
SANDIA REPORT
SAND94-8645 UC-405

- Unlimited Release
Printed July 1996

I

META-TRANSPORT LIBRARY
USER’S GUIDE

W. Timothy Strayer

SF29000(8-81 I

This report has been reproduced from the best available copy.

Available to DOE and DOE contractors from:

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge TN 37831

Prices available from (615) 576-8401, FTS 626-8401.

Available to the public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.
Springfield, VA 221 61

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, nor any
of the contractors, subcontractors, or their employees, makes any war-
ranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government, any agency thereof or any of their contractors or
subconractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors or subcontractors.

.

Portions of this docmeat may be inegible
in eledronic image produck Images are
produced from the best avai€able original
document.

SAND94-8645
Unlimited Release
Printed July 1996

UC-405

Meta-Transport Library User’s Guide
W. Timothy Strayer

Infrastructure and Networking Research Department
Sandia National Laboratories

Abstract

Developing new transport protocols or protocol algorithms suffer from the complexity of
the environment in which they are intended to run. Modeling techniques attempt to relieve
this by simulating the environment. Our approach to promoting rapid prototyping of
protocols and protocol algorithms is to provide a pre-built infrastructure that is common to
all transport protocols, so that the focus is placed on the protocol-specific aspects. The
Meta-Transport Library is a library of base classes that implement or abstract out the
mundane functions of a protocol; new protocol implementations are derived from the base
classes. The result is a fully viable transport protocol implementation, with emphasis on
modularity. The collection of base classes form a “class-chest” of tools from which
protocols can be developed and studied with as little change to a normal Unix environment
as possible. In addition to supporting protocol designers, this approach has pedagogical
uses.

iii

.

I

vi

Table of Contents

Meta-Transport Libra y-A Protocol Base Class Library
Release 1.5

Copyright 0 1994,1995,1996 Sandia National Laboratories, Livermore Califor-
nia 94551

All rights reserved except as set forth in the End User Software License Agree-
ment.

THIS SOFTWARE was produced by Sandia Corporation under its Contract
No. DE-AC04-94AL85000 with the United States Department of Energy for the
operation of the Sandia National Laboratories, Livermore, California 94551-
0969.

NEITHER SANDIA, THE UNITED STATES NOR THE UNITED STATES
DEPARTMENT OF ENERGY, NOR ANY OF THEIR EMPLOYEES MAKES
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR

RACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION,
APPARATUS, PRODUCT, OR PROCESS OR REPRESENTS THAT ITS USE
WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, OR ASSUMES
ANY LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES
RESULTING FROM ITS USE BY ANYONE.

ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCU-

The Govermmt reserves for itself and
others acting on its behalf a rcyalty free,
nonexclusive, irrevocable, wor ld-wide
license for goverrmental purposes to publish,
distribute, translate, duplicate, exhibit,
and perform ariy such &ita amrighted by
the amtractor.

Meta-Transport Library
User’s Guide

Infrastructure and Networking Research
Sandia National Laboratories
Livermore, California

http:/hww. ea. sandia. gov/.tp/mtl

In trod u ct ion

A transport protocol is recognized by several common characteristics. Trans-
port protocols provide data delivery from a transport user to one or more
transport users, using the services of the network layer, with some degree of
completeness and order. Some transport protocols, such as UDP, add only per-
user addressing to the network layer service. Others, like TCP, provide fully
reliable data streams, while others still fit somewhere along the continuum of
services.

If the essence of a transport protocol can be distilled, the residue would be the -
necessary component abstractions. There are five: Transport protocol imple-
mentations send and receive packets via the use the services of some underlying
data delivery service. Typically this is the network layer,-but with ATM and
other switched media, this is not necessarily always the case. The packets
carry data and control information, the latter of which helps change the state
of the communication. This state is maintained by some confexf. The confexf
manager is the agent that demultiplexes incoming packets and incoming user
requests, delivering these to the proper contexts. Finally, the user interface is
the abstraction through which access to the functionality of the protocol is
granted to the user.

In Unix sockets implementations of transport protocols, constructed packets
are given to the underlying data delivery service via entry points into IP; pro-
tocol control blocks maintain the state information; the socket data structure
maintains a list of active protocol control blocks; the socket entry points pro-
vide the interface.

1

http:/hww


~~~~ 

introduction 

While in-kernel sockets-based implementations of protocols have provided 
good performance and a common structure and interface, they are not well- 
suited for modeling alternative protocol procedures or whole new protocols. It 
is simply more difficult to develop protocol implementations from within the 
kernel: the compile-and-test cycle is long and complex, debugging requires 
special effort, and crashes are non-trivial. Our approach is to provide an imple- 
mentation tool-chest with common transport infrastructure already provided, 
where the development environment is more natural and accessible to a wider 
group than kernel programmers. This is a particular advantage when teaching 
students about protocol concepts. 

. 

The Mefa-Transport Library (MTL) is a set of C++ base classes designed to 
present an infrastructure for building transport protocols. The classes repre- 
sent the necessary protocol components, and the member variables and func- 
tions of these classes represent the state each component must keep and the 
work each must do. A particular protocol is derived from MTL by extending 
the base classes with protocol-specific algorithms. 

A n  MTL-derived protocol implementation is instantiated as a user-space dae- 
mon process. User-space or user-level protocol implementations have been the 
subject of recent discussion in the literature and at conferences. They are attrac- 
tive for several reasons, including ease of code maintenance, ease of debug- 
ging, and ease of customizing [l], although fears of poor performance 
pervades. New operating system support [2][3] and new network interface 
cards [4][5] attempt to circumvent the kernel/user boundary obstacles. Packet 
filters [6][;7 are agents within the kernel that aid in demultiplexing packets by 
patterns, including by protocol. Library approaches [l] move much of the pro- 
tocol processing into the user process. Many of these user-level implementa- 
tion approaches require modification to the operating system, hardware, or 
both. Our approach uses an agent in the form of a process daemon to embody 
the protocol implementation. 

Our goals with MTL are to allow an implementor to rapidly prototype a proto- 
col implementation without any kernel modifications or special hardware sup- 
port, and as little use of root privilege as possible. Indeed, few assumptions 
about the programming environment - save that it is some flavor of Unix - 
are made. Toward this end, MTL has these design characteristics: portability, 
adaptability, configurability, and readability [S][9]. It is not a'design goal for 
derived protocols to compete with kernel implementations with respect to per- 
formance, although the internals of MTL were built with efficiency in mind. 

PorfubiIify. MTL has been ported to most major Unix varieties, including SGI 
IRIX, Sun SunOS and Solaris, HP HP-UX, DEC Ultrix and OSF/l, IBM AX, 
FreeBSD and BSDI BSD/OS. The code compiles using the G N U  g++ compiler 
for all platforms supported, and the native C++ compilers on those platforms 
where the native compilers were sufficiently up-to-date. 

.- 

Adupfubifity. The modularity of the MTL design allows for easy replacement of 
the underlying data delivery service. In this way, the derived transport proto- 
col can be run over a variety of networking technologies. MTL has modules 
for IP (requiring root privilege) and UDP (when root privilege is not avail- 

2 Meta-Transport Library User's Guide 



able). Other modules, including connection-oriented network services such as 
AAL5, are under construction. 

ConFgurabiIify. In addition to changing the underlying data delivery service, 
replacement of various protocol control algorithms is easily done when the 
protocol implementation is modular. 

Readabifity. This approach is designed to enhance the understanding of how 
protocol components interoperate, and to allow a designer to replace compo- 
nents without undo effort. C++ separates interfaces from implementations, 
and encapsulates concepts into modules. This makes the implementation pro- 
cess botheasier to understand and easier to manipulate. 

Client 
Process Daemon Process 

Introduction 

Network 
FIGURE 1. MTL ClientlDaemon Model 

Figure 1 shows the general MTL model. A client process uses the user inter- 
face object to send requests to the daemon process (whose interface is the dae- 
mon object) via an IPC facility agreed upon and built into these two objects. .- 
The daemon object returns the result of the request via this IPC facility as well. 
User data, orthogonally, are written to and read from two buffers that are also 
kept by the user interface object. The main loop of the daemon object accepts 
the user requests and uses the context manager to direct the requests to the 
proper contexts. Some of these requests may cause the contexts to generate 
packets; these are constructed and sent through the data delivery service 
object. The daemon object also listens for incoming packets, and uses the con- 
text manager to steer them to the proper contexts for processing. 

The object-oriented programming technique generally provides some correla- 
tion between the constructs and the purpose of the information. Some of the 
C++ constructs map nicely onto implementation guidelines. This is, of course, 
a product of the software engineering characteristics of object-oriented lan- 
guages; MTL exploits these characteristics to show which aspects of protocols 
are common and which require protocol-specific knowledge to implement. A 
virtual function within one of these classes suggests that the MTL implementa- 

Meta-Transport Library User’s Guide 3 



License Agreement 

tion may not be sufficient, and additional protocol-specific processing may be 
necessary. A pure virtual function implies that an implementation must be pro- 
vided by the derived class; these methods are mandated by MTL but require 
protocol-specific howledge to implement. 

In general, there are three questions that help determine the division of labor . 
in MTL and; consequently, how the class structures are populated. The first 
question - what ure the major concepts - leads to the five major classes 
described above. For each piece of functionality, the answer to the second 
question - who owns thisfunctionality -helps place the function into the class 
structure. Likewise for the state kept within the protocol, the third question - 
who owns this datu -helps determine where the state should be kept. These 
questions also apply to the ownership of the major classes themselves; the dae- 
mon object owns a context manager object, which in turn owns the context 
objects. Exceptional means required to access certain functionality or data is 
good indication that the functionality or data are ill-placed. 

These questions, and how they are used to develop the class structure, are not 
unique to object-orient protocol implementations, but protocols have a fairly 
well-defined set of functionality and associated data, so the mapping process 
is rather straightforward. 

There are six main classes within the MTL library package, five of which come- 
spond to the main abstractions named above: a data delivery service class, a 
packet class, a context class, a context manager class, and a user interface class. 
The sixth class is a daemon class that wraps everything into an entity that can 
be handled by the operating system. Each of these classes except for the data 
delivery service class is designed to be a base class for a protocol-specific class. 
While these classes, and the particular protocol’s functionality, cannot be 
known until derive-time, MTL ties together the protocol infrastructure 
through the dynamic binding of the virtual functions. 

This User’s Guide describes the installation and use of the Meta-Transport 
Library protocol base classes. This software package includes the full source 
code for the implementation, as well as man pages and appropriate docu- 
ments. 

- 

License Agreement 
~ 

This code and its binary executables are protected by copyright and a licensing 
agreement; within these bounds, this software is freely available. 

BEFORE YOU CONTINUE, please read the license agreement in the distribu- 
tion file LICENSE. By compiling this code we assume you have read the 
license and accept its terms.‘ 

Here are the highlights: You agree not to sublicense, sell, or sell derivations of 
this software, and you agree that this software is provided without warranty, 
and Sandia National Laboratories assumes no responsibilities. 

4 Meta-Transport Library User S Guide 



Installation 

The provision at the end of the License regarding "export control" states that, 
if this software were export controlled, you must not give it to anyone outside 
of the United States. Fortunately, this software is not export controlled, so 
these warnings do not apply. The Department of Energy is required to place 
this warning in all software, even if it doesn't apply. 

If you have any questions about this license or any provision within it, please 
contact Mike Dyer at (510) 294-2678. 

Installation 

The MTL, software package is available via anonymous FTP from the machine 
dancer.ca.sandia.gov. If you have not already done so, download this package 
by following these steps: 

i. FP to dancer.ca.sandia.gov: 
$ ftp dancer.ca.sandia.gov 

or 
$ ftp 146.246.246.1 

(note that the IP address is subject to change without notice). Enter "ftp" 
when asked the user name, and your email address when asked for a pass- 
word. 

2. Change directories: 
ftp> cd publxtp4.OlSandiaXTP 

3. Enter binary mode: 
ftp> binary 

4. Get the distribution files: 
ftp> get mtl-l.5.tar.g~ 

or 
ftp> get mtl-l.5.tar.Z 

5. QuitFTP: 
ftp> quit 

6. We would like to keep track of the user base during these early releases so 
we can quickly inform you of updates and bug fixes: 

$ mail strayerOca.sandia.gov 
subject: user registration 

Give the names and Email addresses of all appropriate users. 

Now you are ready to install the MTL software. There are a few decisions you 
should make before getting started, then follow the instructions later in this 
section for unpacking and compiling the system. It is always a good idea to 

Meta-Transport Library User's Guide 5 

http://dancer.ca.sandia.gov
http://dancer.ca.sandia.gov
http://strayerOca.sandia.gov


~ 

Installation 

read the whole set of instructions before starting the installation, especially 
since you may be doing some things as root. 

Decisions 

The fundamental question is whether you can use root privileges during instal- 
lation, since this will determine where you install the software. If you can be 
root, then you may wish to use the conventional /usr/local or /usr/private direc- 
tory as the installation directory. These directories are typically where site-spe- 
cific software is placed. Even if you aren’t root during installation, you can 
install the system anywhere you have privilege to create files. 

Make the decision now about which directory to use as the installation direc- 
tory. In the following instructions, we’ll refer to this as compile-dir. When you 
see install-dir in the instructions, replace that with your installation directory. 

Supported Compilers and Platforms 

This code is written in C++ and, therefore, must be compiled with a C++ com- 
piler. We do not use templates, so that is not a requisite when deciding which 
compiler to use. Currently we support the following C++ compilers: 

+ CC (AT&T cfront compiler) 
+ g++ (GNU C++ 2.6.3 or newer) 
+ cxx (DEC C++ compiler) 

We support installation of this code using one of the compilers listed above on 
one of the following platforms: 
+ SGI workstations running IRIX 4.x and 5.x 
+ Sun workstations running SunOS 4.x and SunOS 5.x (Solaris) 
+ DECstation 5000 running Ultrix 4.x 
+ DEC Alpha workstations running OSF/1 
+ HP workstations running HP-UX 9.x (but not with CC compiler) 
+ i386 PCs running BSDI/OS 2.x 
+ i386 PCs Nnning FreeBSD 2.x 
+ IBM FS/6000 workstations running A N  (but not with xlC compiler) 

If your platform is not listed here, we have not ported this code to that archi- 
tecture yet. We will continue to expand this list. 

We have found that certain machine types require some modification to their 
standard configuration in order to compile this .distribution. Please see the 
CAVEATS file for a list of necessary changes. 

Installation Instructions 

1. If you have a previously installed version, it is a good idea to remove that 
version before continuing. You may have to become root to do this. 

$ cd <old mtl directory> 

6 Meta-Transport Library User’s Guide 



Installation 

$ make uninstall 

2. Select where the source files will reside. Copy the compressed tar file to that 
directory and change to that directory as well. 

3. Uncompress and un-tar the file, and change to top-level directory: 
$ gunzip mtl-1.5.tar.g~ 

or 
$ uncompress mtl-1.5.tar.Z 

and 
$ tar -xmvf mtl-l.5.tar 
$ cd mtl-1.5 

4. Open a Web Browser, then open the file intra-html in this directory. Follow 
the link called ”Installation Instructions.” 

If you are unable to use a Web Browser, the information in intro.html is 
reprinted in text form in the file intro.txt. The installation instructions are in 
the file install.txt. 

In brief, the steps include: 
$ Jconfigure -switches 
$ make 
$ make install 
$ make installman 
$ make examples 

Once the configuration process has created the Makefiles, the make command 
will visit each subdirectory and make the appropriate object files or the 
library. When this completes, the make instdl command will install the 
library and header files in the appropriate directories under install-dir, and 
the “make installman” command will install the man pages into the appro- 
priate install-dir/man directories. 

The Results of Installation 

When the MTL distribution file is unpacked, compiled, and installed, there are 
four major things that happen: 

A base class library is created and installed in a lib directory 
An interface object file is created and installed in a lib directory 
Header files are installed in an include directory 
Manual pages are installed in a man directory structure 

The base class library is called libmtl.a, and it is created by combining into an 
archive the classes that are necessary to derive a protocol. These include the 
packet and packet manipulators, context and context manager, data delivery 
services, daemon, and buffer manager classes, as well as some utility classes 
such as the state machine class and event queue class. The 1ibmtl.a library file 

Meta-Transport Library User’s Guide 7 



Installation 

must be linked into any derived protocol to create a program that implements 
that protocol. 

In order to communicate with the daemon, the user processes must link in a 
library as well, but not all of the files are present at M ” s  build time. In partic- 
ular, MTL provides a user interface base class; the user interface library cannot 
be completed until the derived user interface class or classes are defined. As a 
consequence, the file interface.0 is created. It is an object file containing the 
user interface base class, the buffer manager class, and any utilities necessary. 

During installation, the 1ibmtl.a and interface.0 files are placed into the install- 
didlib directory. 

While building the derived protocol, the derived classes will require access to 
the header files of the base classes. These are placed in the install-didindudel 
rntl directory. Some of these header files, like MTLtypesh, will be included by 
the user’s application code as well. 

The manual pages are compressed using pack(1) and placed into the install-did 
man/cat[3,5] directories as class-name.3.z for base classes, and types-file.5.z 
for the major types files. There are also hypertext versions of the manual pages 
written in HTML and viewable via your favorite browser. These are kept in 
the ins ta l / -d i r /man/html [3 ,5]  directories as class-name.3.html and 
types-f i I e.5. html, respectively. 

Recompiling and Reinstalling 

Building the Makefiles, as done in the first part of the build script, should only 
need to be done once as long as no changes are made to the switches to the con- 
&re script. These changes may include changing the compiler used, or the 
installation directory, or local compiler flags used. If these change, the whole 
configuration process must be repeated, starting with cleaning out old things: 

$ make uninstall 
$ make distclean 
$ Jconfigure -new-swifches 
$ make-new-switches 
$ make install 
$ make installman 

If you simply need to recompile and reinstall, just perform the two steps: 
$ make 
$ make install 

Remember to recompile and reinstall any derived protocols after you build a 
new MTL library. See the appropriate Users’ Guide for details. 



Directory Structure 

Directory Structure 

Figure 2 shows the MTL directory structure. At the top of this structure is the 
directory mtl-1.5. Under this directory are the directories DERIVEDprotocol, 
aux, doc, examples, include, lib, man, and src. The DERlVEDprotocol directory 
is an example of how to use MTL to build a derived protocol implementation. 
The aux directory is where certain configuration and auxiliary files are kept. 
These files aid in the configuration process. The doc directory holds the docu- 
ments of this distribution. The examples directory holds a examples of how to 
use some of the base classes in the library. The include directory is where the 
header files are kept. The html'directory hold hypertext instruction documents. 
The lib directory is where the MTL library file called 1ibmtl.a and object file 
interface.0 are created. The man directory holds the manual pages for this soft- 

k 
T E D  protocolt 

example derived protocol 

c x i l i a r y  utilities 

programs 

%pertext documents 

lib/ 
1 1ibmtl.a 

man31 

man51 

cat31 1: cat51 

class manual pages 

types manual pages 

c u r c e  files 

FIGURE 2. MTL Directory Structure 

Meta-Transport Library User 3 Guide 9 



Code Structure 

ware. The src directory is where the source files are kept, and where the initial 
compilation of the library files is done. 

Although not shown in Figure 2, the configuration process sets up a symbolic 
link from a directory called mtl to the physical directory include, so the con- 
tents of include are accessible through mtl as well. This is done to maintain con- 
sistency with the #include directive when many of the header files from 
compile-dir/mtl-l.5/include are copied into install-dir/include/mtl. See the section 
Writing Derived Protocols for more details about using the header files once 
they have been installed into the install-dir directory. 

‘ 

Also under the directory mtl-1.5 are several text files. The files intro.html and 
intro.txt are brief introductions to the MTL package. Use a web browser to 
view the intro.htm1 file. The file intaktxt is the installation description file. The 
LICENSE file holds the license agreement. It is your responsibility to read this 
file; compiling the source code and using the MTL library constitutes agree- 
ment with its provisions. The Makefile.in file is the template used to create the 
master Makefile during configuration. The README file refers the reader to 
the intro.html or intro.txt files. The CAVEATS file lists any known problems 
with various architectures. The NEW file lists improvements and fixes in this 
version. 

Code Structure 

There are six main classes in MTL, the packet class, the context class, the con- 
text manager class, the data delivery service classes, the daemon class, and the 
buffer manager class, and the user interface class. These classes and classes 
related to them are discussed below. First, however, we’ll discuss the contents 
of the main include file MTLtypes.h. 

The MTL Types 

The file MTLtypes.h collects all of the standard include files, definitions, and 
structures required by MTL. The first file that is included is mtlconf.h, where 
the definitions for machine-specific idiosyncrasies are collected. The mt1conf.h 
file is created by the configuration process. The inclusion of many other stan- 
dard header files into MTLtypesh is dependent on which macros get defined 
in the mt1conf.h file. 

Standard Header Files 
Many of the common system header files are included by MTLtypes.h. The 
header files in the list below are included only if the configuration process 
finds them in the system: 

Description 
general system types 
standard IO 

Header File 
sys/types h 
stdio. h 

10 Meta-Transport Library User’s Guide 



Code Structure 

Description 
character type manipulators 
string manipulators 
memory manipulators 
standard library routines 
errors 
symbolic constants 
IO control 
file control 
file data structures and 
system entries 
time manipulators 

Header File 
ctype.h 
string.h, strings.h 
rnemory.h, bstring.h 
std1ib.h 
errn0.h 
unistd.h 
sys/ioctl. h 
fcntl. h 
sydfi1e.h 
sysent.h 
sys/time.h, time.h 

system statistics types stat.h 
signal manipulators signa1.h 
internet types netinet/in.h 
socket routines, especially sys/socket.h, sys/un.h 
UNIX domain sockets 

A file named prot0types.h is also included by MTLtypes.h to provide proto- 
types to functions when the system does not provide prototypes..This is espe- 
cially noticeable when using g++; providing a prototype reduces the warning 
messages generated. 

Basic Types 
The MTLtypes.h file defines the common data types used in MTL. In particu- 
lar, the data types byfe8, shorfZ6, word32, and word64 are used rather than 
unsigned inf and unsigned short to reduce confusion about the size of these data 
types. 

‘Qpe name Description 
byte8 8-bit unsigned integer 
short16 16-bit unsigned integer 
word3 2 32-bit unsigned integer 
word64 @-bit unsigned integer 

The type word64 may or may not be a native type for a given architecture or 
compiler. For those that need the type word64 to be defined, the file word64.h 
contains the declaration and definition of the type and its operators. If the 
word64 type is native to the architecture and recognized or constructed by the 
compiler, the file MTLtypes.h defines a macro NATIVE-WORD64 to be true. 

The file also defines utility functions associated with these basic types. Since it 
is normal for some of the data items used in protocols to wrap from r - 1  to 0, 
there must be some way to preserve the inequality relationships as the item 

Meta-Transport Library User’s Guide 11 



Code Structure 

goes from “all ones” to “all zeros.” The functions l t320 ,  It640, $32, g f 6 4 ,  
urnin320, urnin64(), umax320, and urnax640 preserve inequalities by assuming 
that the difference between any two numbers being compared will be no more 
than one half of the range of numbers represented by the data type. For word32 
data items, x is less than y if ( x  - y - 1) e 216; for word64, ( x  - y - 1) < 232. Here 
is a list of the utility functions defined as macros: 

Macro 
lt32(x, Y) 

lt64(x, y) 

gt64(x, Y) 
min(x, Y) 

max(x, y) 

umin32(x, y) 

umin64(x, y) 

umax32(x, y) 

umax64(x, y) 

gt32(x, Y) 

Meaning 
word32 less-than comparison 
word64 greater-than comparison 
word32 greater-than comparison 
word64 less-than comparison 
integer minimum 
integer maximum 
word32 minimum 
word64 minimum 
word32 maximum 
word64 maximum 

There are also byte manipulation routines for switching the order of bytes for 
short16 and word32 types. These are defined as in-line functions. 

Function Description 
short16 switch16 (short16 i) returns a short16 value equal to switching the 

word32 switch32 (word32 i) returns a word32 value equal to reversing the 
order of i ’s two bytes. 

order of i ’s four bytes. 

The word64 type has several special utility functions to manipulate it since a 64r 
bit word is not guaranteed to be native. The file MTLtypes.h defines in-line 
functions for manipulating the most significant bit of the 64-bit word. Printing 
functions are included to give both native and constructed word64 types a 
common set of print functions. There are also byte manipulation routines for 
converting from host to network byte order and visa versa. 

Function 
int is-hibit-set(word64 x) 

word64 hi-bit ( )  

word64 set-hi-bit(word64 x) 

word64 clear-hi-bit(word64 x) 

void xprint(word64 X) 

void xprint(word64 X, 
const char* str) 

Description 
returns true of the high bit of x is set 
return a word64 with high bit set 
return a word64 equal to x with the high bit 
set 
return a word64 equal to x with the high bit 
cleared 
prints x in hexadecimal 
prints x in hexadecimal, appending srr 

12 Meta-Transport Library User’s Guide 



Code Structure 

Function 
void uprint(word64 x) 

void uprint(word64 x, 

void fxprint(FILE* fd, word64 x) 
void fxprint(FILE* fd, word64 x, 

const char* str) 

const char* str) 

.void fuprint(FILE* fd, word64 x) 

void fuprint(FILE* fd, word64 x, 
const char* str) * 

word64 net2host(word64 x) 

word64 host2net(word64 x) 

Description 
prints x in decimal 
prints x in decimal, appending str 

prints x in hexadecimal to filefd 
prints x in hexadecimal, appending str, to file 
fd 
prints x in decimal to filefd 
prints x in decimal, appending str, to filefd 

returns a word64 value resulting in convert- 
ing x from network byte order to host byte 
order 
returns a word# value resulting in convert- 
ing x from host byte order to network byte 
order 

Defined Structures 
A scatter-gather type is also defined in MTLtypes.h. This type, called 
vec-eIement, is used to manipulate data via pairs of pointer and lengths, espe- 
cially in the packet class. It is defined as: 

typedef struct { 
char* data; 
int len; 

} vec-element; 

A type is also defined to represent the addre s structure used by the user and 
daemon for communicating requests. This type is called req-addr-sfrucf, and it 
is the address structure used in the client/server relationship between the user 
and the daemon. 

Command Codes 

The user-reques t type is the header for all user requests sent to the daemon by 
the user, and all responses returned to the user by the daemon. The specific 
request will be tagged by a value in the cmd field and may have additional 
fields appended to the end. Several cmd field values are defined in M'IZ: 

command Description 
REGISTER 

RELEASE 

DAEMON-STOP 

DAEMON-STATUS get the daemon's status 
DAEMON-RESET reset the daemon 
DAEMON-PING ping the daemon 

register user with the daemon 
release user from the daemon 
cause the daemon to stop 

Meta-Transport Library User5 Guide 13 



Code Structure 

Extra Modes 
The extra-modes field of the user-request type is used to cause the context to 
act in certain ways. Several extra-modes values are defined in MTL: 

Extra Mode Description 
BLOCK 

ASYNC 

NOANSWER 

this is a blocking request 
this is an asynchronous request 
this request requires no response 

Error Codes 
The file MTLtypes.h defines error codes that are not protocol-specific. 

Error Code 
EXOK 

EXCOMM 

EXSEND 

EXRECV 

EXMEM 

EXSYSC 

EXINVA 

EXPOOL 

EXQUEUE 

EXBUF 

EXNCTXT 

EXSTATE 

EXKEY 

EXUSER 

EXPORT 

EXRJCT 

EXTMOUT 

EXNETW 

Meaning 
okay 
could not establish communications with daemon 
could not complete send command 
could not complete receive command 
could not allocation memory 
system call error 
invalid argument 
no more packets in packet pool 
failure in the event queue 
could not create send or receive buffer 
exceeded the maximum number of contexts in daemon 
invalid state for this request 
key does not exist 
invalid user 
port already in use 
rejected service 
connection timeout 
could not access underlying network 

MTL Parameter Macro Definitions 
Certain aspects of MTL are given initial default values obtained from the defi- 
nition of macros. 

Parameter Macro Description 
DAEMON-REQ-ADDR 

USER-WLADDR 

I PC-PATH 

NUM-CONTEXTS 

UNIX domain socket file name for daemon 
UNIX domain socket file name for users 
a well-known path name for use byftok(3) 
default number of contexts (64) 

14 Meta-Transport Library UserS Guide 



Code Structure 

Parameter Macro 
NUM-PACKETS 

DAEMON-PORT 

PDU-SIZE 

POLL-FREQ 

DDS-RCV-BUF 

DDS-SND-BUF 

MCAST-DIAMETER 

Description 
default number of packet shells in packet pool (200) 
well-known port number for daemon, if needed 
default protocol data unit (packet) size (8192) 
default timeout for daemon during sleep (loo00 ms) 
data delivery service receive buffer size, if able to be set (32768) 
data delivery service send buffer size, if able to be set (32768) 
multicast transmission diameter, if able to be set (10) 

The DAEMON-REQ-ADDR is the rendezvous point for the UNIX domain socket 
used to make requests to the daemon. This path is defined as /tmp/s.unixdg. 
The USER-REQ-ADDR is the UNIX domain socket address for the client (user) 
process. The path for USER-REQ-ADDR is /tmp/dg.XXXXXX. The details are 
covered in the User Interface section, but the idea is that a user opens a socket 
to the daemon on this daemon’s well-known address (DAEMON-REQ-ADDR), and 
sends a request. The user will have included the return address 
(USER-REQ-ADDR) for the daemon to use in sending back the results. The 
USER-REQ-ADDR path name is actually converted to a unique file name by 
mktemp(3), which is why the “XxxXX” suffix is included in the definition. 

The IPC-PATH macro, defined as /etC/prOtOCOlS, is a well-known file name for 
use by theffok(3) function used by the buffer manager to get shared memory 
segments. Details are given in the Buffer Manager section. 

The NUM-CONTEXTS and NUM-PACKETS are the default number of contexts 
and packets allocated by the daemon. The context manager instantiates the 
contexts, and they remain instantiated throughout the lifetime of the daemon. 
The the packet pool object instantiates the packet shells (which are of size 
PDU-SIZE) for use by the contexts and context manager as packets are 
received or created and sent. 

The DAEMON-PORT is for use by a data delivery system that requires the dae- 
mon to have a well-known port. An example of such a data delivery service is 
UDP; the udp-del-srv class requires the port number for packets sent to the dae- 
mon. The class ip-del-sru does not require a port, so this value is ignored when 
the IF data delivery service is used. 

The POLL-FREQ is a default wakeup time for the daemon. The daemon typi- 
cally suspends itself until the arrival of a new packet or a new user request, or 
a timeout occurs. The POLL-FREQ is the longest the daemon will sleep. This 
value is chosen at 10 seconds since UNIX processes are typically paged out of 
core memory if they remain suspended for more than 10 seconds [lo] (this 
may be more or less on a particular architecture; set this value to avoid the dae- 
mon being paged out as this will affect perfodance). 

The DDS-RCV-BUF and DDS-SND-BUF are default buffer sizes for the data 
delivery service, if the buffer sizes can be changed. For UDP and IP, there are 
system calls that can reset the internal buffer sizes; the larger the send and 
receive buffer sizes, the lower the likelihood that a packet would be lost due to 

Meta-Transport Library User’s Guide 15 



Code Structure 

lack of data delivery service resources. These values are ignored if the data 
delivery service has no mechanism for changing the buffer sizes. 

The MCAST-DIAMETER value is used by the data delivery service to set the dis- 
tance into the network that a multicast packet will be propagated. The use of 
this value depends on the presence of mechanisms to set the time a multicast 
packet will live. 

MTL also includes a debugging macro for use in both MTL classes and in 
classes derived from h4TL. The macro, 

DEBUG(fd, level, string) 

prints string to the filefd given that debugging level h e 2  has been set using the 
-with-debug=LEVEL switch to the configuration script. 

Packets and Packet Manipulators 

Packets are the vehicle for data and information exchange between endpqints. 
Packets are sent and received by a data delivery service that treats the contents 
of the packet as uninterpreted payload. The derived protocol defines the struc- 
ture of its packets, and information is placed or extracted only with knowl- 
edge of the structures. Therefore, the packef class provided by MTL does not 
impose a structure on the packet, but rather provides a packet shell; packet 
shells are then manipulated by both MTL and the derived protocol as is appro- 
priate. 

There are two packet manipulator classes in MTL: the pucket~~ool class and the 
packet f i fo  class. Packet objects are managed by a packet pool object. The 
packet pool is a general repository for packet objects between uses. The packet 
pool is responsible for allocating all of the packets in the system 
(NUM-PACKETS is the default number of packets allocated), and deallocating 
them when the daemon terminates. 

Contexts and the context manager, discussed later, get packets from the packet 
pool to hold either incoming or outgoing packet information for the derived 
protocol. Each context has two packet FIFO objects, one for holding unproc- 
essed received packets and one for holding outgoing packets that have not 
been sent. 

- 

class packet { 
public: 

/ /  As monolithic contiguous memory 
void init-as-mono(); 
int is-mono ( )  ; 
byte8* pkt-start ( 1  ; 
short16 xsum(register int len); 
int send(void* dest, int length); 

/ /  As scatter-gather vector 
void init-as-vector(); 
int is-vector(); 

16 Meta-Transport Library User’s Guide 



Code Structure 

int add-vec-element(char* p,  int len); 
vec-element* get-vec-elements(); 
int get-nun-vec-elements (1  ; 
short16 xsumv(int nsv) ; 
int send(void* dest) ; 

/ /  DDS address information 
void put-from(void* ffrom); 
void* get-from(); 

/ /  Usage counts 
void init-use-count0; 
void increment-use ( ; 
void decrement-use ( 1  ; 
int is-unused0; 

/ /  Virtuals 
virtual void host-to-net(); 
virtual void net-to-host(); 

1; 

This definition provides two ways to view a packet, as monolithic contiguous 
memo y or as a vector of scatter-gather elements. Methods that operate on a mono- 
lithic packet use a function to get a pointer to the start of the contiguous data. 
Protocol-specific agents then use this pointer to read and write to offsets 
within the packet. The scatter-gather vector is a set of pointer, length pairs. 
The packet class provides member functions to set and retrieve the scatter- 
gather elements. This style is intended for constructing packets with minimal 
data copying. 

Viewing a Packet as MonoIithic 
Since the DDS in MTL assumes that packets are received as a contiguous piece 
of memory, the monolithic style is generally used for processing a packet 
within MTL. When a packet object is gotten from the packet pool, it is initial- 

. ized as a monolith (init-as-mono()) and its usage count is cleared - 
(init-use-count()). Then a pointer to the beginning of the packet is given to the 
DDS. The function used for this is pkt-start0 since a packet object actually 
holds more information than just the data within the packet. This code frag- 
ment illustrates this. 

/ /  Get a packet shell 
packet* pkt = mt1daemon::pool->get(); 
if ( !pkt) return(-l) ; 

/ /  Get a pointer to the packet's 'from" structure 
dds-address* from = pkt->get-from() ; 

/ /  Initialize the packet as mono, init the count 
pkt->init-as-mono(); 
pkt->init-use-countO; 

/ /  Receive the packet from the data delivery service 
res = dds->recv(pkt->pkt-start ( )  , PDU-SIZE, from) ; 

Meta-Transport Library User> Guide 17 



Code Structure 

The other functions are used a various times during the packet’s tour of duty. 
The function xsum0, which takes Zen as an argument, computes a checksum 
over Zen bytes starting from pkt-start(). This can be used to set and check error 
detecting mechanisms within-the protocol’s packet structures. The function 
send0 (which is overloaded, as will become evident below) invokes the DDS to 
send a monolithic packet. At any point during the processing or manipulation 
of a packet, but after it is initialized as monolithic (or a vector), the function 
is-monoO will return true if this packet is in monolithic representation. 

There is no receive method in the packet class since receiving is not actually 
done to a packet in the same way that send is. Data simply arrives at the under- 
lying DDS; that data is cast into a packet structure in order to retrieve the con- 
tents. For protocols with more than one distinct packet structure, this act of 
casting is probably done twice, once to retrieve the type, and again when the 
type is known. 

Viewing a Packet as a Scatter-Gather Vector 
Similarly, the packet object can use the scatter-gather representation. Funda- 
mental to this style is the data pointer, length pair that constitutes one element 
of the vector (recall this structure from MTLtypesh): 

typedef struct { 
char* data: 
i n t  len; 

} vec-element; 

When a packet object is initialized as a vector (init-us-vector()), an internal 
counter sets the number of vector elements to zero. (Calling is-vector0 will 
return true if this packet object has been initialized as a scatter-gather vector.) 
The method udd-vec-eZementO adds a element to the vector and increments the 
counter. The order in which elements are added to the vector is important; if a 
vector style packet were laid out as a monolithic style packet, the element 
added first would be first in  the monolithic packet. The function 
get-vec-elements0 returns the vector of elements, and the function 
get_num-vec_eIementsO returns the number of elements in the vector. The func- 
tion xsumv(), given nsv as the number of send vector elements, returns the 
checksum over nsv elements. 

As mentioned above, the packet class provides overloaded send methods, one 
for each packet style. In both cases, the packet::sendO method calls the DDS 
send0 method. This ensures that the context, or any other agent constructing a 
packet, need know nothing of the data delivery service. 

Usage Counis 
A packet object is designed to be handled by reference to avoid excessive data 
copies. Several member functions are used to keep tract of the use of a packet 
object. When a packet is gotten from the packet pool, its use count should be 
initialized; this is done by calling init-use-countO. Each time a copy of the refer- 
ence to this packet is given out, a call to the function increment-use-count0 
increases the use count. As the entities complete their use of the packet, the 

18 Meta-Transport Library User’s Guide 



Code Structure 

function decrement-use-countO reduces the use count until the function 
is-unused0 returns true, at which point the packet can be returned to the 
packet pool. 

Address Information 
Packets are, of course, used to hold data coming from or going to the data 
delivery service (DDS). When a packet arrives at the DDS, the DDS must have 
some knowledge - directly or indirectly acquired - concerning where the 
packet came from. This information can be attached to the packet via the 
puffromO function call, and retrieved by the gef f romO function call. The 
packet object has the memory for this address allocated by the packet pool 
when the packet object is instantiated, so puffromO copies the address into 
this memory, and gef,FornO returns a pointer to the memory. 

Virtuals 
There are two virtual functions: host-fo-nefO and net-to-host(). These are 
defined virtual because there is no way for the packet base class to perform 
byte-ordering conversions without knowledge of the contents of the packets; 
this is distinctly protocol-specific. The two functions are defined as empty vir- 
tuals in case no conversion is ever required. 

The Packet Pool and Packet FIFO Classes 
MTL also includes two classes, p a c k e t p o l  and packetfifo, that manipulate 
packet objects. The packet pool class pre-allocates and then manages the dis- 
pensation and recollection of packet objects. The packet FIFO class holds pack- 
ets in a queue, then emits them in first in, first out order. 

Both of these classes are friends to the packet class because they each require 
some special knowledge about the private workings of the packet class. Part of 
the extraneous information that is kept by the packet includes pointers to 
other packets, so the packet objects can be put into linked lists. Two methods, 
get-next() and put-nexf() ,  are private but accessible to packet-pool and'- 
packet-fifo. 

When the packet-pool object is instantiated, the number given as an argument 
to the constructor is the number of packet objects that this pool should create 
and initially hold. The constructor then calls the new0 operator on packet, and 
links each of these new packet objects together in a list. In addition to instanti- 
ating each of the packet objects, the packet pool constructor also allocates 
enough memory for holding the DDS addressing information referred to 
above. 

class packetqool { 
public : 

packetqool(int size); 
-packetqool() ; 
packet* get ( 1  ; 
packet* get(packet-tags tag); 
void put-back (packet* pkt) ; 

1 

Meta-Transport Library User's Guide 19 



Code Structure 

When a packet object is required, a call to get0 returns a packet taken from the 
pool list; when that packet is no longer needed, the puf-backO method returns 
the packet object to the list. The g e f 0  functions are overloaded. If a packet tag 
(one of Monolithic or Vector) is given, the packet returned will have been initial- 
ized as that style of packet. 

The packet-fifo class has the following definition: 
class packet-fifo { 
public : 

packet-f ifo ( 1  ; 
-packet-fifo0; 
void put(packet* pkt); 
packet* get ( )  ; 
packet* peek-head ( 1 ; 
packet* peek-tail ( )  i 
int empty0 ; 

?; 

The packet-fifo class uses the packet’s gef-nexfO and puf-nexfO methods to 
build a FIFO list of packets. There is no restriction on the size of this FIFO 
except for the number of packets in the system. The put0 method puts a packet 
at the end of the queue, where peek-faiIO allows last-minute access to it. The 
method peek-headO allows access to the head of the FIFO without removing 
the packet, while get0 does indeed remove the packet from the queue. When 
all packets are gone, get(), peek-head0, and peek-fail0 will return (packef *)NULL, 
and empty0 will return true. 

The code below is in the examples directory in the MTL distribution, in the file 
pkttest. h. 

#include <mtl/MTLtypes.h> 
#include <mtl/packet.h> 
#include <mtl/udp-del-srv.h> 
#include <mtl/packetqool.h> 
#include <mtl/packet-fifo.h> 

/ /  These must be defined before using packet, packet-fifo, 
/ /  and packetjool from the MTL library 
mtldaemon* DAEMON = (mtldaemon*)NULL; 

void main(int argc, char** argv) { 
if (argc != 2 )  { 

printf (“%s <number of packets>\n”, argv[O] ) ; 
exit (1) ; 

1 

int ans; 
int num-pool = atoi (argvil] ) ; 
int num-fifo = 0; 
packetqool* pool = new packet-pool(num-poo1); 
packet-fifo* fifo = new packet-fifo; 
packet* pkt; 

printf (“\n”) ; 

20 Meta-Transport Library User’s Guide 



Code Structure 

do { 
printf ("Pool: %d, Fifo: %d\n", numqool, nun-fifo) ; 
printf("1. pool -> fifo\n"); 
printf("2. fifo -> pool\n"); 
printf("3. quit\n"); 
printf("\n => "1; 
scanf ( "%d", &ans) ; 
printf ("\n") ; 
switch (ans) { 

case 1: 
pkt = pool->getO ; 
if (!pkt) { 

printf("n0 more packets in the POOL\n"); 
break; 

1 
nunqool-- ; 
fifo->put (pkt) ; 
nun-fifo++; 
break; 

if (fifo->emptyO) { 
case 2: 

printf("no more packets in the FIFO\n"); 
break; 

1 
pkt = fifo->getO ; 
nun-f i f o - - ; 
if (!pkt) { 

printf("error getting packet from FIFO\n"); 
break; 

1 
pool->put-back(pkt); 
nunqool++ ; 
break; 

case 3 :  
default : 

break; 
1 

1 while (ans !=  3 ) ;  
delete (pool) ; 
delete(fifo) ; 

1 

This example is designed to be compiled by linking in the MTL library file lib- 
mt1.a: 

$ CC -c -DHAVE-CONFIG-H -linsta//-dirlinclude -0 pkttest.C 
$ CC pkttest.0 -0 pkttest -Linsfa//-didib -Irntl 

or type 

$ make pMtest 

in the examples directory. 

Meta-Transport Library User's Guide 21 



Code Structure 

Contexts and the Context Manager 

A context is the collection of all state information for an endpoint of a n  associa- 
tion. Certain state information is common to all transport protocols; MTL 
reflects this in the context base class. Much of the information is just clerical, 
such as identification and priority values. The confext class provides access to 
these variables and references through get, put, and set functions. The context 
also holds the state of the communication. Most of this information is protocol- 
specific. 

The context-manager class manages contexts. The context object has a relation- 
ship to the context manager object similar to the relationship between the 
packet and packet pool objects: the context manager is a container class for all 
of the contexts in the system. Similarly to the packets, the context class also has 
pointer variables for linking contexts together in lists that are easily manipu- 
lated by the context manager. 

This is the public interface to the context class: 
class context { 
public: 

virtual -context(); 

/ /  Context linked-list manipulators 
context* get-next(); 
context* getqrev() ; 

/ /  Access to things by outsiders 
word64 get-key(); 
pia-t get-upid0; 
void put-upid (pid-t mypid) ; 
int is-client-alive(); 
reg-addr-struct* get-user-addrO; 
void put-user-addr(reg-addr-struct* ua); 
word32 getgorto; 
int getqriority() ; 
void put_priority(int prio); 

/ /  Buffers 
int are-buffers-installed(); 
void release-bufferso; 

/ /  Blocking methods 
void set-blocked(b1ock-state Val); 
int is-blocked(); 
int is-satisfied(); 
void set-blocked-msg(user-request* req, int len); 
int get-blocked-type(); 
user-request* get-blocked-msg0; 

/ /  Virtual Functions--may be redefined in derived classes 
virtual int is-quiescent() = 0; 
virtual void go-quiescent(); 

22 
~~~ 

Meta-Transport Library User’s Guide

Code Structure

virtual int
virtual int
virtual int
virtual int
virtual int

1;

The context manager is

initialize(user-request* request);
bind() = 0;
processqacket () = 0 ;
receive(user-request" request) = 0;
send(user-request* request) = 0;

the container class for all of the contexts in a protocol
implementation. The main purpose of the context manager is to match user
requests and incoming packets to the appropriate context, so that the contexts
can do the necessary protocol processing. To this end, the context manager
class definition includes the following functions:

class context-manager {
public :

virtual -context-manager0 { 1

/ / Validate a user
int validate-key(word64 key, pia-t pid);

/ / Adding/deleting from active list
context* get-context(word64 key);
context* get-active-head0;
int get-num-active0;
void add-active-context(context* c, int prio);
void delete-active-context(context* c) ;
void reorder-active-context(context* c, int prio);

/ / Port assignments
short16 get-next_portO;
int checkgort(shortl6 port);

/ / Virtuals
virtual int init-context(user-request* request,

virtual int bind-context(user-request* request) = 0;
virtual void handle-newgacket(packet* pkt) = 0;
virtual word32 satisfy0 = 0;
virtual int release (word64 key) ;
virtual void shutdown-host0 { 1

req-addr-struct* user-addr) = 0 ;

I ;

To aid in manipulating the contexts, the context manager is a friend to the con-
text class.

Key VaZues
A context is identified by its key value. The key value is a 64-bit handle by
which the context manager can find the context among all contexts in the sys-
tem. When a context is quiescent, its key value does not matter, but when it
becomes active (whatever that may mean in the protocol-specific sense), a key
value will be assigned to the context, and put there by the context manager.

Meta-Transport Library User's Guide 23

Code Structure

Internally, a key is divided into to parts, the index and the insfance, as shown in
Figure 3. The number of contexts maintained by the context manager is always

key
instance index i

n bits 4
context-manager

active list - context 0

\ context 3

FIGURE 3. How the Context Manager finds the Contexts

a power of two, so the lower n bits, where n is the number of contexts log 2,
are used as the index. This number will never change for a given context
object. The instance is the remaining higher order bits; the instance value is
incremented once per use of the context, assuring that the context object will
not be reused for quite a while (there is math for this, but suffice it to say that
the context will not be reused in the lifetime of the company that made the
computer).

How keys are assigned to a context is really hidden by the context manager,
but knowing that key are unique over uses of the context object, and are used
by the context manager to find the context, are important pieces of informa-
tion. This is central in validating a key (confext-~nager::validafe_keyO) and get-
ting a context given a key (confext_rnanager::get-confextO).

User Information and User Requests
Half of the job of the context manager is dispatching user requests; the other
half is giving incoming packets to their contexts. Both jobs require matching,
and the key value is used - directly or indirectly - in finding the proper con-
text. For user requests, this is straightforward: MTL dictates that all user
requests have the same header format.

class user-request {
public :

int cmd;
int len;
int result-code;
int extra-modes;
pid-t upid;
word64 key;

24 Meta-Transport Library User's Guide

Code Structure

int snd-shmid;
int rcv-shmid;
word32 snd-buf-size;
word32 rcv-buf-size;

1;

The command value in the cmd field is protocol-specific, and identifies what
the request is. Some predefined commands are given in the MTLtypesh file.
The fen field holds the total length of this structure; this is important when spe-
cialized user requests are derived from this class. The resultcode is either one
of the common error codes defined in MTLtypesh or an addition error code
defined in the protocol-specific types file. The pid value is the process identi-
fier for the user process. The key field is used to match this request to the
appropriate context; all request from the user, once the user has registered
with the daemon, must contain the same key and upid values so the request
can be properly delivered. The snd-shmid and rm-shmid values are used by the
buffer manager for setting up shared send and receive buffers between the
daemon and the user. The snd-buf-size and rm-buf-size are the sizes of the buff-
ers. The section on the User Interface will discuss how actual user requests are
constructed from this user request type.

The REGISTER cmd value instructs the user request dispatcher to initialize a
new context for use by a user. The user sends the request via the user interface
methods discussed later; the protocol-specific request dispatcher must call the
virtual function init-confext0 with the user request and the user’s address for
sending results and information back to the user.

Although the function inif-contexf() is virtual, it has a default implementation:
/ / Get the next available context
context* C = get-next-free-context();
if (!c) return(EXNCTXT);

/ / Add the context to the active list
/ / (priority -1: without priority)
add-context(c, -1);
c->port = 0;

/ / Get the key and place it in the request structure
/ / so it gets returned.
request->key = c->get-key();

/ / Initialize the context with the user‘s request values
int res = c->initialize(request) ;
if (res != EXOK) {

c->go-quiescent();
1

c->put-user-addr(user-addr);
return(request->result-code);

If the derived protocol’s context manager does not use the default definition of
inif-confextO, the implementation of that derived context manager should at
least include the functionality shown above, including getting a free context

Meta-Transport Library User’s Guide 25

Code Structure

(there’s a protected function gef-nextfree-confexf0 for this), adding the context
to the active list (see Active Contexts below), initializing the port number, call-
ing the context class’s virtual function initialize0 with the user request struc-
ture, and putting the user‘s return address into the context structure
(puf-user_addrO).

A pure virtual function is included to bind an address to this user’s context.
This function, confexf_manager::bind_confexf0, must be defined by the derived
protocol since the addressing format is only known at that time. This function
should call the context’s bind0 pure virtual function.

When the user is finished with the context, the user issues a RELEASE com-
mand, and the context manager’s reZeaseO function handles removing the con-
text from the active list and returning any resources. The context go-quiescenfO
function causes the context to go directly the quiescent state.

Active Contexts
Placing a context on the context manager‘s active list puts the context into the
processing stream. The context manager cycles through each of the active con-
texts allowing them to do work. In MTL, an active context is just one that is on
the active list, the derived protocol’s definitions of states notwithstanding.

The context manager adds a context object to the active list by calling the
method add-uctive-confextO with the context’s address and a priority value as
the two arguments. The active list is arranged in order of priority, with the
highest priority contexts at the beginning of the list. A context can be moved to
a different part of the active list by calling reorder-Ucfive-confexexfO with the con-
text‘s address and the new priority as the arguments. Direct access to the con-
text’s priority is gotten using the methods confexf::gef_priorify() and
confexf::putgriorifyO, although putting a new priority value into the context
with pufgr ior i ty0 does not change the context’s position in the active list.
When a context is no longer active, the method delefe-ucfive-confexto removes
the context from the active list. .

The active list is returned by the context manager method gef-acfive-head0.
The list can then be traversed using the methods confexf::get-nexfO and con-
fext::gefgrev0. The function contexf_manager::gef-num_acfiveO will return the
number of contexts in the active list.

User Related Information
The context becomes the user‘s representative during communication, so it
must hold information about the user process. Among this information is the
user’s process ID and the user’s return address. When a user requests that a
context be initialized, the put-upid0 method installs the user’s PID (from the
user request structure) into the context. The return address is gotten from the
IPC facility, and is installed into the context using the puf-user-uddr0 method.
Methods get-upid0 and gef-user-addrO allow access to these values.

Knowing the user’s PID allows the derived protocol to send the process a sig-
nal when some event happens, i f the daemon has sufficient permission. The

26 Meta-Transport Library User’s Guide

Code Structure. ’

PID is also useful in the internal implementation of the method is-cZienf-aZiveO,
where the context can ask if its user has perished.

While the user makes requests via an IPC mechanism hidden by the user inter-
face, the second way information is exchanged between the context and the
user is via data buffers. Both the user and the context hold two buffer manag-
ers each, one for the send buffer and one for the receive buffer. When the user
sends the request to initialize a context, as described above, the context estab-
lishes two buffers according to the size given in the user request. The status of
installing the send and receive buffers can be checked with the
are-buffers-instaZZedO method. The buffers are released by calling the
refease-buffesO method.

According to the semantics of the user’s request, the context may not respond
with a result or other information immediately, but rather may hold the user’s
request until some condition is met. This is blocking, and the context class pro-
vides methods for effecting blocking requests. The methods is-blocked() and
is-satisfiedo return the answer to their questions; the results of a satisfied
request can be returned to the user, and the context will become unblocked. To
change the blocking status, set-blockedO sets the blocking state to the argument
given (N O T - B L O C K E D , BLOCKED, or S A T I S F I E D) . The method
gef-bZocked_fypeO returns the cmd value of the request that is blocked waiting.
The actual user request being blocked is recorded using the sef-bfocked-msgO
call, and retrieved using the gef-bIocked_msgO call.

If an incoming user request allows blocking and the request can not yet be
completed, the agent handling dispatching the user requests (probably
derived from the mfldaemon class) can cause the user to block by setting the
block state to BLOCKED and holding the user request message by calling
sef-bfocked-msg0. When the conditions are right to unblock the request, the
user request is retrieved using gef-bIocked-msgO, the request is satisfied, and
the blocked state is changed to SATISFIED. When the context manager notices
that the context is-bIockedO and is-safisfied0, the context manager returns the
results to the user, then sets the context blocking state to NOT-BLOCKED.

Handling Packets
The pure virtual function confexf_manager::handfe_neur~ackefO is an entry
point to a specific protocol’s packet handling code. The simplest thing to do is
to put the packet on a packet FIFO and deliver it to the proper context later. If
the packet’s destination context is easily discovered, this function may put the
packet on the destination context’s received packet FIFO.

Shutting Down
The context manager has a virtual function to be used when the daemon is
shutting down. This call should return any resources the context manager
gathered, and possibly notify each user that the daemon is shutting down.

Meta-Transport Library User’s Guide 27

Code Structure

The Data Delivery Service

The data delivery service class del-sru is an abstract class specifying the inter-
face to a data delivery service system. Classes derived from deZ-srv implement
this abstract interface by employing a particular data delivery service. An
instantiated derived data delivery service object is the daemon's access point
to the network.

*

class del-srv I
public :

virtual -del-srvO;

/ / Indicates if the delivery service got initialized
/ / properly
int isready () ;

void free-dds-address(dds-address* addr);

/ / Pure virtual functions to be filled in by
/ / derived classes
virtual dds-address* alloc-addr-struct0 = 0;
virtual int recv(char* data, int length,

dds-address* from) = 0;
virtual int send(char* data, int dlen,

dds-address" dest) = 0;
virtual int send(vec-element" sv, int nsv,

dds-address* dest) = 0;

/ / Delivery service characteristics
virtual word32 get-maxpdu () ;
virtual word32 get-rate0 = 0;
virtual word32 get-burst0 = 0;

/ / Multicast support
virtual i n t add-mcast-membership(dds-address* addr);
virtual int drop-mcast-membership(dds-address* addr);

1;

A particular data delivery service class, such as for IP and UDP, is derived
from the del-srv class. In MTL, the IP data delivery service object is called
ip-del-sm, and the UDP data delivery service object is called udp-del-sm. The
file del-srv.h contains an enumerated type for many of the possible data deliv-
ery services:

enum dds-types {
IP-type, / /
UDP-tme / /
TCP-type, / /
FDDI-type, / /

AAL5-tmeI / /
XUNETtype, / /
Unknown-type / /

ETHERNET-type , / /

1;

Raw IP
UDP
TCP
FDDI
Ethernet
ATM AAL5
XUNET
Unknown

28 Meta-Transport Library User's Guide

Code Structure

-
These dds-types are used by the mtldaemon class to keep track of the data
delivery service to instantiate.

The data delivery service addressing structure dds-address is also an abstract
class. It hides the internal structure of the address, and provides instead a com-
mon set of functions on the address.

class dds-address {
public :

virtual -dds-address0 { 1
virtual int size0 = 0;
virtual void* get-addr() = 0;
virtual void put-hostid(void* hostid) = 0;
virtual void* get-hostid0 = 0;
virtual int sizeof-hostid() = 0;
virtual void print-hostid(FILE* fd) = 0;
virtual void copy(dds-address* from) = 0;

1;

Specific data delivery services derived an address class from dds-address, pro-
viding an implementation for each of the pure virtual functions. For example,
the ip-dds-uddress class is based on the sockaddr-in addressing structure.:

class ip-dds-address : public dds-address {
private :

public :
struct sockaddr-in addr;

ip-dds-address () : dds-address () {
memset ((char*) &addr, (char) 0, sizeof (addr)) ;
addr.sin-family = AF-INET;
addr.sin_port = htons(DAEM0N-PORT);

1
-ip-dds-address () { }

void* get-addr () (return ((void*) &addr) ; }
int size0 { return(sizeof (addr)) ; 1
void put-hostid(void* hostid) {

1
void* get-hostid0 { return((void*)&(addr.sin-addr)); 1
int sizeof-hostid0 { return(4); }
void print-hostid(FILE* fd) {

rnemcpy((char*)&(addr.sin-addr), (char*)hostid, 4) ;

fprintf (fd, “\%sa,
inet-ntoa(*(struct in-addr*)&(addr.sin-addr)));

1
void copy(dds-address* from) {

addr.sin-family = AF-INET;
addr.sinqort = htons(DAEM0N-PORT);
put-hostid((void*)from->getwhostid());

1
1;

The class derived from dds-address must be the addressing structure used in
the corresponding class derived from del-srv.

Meta-Transport Library User’s Guide 29

Code Structure

The del-srv class function is-readyO indicates if the constructor was able to ini-
tialize the data delivery service. This is necessary because the constructor does
not have a return value. Appropriate address structures are obtained via the
pure virtual function aZloc-dds-uddress0. The recv0 function only operates on
contiguous data (e.g. a monolithic style packet), but the send0 functions are
overloaded for either contiguous or scatter/gather output.

There are three functions that return the data delivery service characteristics.
The get-maxpduO function returns the maximum protocol data unit size possi-
ble on this delivery service. The get-rafeO and get-burst0 functions return the
number of bytes per millisecond, and number of bytes in a single burst, respec-
tively. These values are useful for rate control.

The following program, called dds, illustrates how to use the dds-address and
del-srv derived classes. To compile the program from the examples directory,
type

$ CC -e -DHAVE-CONFIG-H -linsfall-dirlinclude -0 dds.C
$ CC ddso -0 dds -Linsfa//-difiib 4mtl

or
$ make dds

The text of this program is found in the examples directory in the file dds.C.
#include <mtl/MTLtypes.h>
#include <mtl/del-srv.h>
#include <mtl/ip-del-srv.h>
#include <mtl/udp-del-srv.h>
#include <arpa/inet.h>
#include <netdb.h>
#ifdef irix4
include <getopt. h>
#endif / * irixl * /

#define ARGS \
n-r I -t <dest> [-d <dds-type>]"
#define HELP \

-r : receiver\n\
-t <dest> : transmitter and destination\n\'

-d <dds-type> : type of data delivery service to use\n\
- ? : print this rnessage\n"

void main(int argc, char** argv) {
if (argc < 2) (

fprintf (stderr, "Usage: %s %s\n", argv[O], ARGS);
exit (1) ;

1

extern int optind;
extern char *optarg;
char* hst = (char*)NULL;
int recv = 1;
int c;

30 Meta-Transport Library User's Guide

Code Structure

fd-set in-fds;
del-srv* dds = (del-srv*)NULL;
char buf 110241 ;

while ((c = getopt(argc, argv, '?rt:d:")) != -1) {
switch (c) {
case 'r' :

recv = 1;
break;

case 't':
recv = 0;
hst = optarg;
break;

case 'd' :
if (strcmp(optarg, "ip") == 0)

else

break;
case ' ? ' :
default :

dds = new ip-del-srv(&in-fds, 3 6) ;

dds = new udp-del-srv(&in-fds, 3 6) ;

fprintf(stderr, "\nusage: %s %s\n", argv[O],ARGS);
fprintf (stderr, "\n%s\n", HELP) ;
exit (0) ;

I
>
if (!dds)

dds = new udp-del-srv(&in-fds, 3 6) ;

printf("maxpdu = %d\n", dds->get-maxpdu());
printf("burst = %d\n", dds->get-burstO);
printf("rate = %d\n", dds->getrate());

if (recv) {
int done = 0;
dds-address* from = dds->alloc-dds-addressO;
fd-set test-fds = in-fds;
printf("Ready to receive ... \n");
while (!done) {

#ifndef hpux

#else
int n = select(32, &test-fds, 0, 0, 0);

int n = select(32, (int*)&(test-fds.fds-bits[O]) ,

O,O,O);
#endif

int res = dds->recv(buf, 1024, from);
if (res > 0) {

buf[res] = 0;
printf("%s\n", buf);

done = 1;
1 else

done = (strcmp("quit", buf) == 0);
1

Meta-Transport Library User's Guide 31

Code Structure

dds->free-ddsgddress(from);

dds-address* dest = dds->alloc-dds-address();
word32 dsthost;
struct hostent *host;
if ((host = gethostbyname(hst)) == NULL) {

1 else {

if ((int) (dsthost = (word32)inet_addr(hst)) < 0) { '
fprintf(stderr, " % s : unknown host\n", hst);
exit(1) ;

1
if ((host = gethostbyaddr((char*)&dsthost,

sizeof (dsthost), AF-INET)) == 0) {

" % s : Could not locate hostentry\n", hst);
fprintf (stderr,

exit(1) ;
1

dsthost = *(word32*) (host->h-addr);
} else

char hostname[321;
gethostname(hostname, 32) ;
dest->put-hostid(&dsthost):
dest->print-hostid(stdout);
printf ('\n") ;
vec-element psv t 11 ;
int len;
printf("Send \"quit\" to end ... \n");
do {

printf ("=> ") ;
gets (buf) ;
printf ("%s\n", buf) ;
psv[Ol .data = buf;
psv[O] .len = strlen(buf1;
len = dds->send(psv, 1, dest);
printf (" - sent %d\n", len) ;

} while (strcmp(buf, "quit") != 0);
dds->free-dds-address(dest1;

1
delete(dds) ;

>

32 Meta-Transport Library User's Guide

"

The Daemon

The base class for the daemon is mfZdaemon; the main program of the protocol
implementation instantiates a global daemon object through which the proto-
col processing is conducted. The base class mtldaemon provides some funda-
mental functionality and access to several objects used throughout the system.

class mtldaemon {
public :

mtldaemon () ;
virtual -mtldaemon() { 1

/ / Static functions and variables

static
static
static
static

/ / IPC

packetsool* pool;
del-srv* out-dds;
del-srv* in-dds ;
word3 2 times tamp () ;

to user processes

Code Structure

int recv-request(user-request* reqmsg,

int send-reply(user-request* reqmsg,
reLaddr-struct* user-addr);

req-addr-struct* user-addr);

/ / Context information
int get-nun-contexts (1 ;
word64 get-key-mask();

/ / Main loop €unctions
int is-another-daemon-ruingo;
void main-loop () ;
void shutdown () ;

/ / Virtuals
virtual int parse-argstint argc, char** argv);
virtual int init-daemon(char* protocol);
virtual int init-daemon(int protocol-nun);
virtual void install-handlers();
virtual req-action

dispatch-request(user-request* request,
req-addr-struct* user-addr);

1;

Statics

There are three static member variables and one static function available
through the daemon object: the packet pool, the data delivery service for out-
going packets, the data delivery service for incoming packets, and a times-
tamp function. Being static implies that these variables and function are -
owned by the daemon but are essentially global. This preserves the sense of
ownership without causing undue contortions to gain access.

The packet pool object supplies the packet shells for incoming packets and for
constructed outgoing packets. The two data delivery services allow the
derived protocol implementation to specific separate channels for input and
output. The timestamp function is useful for timing events, like roundtrip time.

IPC to User Processes
A daemon must be able to communicate with its users, so the mtldaemon class
provides functions to facilitate this. The recv-requesf0 and send-reply0 func-
tions hide the underlying IPC mechanisms by with the daemon gets user
requests and sends back replies.

Meta-Transport Library User 5. Guide 33

Context Information
A daemon is started with some constant number of contexts available for use.
It is the context manager’s responsibility to instantiate these contexts and pro-
vide indexing into them. To facilitate this, the context manager must learn
from the daemon the number of contexts to instantiate, and a mask used to
convert keys into indices for the contexts. These are gotten from the daemon
via the get-num-contexts0 and get-key-musk0 functions.

Main Loop and Virtual Funcfions
A daemon must (1) determine if another daemon is running in order to avoid
colliding with some of its IPC mechanisms, (2) parse the arguments given to
the daemon program, (3) initialize the daemon, (4) start the main loop of get-
ting packets and user request and processing them, and (5) shutting down
when the daemon is told to do so. The three “main loop” functions and the
five virtual functions correspond directly to these activities.

As is the case with other classes with virtual functions, the virtuals provided
in mtldaemon offer a default implementation but allow, in fact, encourage pro-
tocol-specific implementations to defined. The parse-argsO function recognizes
a fundamental set of switches that can be passed to the daemon program; the
protocol-specific parse-argsO may add, remove, or redefine the set of switches
it recognizes.

.

Code Structure

The overloaded functions init-daemon0 start the daemon, which converts the
program into a Unix daemon with no process group, parents, children, or sib-
lings. The routine that starts the daemon also calls install-handlers0 to install
the interrupt handling routines. The inif-daemonO functions then instantiate
the data delivery service objects. The first inif-daemon0 function takes a proto-
col name in the form of a character string; this string is given to a system call
to determine the protocol number for that protocol name. These numbers are
assigned by the IETC in periodic RFCs. The second flavor of this call takes the
protocol number itself. The data delivery service objects are instantiated using
this number:These are the activities that may have to be done with root per-
missions, to they are done first. Next, the daemon’s effective user id is
returned to the user that started the program, so any activities from then on
are done without root privilege, including opening the log file.-(You will agree
that a program that can open and close arbitrary files as root poses a hugh
security hole; any protocol-specific replacement for init-daernon0 should con-
sider this.) Finally, the IPC channels are opened for user requests, and the
packet pool is initiated.

-

The init-daemonO function is really intended to be redefined, and then called
by the derived protocol’s inif-daemon0 function, since the context manager
must be instantiated from within the init-daemon0 call. Since the context man-
ager object must be derived, the mtldaemon function init-daemon0 cannot
make the call to new(); it must be done with the derived context manager is
known,

34 Meta-Transport Library User’s Guide

.

Code Structure

The function main-ZoopO blocks waiting for incoming user requests or incom-
ing packets. This is shown in Figure 4. The daemon unblocks when the client’s

mtldaemon -
main-loop

del-srv

dispatch-request()

I. I , ! packetsl , 1~~
context-manager

-
FIGURE 4. Mail Loop of mtldaemon

request arrives, does a switch on the request type, calls dispafch-requesfO,
awaits the result of the request, then sends the result back to the client. The
user can specify that the request is a blocking request, where the daemon does
not return the results until the request is satisfied. The daemon will also
unblock upon receipt of a packet, at which time it invokes the context man-
ager’s handZe-new_packef0 function. Either way, the daemon loops back and
blocks waiting for another request or packet.

There are four friends of the mtldaemon class:
friend void log_print(const char* fmt ...) ;
friend void log-event();
friend void log-buffer(buffer-manager* bm);
friend void log-state(state-machine* st);

These functions print information to the log file, and thus require some inti-
mate knowledge of the mtldaemon. The ZogjrinfO function takes the same for-
mat as does printfO, except that it can print 64-bit numbers by using the
substitution string %Id for decimal, and %lx for hexadecimal.

The User Interface

All of the classes discussed so far are designed to be compiled directly into the
program that implements the protocol. The user interface, however, is tar-
geted to be part of a library that will be compiled into the user’s application
code. The user instantiates the interface object; it provides the user’s applica-
tion a means of issuing requests to the daemon and of managing the data in
the user’s send and receive buffers.

class mtlif {
protected:

/ / Information accessible by derived classes

Meta-Transport Library User’s Guide 35

Code Structure

pid-t upid;
buffer-manager s-bm;
buffer-manager r-bm;
user-request* request;
int registered;
int released;

/ / Buffers
int install-buffers(user-request* req);
void release-buffers();

public :
mtlif 0 ;
virtual -mtlifO;

/ / IPC routines
int issue(user-request* req);
int inform(user-request* req) ;
int accept (user-request* req) ;

/ / Virtual functions
virtual int reg();
virtual int release(int no-answer = 0);
virtual void perror(int res, char* usr-msg = NULL);
virtual void cleanup();

1 ;

The instaIZ-buflers0 method creates the buffer managers. They are accessed via
the r-brn and s-brn member variables. The user interface controls the user’s
end of the two buffer managers mentioned above. The user writes data into
these buffers and issues the send command. The presence of the data is made
known to the context, and the context’s buffer manager pulls the data into the
protocol. As packets with data arrive, the context writes the packet’s data into
the receive buffer. As the user application asks for data through the receive
request, the context informs the interface’s receive buffer manager about the
size and location of the received data.

User requests are sent to the daemon via the issue0 method, which waits for
the results, and the inforno method, which does not wait. The-perrorO method
prints the error messages corresponding to return codes. The user requesf class,
shown below, is used as a base class for protocol-specific user requests.

class user-request (
public :

int cmd; / /
int len; / /
int result-code; / /
int extra-modes; / /
pia-t upid; / /
word64 key; / /
int snd-shmid; / /
int rcv-shmid; / /
word32 snd-buf-size;
word3 2 rcv-bu f-s ize ;

requested command
length of the request
result of the action taken at daemon
modes of operation
user’s pid, for verification
key used for identifying context
shared memory id for send buffer
shared memory id for recv buffer
/ / send buffer size
/ / recv buffer size

36 Meta-Transport Library User’s Guide

Code Structure

Receive
Buffer
Manager

user-request(const user-request" req

virtual -user-request();
= (user-request*)NULL);

1;

Two user requests are essential: registering with the daemon, and releasirig
from the daemon. The reg0 function is sends a REGISTER message to the dae-
mon. This is virtual, so it can be replaced by a derived implementation. The
register command causes the daemon to allocate a context for the user and
attach to the send and receive buffers. The release0 function causes the daemon
to return any resources and detaches the daemon from the buffers by sending
a RELEASE message to the daemon. (REGISTER and RELEASE are defined in
MTLtypes).

The constructor for the user request class can take another user request and
make a copy of it. If the argument is null, it instantiates a clean request. This
helps if the protocol has a prototype user request that it copies common infor-
mation from for other types of requests.

I
I I
I 1 Context
I I

Buffer Management

Each client has two data buffers, one for sending and one for receiving, as
shown in Figure 5. Each of the client's buffers is controlled by a buffer man-

Client Process Daemon Process

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FIGURE 5. Buffer Management

ager object. Data are written into and read from the buffers through the buffer
manager interface routines. A shared memory segment is used to reduce the
amount of copying required to send or receive data.

Meta-Transport Library User's Guide 37

Code Structure

The buffer manager class buffer-manager controls access to a data buffer. Inter-
nally, this data buffer is a piece of shared memory that two or more process
gain access to using the buffer manager methods. Consequently, there can be
multiple buffer manager objects granting access to a single data buffer.

class buf fer-manager {
public :

buff er-manager () ;
-buff er-manager () { 1

/ / lifecycle routines
int create(word32 b-size, word64 beg-seq,

int attach (int shmid) ;
void release () ;

int index = -1);

/ / Sets and Gets
void set-dseq(word64 dseq);
void set-tail(word64 tail);
void set-beg-seq(word64 seq);
word64 get-head();
word64 get-tail();
word64 get-dseqo;
word64 get-hseqo;
word32 get-room-left();
word32 get-contig-len () ;
word64 get-alloc();

/ / Writes and Reads
int
int

int
int
int
int
int

write(const void* b, word32 len, int overwrite = 0) ;
write(const void* b, word32 len, word64 where,

int overwrite) ;
read(void* b, word32 len);
read(void* b, word64 from, word64 to);
read(word32 len) ;
read(vec-element* sv, int* n, word32 len);
read(vec-element* sv, int* n,

word64 from, word64 to);

/ / Moves
void advance-dseq(word32 amount);
void acknowledged(word64 dseq);

/ / Misc
void print (FILE* fd) ;
buffer-manager& operator=(const buffer-manager& sb);

1;

Lifecycl e

One process must create the physical data buffer using the create0 method; a
size b s i z e and a beginning sequence number beg-seq are passed as arguments.
If an integer index is also passed to create(), the buffer manager will use this
value as the ”key” to the shared memory allocation system call (this should be

38 Meta-Transport Library User’s Guide

Code Structure

used only if the shmget(2) system call is broken, as is the case with some i386
operating systems). The create0 call returns a shared memory id, or EXBUF if
failure occurs.

Once a data buffer has been created, another process can attach to that buffer
so data written into the buffer by one process can be read by the other process.
To do this, the second process must instantiate a buffer manager object, then
get the shared memory id from the first process (communicated by some IPC
facility). The second process calls the uffach0 method on its copy of the buffer
manager object, with the shared memory id shmid, to attach that process to the
data buffer. Now both processes are attached to the shared memory, and any
activity on the buffer from one buffer manager will be immediately seen by
the other buffer manager.

When a buffer manager is finished with a buffer, the release0 method detaches
the manager from the buffer. When all processes release their buffer managers,
the memory will be deallocated back to the system.

In MTL, the two parties interested in the data buffer are the user and the
appropriate context in the protocol daemon. The context object creates the
data buffer and the user interface object attaches to it. This ensures that the
user's demise will not prevent the removal of the shared memory buffer.

Also in MTL, buffers are created and attached to in pairs, one for sending, and
one for receiving. If the buffer is a send buffer, the user writes to the data
buffer and the context object reads the data from the buffer to send it. The con-
text also keeps track of what data has been acknowledged, so that portion of
the data buffer can be reused. If the buffer is a receive buffer, the context
writes received data to the buffer and the user reads that data. The buffer man-
ager class provides the methods for reading, writing, and otherwise manipulat-
ing the data buffers.

Sets and Gets

The data buffers keep track of data by sequencing each byte. There are four -
sequence numbers that serve as markers in the stream of data as it passes
through the data buffer. The fad is the sequence number of the next byte to
write, the head is the sequence number of the next byte to-read, the dseq is the
sequence number indicating what has been delivered to the user, and the hseq
is the highest sequence number yet seen. The head and tail markers start at the
beginning sequence number (gotten from the creufe0 method or by setting it
later using the set-beg-seq0 call). As data are written to the buffer, the tail and
hseq markers are advanced. It is possible for the hseq marker to be further into
the sequence than the tail; the tail marks the last contiguously written byte.
The tail value can never exceed the hseq value. As data are read from the
buffer, the head marker is advanced. As data are delivered to the user, the
dseq marker is advanced. Therefore, the dseq value can trail behind the head
value, but will never exceed it. The tail and dseq values can be set manually, if
necessary, using the two methods sef-fuiZO and sef-dseq0.

Several values are of interest as data are written to and read from the buffers.
The number of contiguous bytes the buffer can currently hold is given by

Meta-Transport Library User's Guide 39

Code Structure

gef-room-Zeff() (the size of the buffer minus the difference between hseq and
dseq), the number of contiguous bytes currently in the buffer is given by
gef-config-lenO (the difference between the tail and the head), and the highest
sequence number acceptable without overrunning the buffer, given by
get-aZZocO.

The values of each of the marker sequence numbers can be gotten via the meth-
ods gef-headO, get-fail0, gef-dseqO, and gef-hseq0.

Writes and Reads
The several overloaded write() and read0 methods allow the owner of the
buffer manager object to insert data into the buffer (at the tail) and remove
data from the buffer (from the head).

The overloaded write0 methods take a parameter overwrite that indicates that
the buffer should not preserve data if new data will overwrite it. The write0
methods will write all or none of the data to the buffer; if the ovenvrife parame-
ter is not set to true (or is left to the default value), the write0 methods will fail
and write no data to the buffer if there is not enough room to write all of the
data specified. All of the read0 and write0 methods return the number of bytes
written or read.

Moves
As data is acknowledged, the last unacknowledged byte is recorded internally
in a marker called dseq. The receive buffer moves the dseq marker using the
method advance-dseqO, providing as a parameter the amount of data that has
been given to the receiving user. The method used to indicate that data has
been acknowledged is acknowledged(), where the parameter dseq is the
sequence number up to which receipt of delivered data has been acknowl-
edged.

Miscellany
The contents of a buffer manager, but not the contents of the data buffer itself,
can be printed to a file using the print0 method. This is useful in debugging
and following the progress of data as it is sent and acknowledged. The assig-n-
ment operator copies the sequence markers from one buffer manager object
into another.

Below is an example of how to create, attach, write to and read from a data
buffer. In this case there is only one process, but a shared buffer is created
nonetheless.

#include cmtl/MTLtypes.hz
#include <mtl/buffer-manager.h>

void main0 {
char at2001;
char b[2001;
char ans [10 I ;
int len;

40 Meta-Transport Library User’s Guide

Code Structure

/ / Fill in the source user buffer
int i;
for (i = 0; i<200; i++)

a[i] = 'a' + (i%26);

/ / Instantiate the buffer manager
buffer-manager bm;

/ / Attach the buffer manager to a piece of memory,
/ / starting at seq number 0.
if (bm.create(200, word64(0)) == EXsUF) {

fprintf(stderr, "Error in creating the buffer\n");
exit (1) ;

1

/ / Dump the initial state of the buffer-manager
printf ('START : \n") ;
bm.print (stdout) ;
printf ('alloc = ") ; uprint (bm.get-alloc0, '\n\n") ;

do {
/ / Write 75 characters to the buffer from "a"
printf ("WRITE: writing 75 characters to " 1 ;
printf("the buffer ... \n");
len = bm.write(a, 75, 0);
printf("==> returned len = %d\n", len);
f f lush (stdout) ;
bm-print (stdout) ;
printf ("alloc = ") ; uprint(bm.get-alloco , '\n\n") ;

/ / Read 75 characters from the buffer-manager into 'b'
printf ('READ: reading 75 characters from ") ;
printf("the buffer ... \n");
len = bm.read(b, bm-get-head(), bm.get-head0 + 75);
printf("==> returned len.= %d\n", len);
f f lush (stdout) ;
bm.print (stdout) ;
printf ("alloc = " 1 ; uprint (bm.get-alloc () , "\n\n") ;

/ / Advance the dseq 75 characters. This is like
/ / acknowledging that the data have been used and are
/ / no longer needed.
printf('ADVANCE: advancing the dseq " 1 ;
printf("75 characters ... \n");
bm.advance-dseq(75);
bm.print (stdout) ;
printf ("alloc = ") ; uprint (bm.get-alloc () , '\n") ;
printf ("\n\ncontinue: [yln] " 1 ;
scanf ("%s" , ans) ;

} while (ans[Ol != 'n');

/ / Release the buffer
bm. release () ;

1

Meta-Transport Library User's Guide 41

Code Structure

The text of this program is found in the examples directory in the file
bmtest.C. To compile the program, issue

$ CC -c -DHAVE-CONFIG-H -linstal/-difinclude -0 bmtest.C
$ CC bmtest.0 -0 bmtest -Linsfall-didIib 4mtl

in the examples directory, or type
$ make bmtest

Miscellaneous Classes and Utilities

There are a few classes and utility functions that are not part of the major archi-
tecture of MTL, but which are necessary nonetheless. Most protocols maintain a
state machine to guide the protocol through its processing; the state machine
class is an abstract class designed to be a place holder until a protocol-specific
class is defined. The event queue class is a utility class for keeping track of
event/sequence number pairs. The signal handling utility smooths out the
inconsistencies between signals across architectures and operating systems.

State Machine
The state machine class sfafe-machine is a base class from which protocol-spe-
cific state machines are derived. This class services as a pure abstract class. The
state machine is designed to be used within a context to keep track of the
states of the communication. These states are entirely protocol specific, so this
class is just a place holder.

class statemachine {
public:

state-machine0 { 1
virtual -state-machine0 { 1
virtual void print(FILE* fd) = 0;

1;

If the function log-sfafeO (see the discussion on the mtldaemon class) is ever
called, there must be a derived state machine class defined, and the lunction
void print0 must be defined within that class.

Event Queues
The event queue class evenf-queue implements a first in, first out queue of
events. An event is a 32-bit protocol-specific value. Events and their associated
sequence numbers are kept in the queue until retrieved.

class event-queue (
public:

event-queue () ;
-event-queue () ;
int put(word32 event, word64 seq);
word32 pull (word64& seq) ;
word32 peek(word64Ei seq) ;

1 ;

42 Mera-Transport Library User's Guide

Writing Derived Protocols

Once an event queue object is instantiated, the put0 method places the event in
the queue, and associates the sequence number seq with the event. The pull()
method returns the event and passes the sequence number through the refer-
ence variable seq. The event is removed from the queue. The peek0 method
returns the same values as the pull0 call, but does not remove the event from
the queue. If no events are in the queue when pull0 or peek0 are called, a 0 is
returned.

Signal Hand1 ing
This utility function replaces the signalQ) system call with a generic, machine-
independent version:

Sigfunc* set-signal(int signo, Sigfunc* func);

When MTL is configured for compilation on a specific machine type, the idio-
syncracies of that machine type are taken into account, and a uniform function
set-sigrlal() is the result. The function sef-signal0 is then used to set the signal
handling routine for a signal number.

When a signal handler is declared, it should be of type RETSIGTYPE:
RETSIGTYPE -intr-handler(int sig);
RETSIGTYPE -child-handler(int sig);

Writing Derived Protocols

There are two parts to implementing a protocol using MTL: building the dae-
mon process that will implement the protocol, and creating a user interface
that exposes the appropriate functionality to the user. The configuration and
installation of the MTL package produces two files, the 1ibmtl.a library file, and
the interface.0 object file. Suppose we were implementing a protocol call
Derived Transport Protocol, or DPT. The daemon process that will run the
derived protocol (we’ll call this process dfpd , for Derived Transport Protocol -
Daemon) links in the 1ibmtl.a library to use the base classes provided. The user
interface and a few other utilities, like the buffer manager, are placed into the
interface.0 object file that, along with the derived user interface class, are com-
bined into a new, protocol-specific, library that will then be linked into the
user’s code during application compilation. We’ll call this new library 1ibdtp.a.
These two parts of MTL then allow the two processes - the user’s application
and dtpd (the protocol implementation daemon process) - to communicate
requests, responses, and user data.

The rnflifclass is designed to offer basic functionality to a derived class. As Fig-
ure 6 shows, the intended approach to providing user interfaces is to first
derive a protocol-specific interface class (d f p a that exposes as much detail of
the protocol’s functionality as possible. This ”wizard’s’’ interface class would
emphasis completeness rather than ease of use, and is targeted toward the
truly knowledgeable. Then, for each type of application programmatic inter-
face required, derive from the full exposure class a set of API-specific classes
(APLSpecifi’cl-if, efc.) that limit the functionality to what is appropriate for that

Meta-Transport Library User’s Guide 43

Writing Derived Protocols

API-Specific 1-if

mtlif dtpif API-Specific2-if

~~1-specific3-ifl

FIGURE 6. - Derivation of User Interfaces

AH. The file interface.0 and the object files of the derived interfaces are then
collected into an archive file that becomes the user’s library, 1ibdtp.a.

Building the actual protocol implementation using MTL requires creating a
main routine that anchors the protocol implementation program as it becomes
a daemon process, and deriving protocol-specific classes from the MTL base
classes. Here is the main routine for the MTL-based protocol DTP:

#include <mtl/MTLtypes.h>
#include imtl/mtlif.h>

#include “include/DTPdaemon.h”

DTPdaemon -tmp ;
DTPdaemon*.DAEMON = &-tmp;

void main(int argc, char **argv) {

/ / Check first to see if another dtpd daemon is running.
if (DAEMON->is-another_daemon-running()) {

fprintf(stderr., “Another XTP daemon is running\n”);
exit (1) ;

1

char my-name[128];
gethostname(my-name, 128) ;
time-t t = time(0);

(DAEMON->parse-args(argc, argv) == EXOK) (
fprintf(stderr, “Derived Transport Protocol Daemon’);
fprintf(stderr, ” (%d) started on %s %s“,

DAEMON->init-daemon (99) ;
log-event () ;
logqrint(”Derived Transport Protocol Daemon”);
log_print(” (%d) started on %s % s ” ,

DAEMON->main-loop (1 ;

getpido, my-name, ctime(&t)) ;

getpido, my-name, ctime(&t)) ;

DAEMON->shutdown () ;

Writing Derived Protocols

There must be two global variables: a static instantiation of the derived dae-
mon object, and a pointer to the derived daemon object. The daemon object is
known universally throughout MTL as DAEMON, and all of its member func-
tions and variables are accessed through this name.

The main routine first checks that no other daemons derived from MTL are
currently running. Next the main routine calls purse-urgs0 with the arguments.
This allows the user who starts the daemon to control some initial properties
of the daemon. The program is then initialized via the inif-duernon0 method,
and becomes a full Unix daemon. The daemon process then invokes the
main-ZoopO method, and runs there until told to stop, at which time some shut
down procedures are done (shutdownO), and the daemon process exits,
destroying the statically instantiated DTPdaemon object DAEMON. As the
rnuin-ZoopO method runs, the user requests and incoming packet provide the
inputs for the protocol implementation. Through dynamic binding, the virtual
functions from each base class are replaced with the derived class’s version, so
the MIL infrastructure always invokes the proper method.

A Small Example
The directory structure under compile-dir/DERIVEDprotocol, shown in Figure
7, is essentially what a protocol derived from MTL would may use. There are a

DERlVEDprotocol
1

files

FIGURE 7. Derived Transport Protocol Directory Structure

number of approaches; this is just one of them.

The include directory contains the definition files for each of the derived
classes, and the src directory contains the implementation files for those
classes. As an example, the file DTPc0ntext.h contains the derived context
class, called DTPconfexf:

#include <mtl/MTLtypes.h>
#include <mtl/context.h>

class DTPcontext : public context {
friend class DTPcontext-manager;
private :
protected:
public :

DTPcontext (1 ;
-DTPcontext () ;

Meta-Transport Library User S. Guide 45

Writing Derived Protocols

int is-quiescent();
void go-quiescent0;
int initialize(user-request* request);
int bind() ;
int processqacket0;
int receive(user-request* request);
int send(user-request* request);

Ii

Since DTPcontext derives from context, the c0ntext.h header file is included.
Note that this file assumes that -1install-dir/include is used as a com-
piler switch.

The functions defined in the DTPcontext class are redefinitions of virtual or
pure virtual functions from the context class. A real derived context class
would have protocol-specific functionality, as well as many helper functions
left as private or protected.

The protocol DTP can be build from the DERlVEDprotocol directory by typing
$ make

The Makefile will compile all of the derived class files in the src directory, then
link these together with the installed 1ibrntl.a file to produce an executable pro-
gram called dtpd, left in the src directory. This is the DTP daemon program.
Additionally, the executables dfpds, dtpdrm, and dfpdreset are created. The dtpds
command gets the current status of the daemon, however that’s defined by the
daemon’s implementation. The dtpdrm command removes a running daemon,
causing it to clean up and shut down. The dtpdreset command clears all of the
contexts in the daemon, and returns the daemon to a state similar to when it
first was started.

The make continues into the lib directory, when the library file 1ibdtp.a contain-
ing the user’s interface routines is created. The 1ibdtp.a file is created by com-
bining the MTL interface.0 (from the install-didlib directory) with the derived
interface class or classes (here it is dtpif) into a library archive file.

BY t Y P b
$ make install

the DTP executables and the library file, and well as the include files, are
installed into the same install-dirdirectory structure as was MTL. More specifi-
cally, dtpd and its cousins are placed into insfall-dirlbin; 1ibdtp.a is placed into
install-didlib; and the include files are placed into install-djdincludeldtp. Note
that, if MTL required root privilege to run “make install”, then so will DTP.

To write a user application program that includes DTYs interface routines, the
program source file must include any header files to the DTP interface (here it
would be

#include cdtp/dtpif.h>

To compile the application program, use

46 Meta-Transport Library User’s Guide

.

$ CC -c -linsta//-dirlinclude -0 app1ication.C
$ CC application.0 -0 application -Linsta//-didlib 4dtp

A Full-Blown Example
Sandia National Laboratories has developed a full implementation of the
Xpress Transport Protocol using MTL as the foundation. The implementatiin
is called SandiaXTP [11][12], and is available from the Web page

httpd/www.ca.sandia.gov/xtp/SandiaXTP/

Help

There are at least nine mechanisms in place for receiving help:

Thisdocument
READMEfile
The MTL Reference Manual
On-line manual pages
Hypertext manual,pages
Papers included with the distribution
Users Group mailing list
Your Unix documentation
Personal assistance

The first one is obvious. The MTL Reference Manual is in the compile-dir/doc
directory under the name of mtl-reference-manual.ps. It is a postscript docu-
ment form of all of the manual pages.

The README file is in the compile-dir directory. It explains where to find the
introductory material and installation instructions through regular text or
through a hypertext browser. The information in these files is a shortcut ver-
sion of the information in this document, and is good for quick reference.

The on-line and hypertext manual pages are available in two places: before
installation, they are kept in the compile-dir/man directories; after installation,
they are also in the install-didman directories (note that the manual pages are
installed using “make installman”). Read the manual page-for man(1) to deter-
mine how to make the man command find these manual pages. This may
involve setting the MANPATH environment variable.

The hypertext versions of the manual pages are best found by opening the file
intro.htm1 and following the link “MTL Man Pages”.

When white papers exist to give more detail on a subject, they are put in the
compile-dir/doc directory. The paper “A Class-Chest for Transport Protocols”
is in the file class-chest.ps.

There is a mailing list for users of MTL and SandiaXTP. It is
SandiaXTPQlucky.ca.sandia.gov

.
Meta-Transport Library User’s Guide 47

http://SandiaXTPQlucky.ca.sandia.gov

Bibliography

If you have any issues you would like to discuss with the other users of MTL,
mail to this list. News of updates and bug fixes will come through this list. If
you are not already a member, mail to the address below with the subject line
“user registration” and include your Email address.

The manufacturer provided literature on IPC, makefiles, and software installa-
tion may also answer some of your questions.

For more personal assistance, write to Tim Strayer a t

.

strayer Q ca.sandia.gov

with as much information as you can, including your machine type, compiler,
directory structure, the methods you used to get yourself in the jam, and a
good description of the jam itself.

Bibliography

Thekkath, C. A., Nguyen, T. D., Moy, E., and Lazowska, E. D., “Implementing Net-
work Protocols at User Level,” Proceedings of SIGCOMM ‘93, San Francisco, Ca.,
September 13-17, 1993, pp. 64-73.
Hutchinson, N. C., Peterson, L. L., “The x-Kernek An Architecture for Implement-
ing Network Protocols,” IEEE Transactions on Software Engineering, Vol 17, No 1,
January 1991, pp. 64-78.
Boykin, J., Kirschen, D., Langerman, A., and LoVerso, S., Programming Under
Mach, Addison-Wesley, Reading, Mass., 1993.
Edwards, A., Watson, G., Lumley, J., Banks, D, Calamvokis, C., and Dalton, C.,
“User-space protocols deliver high performance to applications on a low-cost Gb/s
LAN,” Proceedings of SIGCOMM ’94, London, England, August 31-September 2,

Edwards, A., and Muir, S., “Experiences implementing a high performance TCP in
user space,” Proceedings of SIGCOMM ’95, Cambridge, Mass., August 28-Septem-
ber 1,1995, pp. 196-205.
Mogul, J. C., Rashid, R. F., and Accetta, M. J., “The Packet Filter: An efficient mech-
anism for user-level network code,” Proceedings of the 11th ACM Symposium on
Operating Systems Principles, November 1987, pp. 39-51.
McCanne, S., and Jacobson, V., “The BSD Packet Filter: A New Architecture for
User-level Packet Capture,” Proceedings of the 1993 Winter USENIX Conference,
San Diego, Ca., January 25-29, 1993.
Strayer, W. T., Gray, S . , and Cline, R. E. Jr., “An Object-Oriented Implementation of
the Xpress Transfer Protocol,” Proceedings of 2nd IWACA, Heidelberg, Germany,
September 26-28, 1994.
Strayer, W. T., “A Class-Chest for Transport Protocols,” Submitted to Proceedings
of 21st Local Computer Networks Conference, Minneapolis, Minnesota, October 13-
16, 1996.

1994, pp. 14-22.

10 Leffler, S.J., McKusick, M.K., Karels, M.J., Quarterman, J.S., The Design and
Implementation of the 4.3BSD UNM Operating System. Reading, Mass, Addi-
son-Wesley 1989.

.
48 Meta-Transport Library User’s Guide

http://ca.sandia.gov

.

Bibliography

11 Strayer, W.T., Gray, S., Cline, R.E., Jr., An Object-Oriented Implementation of the
Xpress Transfer Protocol. 2nd IWACA, Heidelberg, Germany, September 26-28,
1994.

12 SandiaXTP User 3 Guide, Sandia National Laboratories, California, http:l/
www.ca.sandia.gov/xtp/SandiaXTP/.

Meta-Transport Library User's Guide 49

UNLIMITED RELEASE
1 INITIAL DISTRIBUTION:

9003 D. L. Crawford, 8900
901 1 R. E. Palmer, 8901
9011 P. W. Dean, 8910
9012 W. T. Strayer, 8910 (10)
9012 J. E. Costa, 8920
9012 S . C. Gray, 8930
9019 B. A. Maxwell, 8940
9011 D. B. Hall, 8970
9001 T. 0. Hunter, 8000

Am: J. B. Wright, 2200
E. E. Ives, 5200
M. E. John, 8100
L. A. West, 8200
W. J. McLean, 8300
R. C. Wayne, 8400
P. N. Smith, 8500
T. M. Dyer, 8700
P. E. Brewer, 8800

9021 Technical Communications Department, 8815, for OSTI (10)
9021 Technical Communications Department, 8815/Technical Library, MS 0899,13414
0899 Technical Library, 13414 (4)
9018 Central Technical Files, 8940 (3)

1

I

50

