	85	15.8	0.040	11	J	0.035	9.3	J	12		
12trichloro122trifluoroethane	76-13-1	187	16.3	0.022	2.6	J	0.021	2.6	J	4		
Propanenitrile	107-12-0	55	17.1	0.027	11		0.025	10		8		
Propanol	71-23-8	60	17.1	0.023	8.6	J	0.024	9.0	J	. 3		
2-Butanone	78-93-3	72 .		0.058	18		0.045	14		24		
Hexane	110-54-3	86	19.9	0.007	1.7	J	0.007	1.7	J	0		
Fetrahydrofuran	109-99-9	72	20.8	0.046	14	•	0.046	14	· ·	1		
-Butanol	71-36-3	74	22.4	0.086	26		0.081	25		6		
Heptane	142-82-5	100	25.2	0.013	3.0	J	0.013	2.8	J	5		
-Methyl-2-Pentanone	108-10-1	100	26.4	0.020	4.4	J	0.019	4.2	J	3		
Toluene	108-88-3	92	28.5	0.075	18	-	0.075	18		1		
Tetrachloroethylene	127-18-4	166	31.1	0.012	1.6	J	0.003	0.34	U	-		
Iexanenitrile	628-73-9	97	32.8	0.003	0.73	J	0.003	0.76	J	3		
Ethylbenzene	100-41-4	106	33.5	0.009	1.8	J	0.009	1.8	J	0		
/m-Xylene	106-42-3	106	33.9	0.034	7.3		0.035	7.3	•	Ő		
Cyclohexanone	108-94-1	98	34.4	0.033	7.6	J	0.013	2.9	U	ů.		
Styrene	100-42-5	104	34.8	0.035	2.4	l	0.011	2.4	J	1		
-Xylene	95-47-6	106	35.1	0.011	3.7	J	0.017	3.7	J	2		
-Ethyl-2-methyl benzene	611-14-3	120	38.5	0.005		J	0.005	0.89	J	4		
,3,5-Trimethylbenzene	108-67-8	120	38.7	0.003	0.53	J	0.005		J	63		
,2,4-Trimethylbenzene	95-63-6	120	40.0	0.005	1.8	J	0.009	1.7	J	3		
)ecane	124-18-5	142	40.1	0.010	3.5	J	0.022	3.5	J	0		
Indecane	1120-21-4	156	44.5	0.010	1.5	J	0.010	1.5	J	2		
ridecane	629-50-5	184	52.3	0.010	2.8	J	0.010	2.6	J	10		
Tetradecane	629-59-4	198	55.8	0.023		J U	0.021	1.9	J			
enauecane	023-33-4	190	55.0	0.015	1.5	0	0.017	1.9	J			
Tentatively												
dentified Compounds ^(b)												
thane, 1-chloro-1,1-difluoro-	75-68-3	100	8.8	0.071	16	N	0.058	13	N	20		
-Propene, 2-methyl-	115-11-7	56	10.4	0.069	27	N	0.072	29	N	5		
-Fluoro-1,1-dichloro-ethane		116	14.4	0.120	23	Ň	0.117	23	N	2		
Butane, 2,2,3,3-tetramethyl-	594-82-1	114	24.8	0.222		N	0.221	43	N	0		
Cyclotrisiloxane, hexamethyl-	541-05-9	222	31.1	nd	nd		0.559	56	N			
Jnknown C9 Alkane		128	31.7	0.211	37	N	0.211	37	N	0		
Cyclotetrasiloxane, octamethyl-	556-67-2	296	39.4	0.609	46	N	0.603	46	N	1		
Jnknown C12 Alkane		170	42.9	0.565		N	0.535	71	N	5		

J Target compound detected above the IDL but below the EQL.

N Denotes tentatively identified compound

U Target compound not detected at or above the IDL.

Footnotes

(a) Detected target analytes.

(b) Semi-quantitative estimate calculated using concentration of closest eluting IS.

(c) WHC sample identification number.

(d) Relative percent differences (RPDs) based on mg/m3 values.

nd Not detected

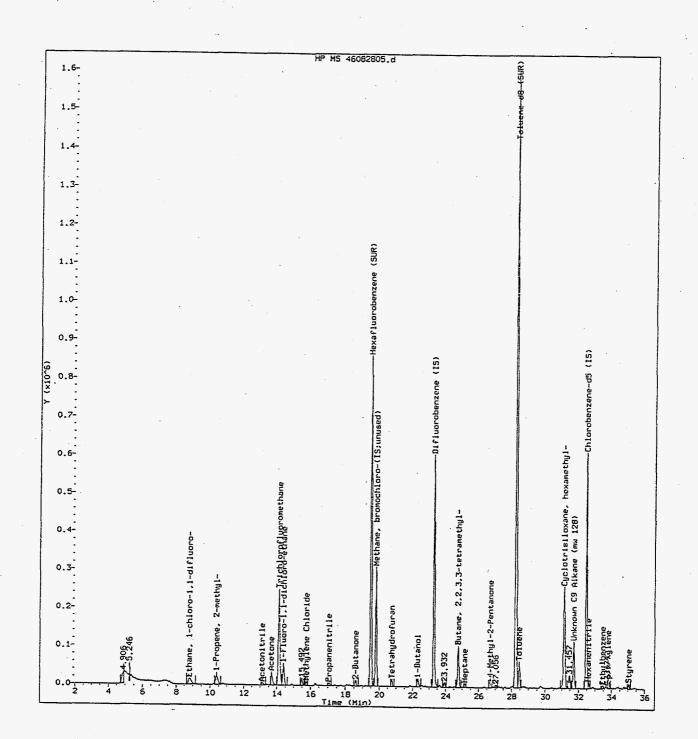


Figure E.1a Total Ion Chromatogram (2 - 36 min) for Hanford Waste Tank B-105 Triple Sorbent Trap Sample S6075-A12-1096 Collected on 7/30/96

E.10

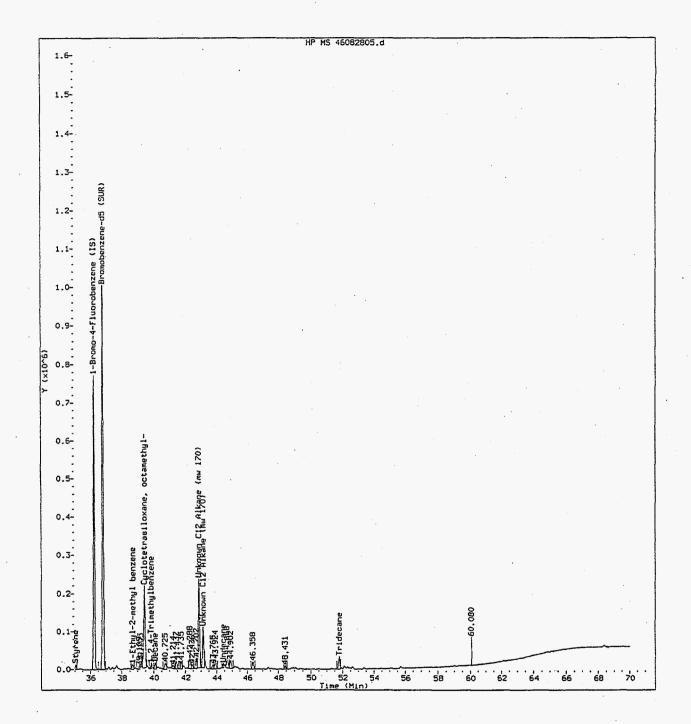


Figure E.1b Total Ion Chromatogram (36 - 70 min) for Hanford Waste Tank B-105 Triple Sorbent Trap Sample S6075-A12-1096 Collected on 7/30/96

E.11

Appendix F

Tank Vapor Characterization: Chain of Custody Sample Control Forms

Battelle Pacific National Northwest I	ab	CHAIN OF CUST	ODY WHC 100264
Custody Form Initiator	J. A. Edw	vards - PNNL	Telephone (509) 373-0141 Page 85-3009 / FAX 376-2329
Company Contact	R. D. Maho	on -WHC	Telephone (509) 373-7437 Page 85-9656 / FAX 373-3793
Project Designation/Sampling 1 2 4 1 - B - 1 0 5 Tank		/est Tank Farm e SAF S6075 (ISVS Cart)	Collection date $07 - 20 - 96$ Preparation date $07 - 22 - 96$
Ice Chest No.		, ,	Field Logbook No. WHC- <u>N</u> -647-3
Bill of Lading/Airbill No.	N/A		Offsite Property No. N/A
Method of Shipment	Governme	ent Truck	
Shipped to	PNNL		
Possible Sample Hazards/Remain	ks Unknown at ti	ime of sampling	
		Sample Identification	
S6075 - A	07 52R	Collect NH3/NO _x /H2	O Sorbent Tran
S6075 - A		Collect NH3/NO _x /H2	
S6075 - A		Collect NH3/NO _x /H	
S6075 - A		Collect NH3/NOx/H	
S6075 - A	.15.56R	Open, close and store	NH3/NO _x /H ₂ O field blank #1
S6075 - A	.16.57R		NH ₃ /NO _x /H ₂ O field blank #2
	•.		· .

[] Field Transfer of Custody		[X] Chain of Possession (Sign a		and Print Names)	
Relinquished By	Date	Time	Received By	Date	Time
GW Dennis N.W.U	07 -23 -96	0930	JA Edwards A Colucings	07 -23 -96	0830
JAEdwards JAEdwards	07-23-96	1330	ESMAST Entrast	07-23-96	1330
ESMAST Emproved	2/23/51	1445	65 CAPRED IS CaD	07-73-96	1445
65 CAPRIO MD CADO	08/07/96	P830	ES MAST Elmis	08-07-96	0830
ET MAST Elmost	08107196	1015	G.W.Dennis Bull.	08-07-96	1015
G.W.Dennis Kke D.	08/07/96	1515	K.H. Pool Jan Pool	08-07-96	1515

Comments:

Final Sample Disposition

 PNNL (only) Checklist
 Pick-up
 / Delivery
 Comments:

 Media labeled and checked?
 I/N
 Letter of instruction?
 Media in good condition?
 M
 COC info/signatures complete?
 M
 YN
 XIN
 COC info/signatures complete?
 YN
 XIN
 Activity report from 222S?
 XIN
 COC copy for LRB, RIDS filed?
 YN
 YN
 POC
 POC
 POC
 I of 1

(Revised 05/30/96 PNNL)

Battelle Pacific National Northwest Lab	CHAIN OF CUSTODY	WHC 100262
Custody Form Initiator	J. A. Edwards - PNNL	Telephone (509) 373-0141 Page 85-3009 / FAX 376-2329
Company Contact	R. D. Mahon - WHC	Telephone (509) 373-2891 Page 85-3656 / FAX 373-3793
· · · · · · · · · · · · · · · · · · ·	ons 200 West Tank Farm oor Sample SAF S6075 (ISVS Cart)	Collection date $07 - \frac{3D}{23} - 96$ Preparation date $07 - 23 - 96$
Ice Chest No.		Field Logbook No. WHC- <u>N</u> - <u>647-8</u>
Bill of Lading/Airbill No.	N/A	Offsite Property No. N/A
Method of Shipment	Government Truck	
Shipped to	PNNL	
Possible Sample Hazards/Remarks U	nknown at time of sampling	
	Sample Identification	<u> </u>

Sample Identification

S6075 - A01 . 165 S6075 - A02 . 222	Collect Ambient Air Sample SUMMA #1 Collect Ambient Air Sample SUMMA #2 (through tube bundle)
S6075 - A04 . 282 S6075 - A05 . 323 S6075 - A06 . 324	Collect SUMMA #3 Collect SUMMA #4 Collect SUMMA #5

[] Field Transfer of Custody [X		[X] Chain	of Possession (Sign a	(Sign and Print Names)	
Relinquished By	Date	Time	Received By	Date	Time
JAEdwards JAEdwards	07-23-96	1330	ES MAST Encloser	07-23-96	1320
SMAST Ene 107400	7-23-90	1445	65 CAPRIO AS CIL	07-23-96	1415
65 CAPRIO MO CARD	08-07-96	0830	ET MAST Elment	08-07-96	0830
ESMAST FIMON	3.07-50	1015	JLJulia K / Julia	8-7-96	1015
l					

Comments:

Final Sample Disposition

	-			
	PNNL (only) Checklist	Pick-up	/ Delivery	Comments:
٥	Media labeled and checked?	(YIN		
٥	Letter of instruction?	$(\gamma)/N$	A	•
٥	Media in good condition?	AVN -	$I(\mathbf{Y})$ N	
` \	COC info/signatures complete?	(Y)N	1 (Y)/N	
Q	Rad release stickers on samples?	\sim	1 0 N	
٥	Activity report from 222S?		1 🕅 / N	
۰ ک	RSR/release? (a ≤100/B ≤400 pCi/g) ``	1 4/N	
٥	COC copy for LRB, RIDS filed?	·~	1 (\$) N	
,		(B)	20	
	POQ	UEL .	POC	
(WHC-S	5D-WM-TP-335, REV. 2, Table 2b) ¹	\ ` -	//	
		1		

(Revised 05/30/96 PNNL)

A-6000-407 (12/92) WEF061

1 of 1

Battelle Pacific		IN OF CUSTODY		WHC 1002	83
Northwest Labor	ratory	· ·			
Custody Form Initiator	J. A. Edwards - PNL			(509) 373-0141 P8-08 / FAX 376-0418	3
Company Contact	R. D. Mahon - WHC		•	(509) 373-7437 S3-27 / FAX 373-7076	3
Project Designation/Sampling Loc 241-B-105 Tank	cations 200 West Tank Farm Vapor Sample SAF S6075 (ISVS Cart)			07 - <u>30</u> - 96 07 -25 - 96	
Ice Chest No.		F	Field Logbook No. W	HC- <u>N -647-8</u>	
Ertco Hi/Lo thermometer No.	PNL-T-00				
Bill of Lading/Airbill No.	N/A	c	Offsite Property No.	N/A	
Method of Shipment	Government Truck				
Shipped to	WHC-				
Possible Sample Hagarda Bamark	. Hole our at time of compling				

	·	Sample Identification	
·	S6075 - A11 . 1095	PNL Triple Sorbent Trap (TST) Sample # 1	
	S6075 - A12 . 1096	PNL TST Sample # 2	
	S6075 - A13 . 1097	PNL TST Sample # 3	
	S6075 - A14 . 1119	PNL TST Sample # 4	
	S6075 - A17 . 1120	Open, close & store TST Field Blank # 1	
	S6075 - A18 . 1121	Open, close & store TST Field Blank #2	
	S6075 - A19 . 1122	Store TST Trip Blank #1	
	S6075 - A20 . 1123	Store TST Trip Blank #2	

[] Field Transfer of Custody		[X] Chain	of Possession (Sign	and Print Name	s)
Relinquished By	Date	Time	Received By	Date	Time
IL Julya Aport 2 Julya	07-26-96	0830	JA Edwards A Edwards	07-22-96	0530
JA Edwards LA Solutardo	07-26-96	1040	65 CAPETO JUSCILO	07- <u>26-</u> 96	1040
GS CAPRIO NO CALO	08-07-96	0836	65 MAST 3/mas	1.8-07-96	0830
ES MAST Elmano	8-7-96	1015	The Turken 1Ch Lander	8-7-912	1015
•					
			· · · · · · · · · · · · · · · · · · ·		
·		Final Samp	le Disposition		

Comments:

Comments:

PNL (only) Checklist Pick-up / Delivery ٥ Media labeled and checked? ٥ Letter of instruction? ٥ Media in good condition? COC info/signatures complete? ٥ ٥ Sorbents shipped on ice? (<5°C) Hi/Lo thermometer - Keep upright! ٥ ٥ Hi/Lo thermometer Rad release stickers on samples? Activity report from 222S? ٥ ٥ ٥

POC

COC copy for LRB, RIDS filed?

/ Y/N / Y/N / Y/N

Cooler Temperature Status I.

(Revised 06/21/95 PNL)

A-6000-407 (12/92) WEF061

1 of 1

F.3

PNNL

Karl Pool	P8-08
Berta Thomas	P8-08
John Evans	K6-96
Khris Olsen	K6-96
Kurt Silvers	K9-08
Jon Fruchter	K6-96
Jim Huckaby	K6-80
Brenda Thornton	K6-80
Darlene Varley	K1-06
Katherine Savard	K9-04
Kris Walters	K6-80 (5 copies)

Lockheed

Larry Pennington	S7-21
Luther Buckley	R2-12

DOE-RL

Carol Babel	S7-54	
Jim Thompson	S7-54	