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Abstract 

World modeling is defined as the process of 
creating a numerical geometric model of a real 
world environment or workspace. This model is 
often used in robotics to plan robot motions 
which perform a task while avoiding obstacles. 
In many applications where the world model 
does not exist ahead of time, structured lighting, 
laser range finders, and even acoustical sensors 
have been used to create three dimensional maps 
of the environment. These maps consist of 
thousands of range points which are difficult to 
handle and interpret. This paper presents a least 
squares technique for fitting range data to planar 
and quadric surfaces, including cylinders and 
ellipsoids. Once fit to these primitive surfaces, 
the amount of data associated with a surface is 
greatly reduced up to three orders of magnitude, 
thus allowing for more rapid handling and 
analysis of world data. 

1. Introduction 

For the past seven years, Sandia National 
Laboratories has been active in the development 
of robotic systems to help remediate DOE'S 
waste sites and decommissioned facilities. Some 
of these facilities have high levels of radioactivity 
which prevent manual clean-up. Tele-operated 
and autonomous robotic systems have been 
envisioned as the only suitable means of 
removing the radioactive elements. 

Early prototype systems have demonstrated the 
feasibility of using a computer generated 

graphical interface to navigate and control these 
systems. Much like a video game, this graphical 
environment contains a 3 dimensional (3D) map, 
or world model, of the facility. The traditional 
method of generating the model has been to use 
3D CAD tools. Unfortunately, this is a very 
manual, time consuming operation, primarily due 
to the time needed to collect the measurements. 
Blueprints are often unavailable and rarely match 
the as-built conditions. Changes, modifications, 
or simply adding or moving equipment around 
add many hours to construct the model. The 
problem is increased when data cannot be 
gathered because access to the facility is limited 
due to environmental hazards. One solution is to 
use remotely deployed range sensors. These 
devices are used to scan over an area, and 
provide 3D surface information that can be used 
to create a surface map [l]. 

These sensors are capable of generating 
extremely dense range data which when 
converted directly to a world model may contain 
hundreds .of thousands of polygons [2]. The 
world model created from many scans is so large 
that even the newest, most expensive computer 
graphics workstations have a difficult time 
displaying this data in real time. In addition, this 
type of brute force representation of objects 
makes it impossible to perform automated path 
planning or disassembly because of the 
exorbitant computational cost of considering each 
scanned point on the surface. 

What is needed is a way to reduce the data sets to 
a f ~ t e  number of primitives. Luckily, the 
facilities that we are interested in are mostly man- 
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made, and a significant number of man-made 
objects can be segmented into primitives such as 
planes, cylinders, and spheres. For example, 
walls, cabinets, tables, barrels, pipes, and 

. 

hemispherical domes can be fit with these . 
primitives. 

In the past, researchers have investigated fitting 
range data using free-form surface models such 
as B-splines, NURBS, or Dual Kriging [3][4]. 
These techniques fit parametric equations, often 
low order polynomials, to scattered data points 
within a rectangular patch. The control points of 
each patch are defined such that smooth surfaces 
are generated between adjacent patches over an 
entire surface. More recently, Garcia [5][6] has 
developed triangular meshes which incorporate 
uncertainty into the control points through shape 
modifiers. The goal of this paper is not to create 
smooth surfaces that precisely model the surface, 
but to create simple primitives that approximate 
the real data and are easy to represent in a world 
model. Similar work in finding planar and 
quadric surfaces for inclusion in a world model is 
described in [7]. In [7], the object is recognized 
and its position and orientation determined by 
comparing model surface patches from a user 
selected shape to scene surface patches. In this 
work, no pre-defined user selected surfaces are 
needed. 

This paper describes how to fit large range data 
sets to planes, cylinders, and spheres using a 
least squares approach. Section 2 describes the 
least squares fit routines for planar surfaces, and 
Section 3 describes the least squares fit for 
quadric surfaces. Section 4 presents 
experimental results, and Section 5 summarizes 
the results and concludes with suggested future 
research and development. 

2. Planar Fit 

This section describes how 
map data to a planar surface using a least squares 
technique. It is assumed that the range data has 
already been segmented to isolate points on the 
plane from non-planar points. Currently, this is 
performed manually in a 3D graphical 
environment developed in AVS from Advanced 
Visual Systems, Incorporated. Once segmented, 
the points are sent to a routine which uses the 
following least squares technique to fit the points 
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to an hxiplicit representation of a plane. From 
this implicit representation, the position and 
extent of the plane are determined. 

The implicit equation of a plane is 
- 

f ( x , y , z )  = n,x+n, ,y+n,z+l= O (1) 

where n,, ny, and n are constants which 
represent the plane5s normal vector. The least 
squares solution minimizes the expression 

Taking the partial of S with respect to n,, nv, and 
nz and setting the partials equal to zero, the least 
squares solution is 

n = A-'b 

where 

(3) 
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From Equations (3) and (4), a data set which 
might contain several thousand points can be 
reduced to three parameters n,, ny, and nz . In 
addition to these three parameters, we also want 
to determine the extent of the plane. One way of 
doing this is with the following algorithm. 

1. Project all points onto the planar surface 
determined by Equations (3) and (4). The 
projection of any point 3 onto the plane is 
given by 

where the perpendicular distance from the 
plane to the origin is 



1 

"=J- 
and the normal unit vector of the plane is 

2. Find the center of the points. 

(7) 

3. Find the point which is the farthest distance 
from the center. Define this maximum point 
as the x-axis of the plane. The y-axis can be 
determined from the cross product of the z- 
axis (u ' )  and x-axis. 

(9) 

4. Find the points which form the extent of the 
plane. One way to do this is to imagine a 
deformable circle in the plane whose rn node 
points around the circle are the planar points 
that are furthest from the center within a 
discretized sector of the circle. The angle of 
each point with respect to the plane's x-axis 
is given by 

where 

and 

( Y J i  = ((%)i - & ) e 9  

The points that form the extent are'given by 
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(14) 
for j = 1, ..., rn. The operator must select rn. 

Figure 1 is an example of planar fitting. The 
spheres show the vertices of the original data set. 
The surface polygons were created using the 
circular algorithm presented above. The outer 
vertices of the surface polygons use the projected 
planar vertices from the original data set. The 
common center vertex is derived from the 
centroid calculation. The advantage of this 
method is simplicity and therefore speed. With a 
reasonable number of divisions, it captures edge 
detail a convex hull would miss, without the 
complexity of a perimeter search based on a 
threshold length. 

Figure 1. Planar fit. 

3. Quadric Fit 

This section describes how to fit dense range 
map data to a quadric surface, which includes 
cylinders, ellipsoids, cones, and hyperboloids. 
Once the data is fit to a quadric equation, the 
parameters of the quadric indicate the type of 
quadric, e.g., cylinder, ellipsoid, etc. These 
parameters can also be used to determine the 
position and orientation of the object as well as 
variables such as the radius of a cylinder. 



The implicit equation of a quadric surface is 

(15) 
where a, b, c, $ g, h, u, v, and w are constants. 

The least squares solution again minimizes 

Taking the partial of S with respect to a, b, c, $ 
g, h, u, v, and w and setting the partials-equal to 
zero, the least squares solution is 

where 

e =  

a 
b 

h 
g 
f 

C 

U 

V 

W 

0 = A-'b 

, b =  
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Once the quadric coefficients are known, it is 
possible to determine the type of quadric from the 
rank, determinant, and eigenvalues of the 
following matrices. 

u v w  



or 

Quadric Surface 

(19) 
Let I , ,  &, & = eigenvalues(D). 

rank@) rank@) sign Nonzero 

de@) &same 
of A,, A,, 

The following table is used in this decision. 

Real ellipsoid 
Imaginary 
ellipsoid 
Hyperboloid of 
one sheet 
Hyperboloid of 

Table 1. Types of quadrics [8]. 

3 4 - 
3 4 + 
3 4 + 
3 . 4  - 

two sheets 
Real quadric cone 
Imaginary quadric 

3 3 no 
3 3 Y e s  

si n? *I 
cone I I I I 
Elliptic paraboloid I 2 4 1 4 y  es - 

no I 

where D' = R  

- 
-1 - 
?I? 
0 

0 
- 

Hyperbolic 1 2  1 4 l + I  n o 1  
paraboloid 
Real elliptic 2 3 
cylinder 
Imaginary elliptic 2 3 

no 

Yes  

To find the position and orientation of the quadric 
surface, let us consider a real ellipsoid centered 
about the origin (body coordinates). 
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F z 

0 

-1 - 
'22 
0 

0 

0 

0 

-1 

0 

- 
'32 

= O  (21) 

Translating and rotating the cylinder, the position 
of the ellipsoid with respect to world coordinates 
is 

- -  b - d  - -  

where R is a 3x3 rotation matrix and (xo) yo) 2,) 
is the translated position of the ellipsoid. Solving 
this equation for Z,Y,z" and substituting into 
Equation (Zl), we can show that the equation for 
the ellipsoid with respect to the world coordinates 
is 

-2b0 Yo Yo 201DfJ+ 

0 

-1 - 
r: 
0 

Compared to the quadric equation, notice that the 
eigenvalues of D' are the inversely proportional 
to the ellipsoid radii squared, and that the 



eigenvectors of D' compose the rotation matrix 
R. 

Normalizing the constant terms in Equation (23) 
by letting 

L=[xo Yo zap' 

D' we find that D = - . 
L 

From the second term on the right hand side of 
Equation (23), the position of the ellipsoid in 
world coordinates is related to the quadric 
parameters u, v, and w by 

Care must be taken when D is singular. This 
will occur when there is a single translation along 
only one axis. These special cases can be 
identified by examining the elements of D. 

From Equations (24) and (25), it can be shown 
that 

Finally, the radii of the ellipsoid are given by 

looking at the maximum and minimum points 
along the z-axis. This same type of analysis can 
be applied to several of the remaining 15 quadric 
surfaces, including real quadric cones and 
hyperboloids. 

4. Experimental Results 

The above algorithms were tested on real data 
sets from a laser range frnder and a structured 
lighting system. The next two figures area taken 
from range data supplied by Coleman Research 
Corporation from their laser range finder. This 
test case shows a corner with a cylinder and a 
box. Figure 2 has approximately 48,000 range 
data points. A simple triangulation of this data 
would generate around 96,000 polygons. Figure 
3 shows the results of planar fitting (the box and 
walls) and quadric fitting (the cylinder). The 
polygon count for this image is around 150. The 
additional polygons are kept to preserve 
perimeter details on the planar surfaces. The 
cylinder is represented with 24 faces. If 
perimeter was not preserved, this image could 
easily be reduced to 24 triangles, which is a 4000 
to 1 data reduction. 

9 = j $  , j = 1,2,3 

Therefore, the orientation of the ellipsoid is 
deterrnined from the eigenvectors of D, the 
position is determined from Equation (25), and 
the radii are determined from Equations (26) and 
(27). 

The analysis for a real elliptic cylinder is the same 
except that radius r3 is zero. The height of the 
cylinder is determined by projecting all data 
points into the body coordinate frame and 
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In addition to data reduction, primitive fitting can 
be fairly insensitive to noise; particularly the 
statistical noise seen along broad surfaces. Bad 
readings, typically caused by reflectance 
problems, are usually easily removed during the 
segmentation step. 

Figure 4 is an example of a real world scene 
taken from Sandia's structured lighting system. 
The intensity image shows a 6 foot diameter 
bowl, filled with vermiculite. It also contains a 
large cylindrical piece, and on the outer edges are 
two flat plates: one wood and one steel. The 
model image shows the results of surfacing from 
range data. The uneven surface of the 
vermiculite does not lend itself to primitive fitting 
without a severe reduction in surface location 
accuracy. However, the cylinder and plates can 
be modeled with high data reduction and minimal 
loss of surface accuracy. 

5. Conclusion 

Two least squares algorithms were presented for 
fitting both planar and quadric surfaces to three 
dimensional scatter point data. From the 
eigenvalues of the quadric parameters, it is 
possible to distinguish between cylinders, 
ellipsoids, cones, and hyperboloids. The 
eigenvalues and eigenvectors can then be used to 
determine the position, orientation, height, and 
diameter of these surfaces. These algorithms 
have been successfully tested on data from both a 
laser range finder and a structured lighting 
system. It should be noted that these images 
were segmented by hand and then fit. Tests 
showed that outliers in the data can result in 
selecting the wrong type of quadric. In these 
cases, the operator had to go back and remove 
the outliers. Future work is needed to 
automatically segment the images and to remove 
outliers before least squares fitting of the data. 
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