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Abstract

The effect of excluded volume on the coil size of dilute linear polymers was investigated

by off-lattice Monte Carlo simulations. The radius of gyration ~ was evaluated for a wide range

of chain Iengths at several temperatures and at the athermal condition. The theta temperature and

the corresponding theta chain dimensions were established for the system, and the dependence of

the size expansion factor, a, = R.g /(Rg )0, on chain length N and temperature T was examined.

For long chains and at high temperatures, a, is a function of hT/N,: alone, where the length scale

N,: depends only on T. The form of this simulations-based master function compares favorably

with cr@l/ M~~),an experimental master curve for linear polymers in good solvents, where M$~

depends only on polymer-solvent system. Comparisons when N,$(T) and M$,(system) are

reduced to common units, numbers of Kuhn steps, stron#y indicate that coil expansion in even

the best of good solvents is small relative to that expected for truly athermal solutions. An

explanation for this behavior is proposed, based on what \vould appear to be an inherent

difference in the equation of state properties for polymeric and monomeric liquids.
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Introduction

Discussions about flexible-chain polymers in dilute solution are frequently phrased in

terms of “good solvent behavior” and “theta condition behavior”. It is easy enough to define the

theta condition operationally. It is the state where the second virial coefficient for long linear

chains of the species is zero and the root-mean-square radius of ~ation R~ scales with

()molecular weight M in the random walk manner: R~ * m M]’*. Defining a good solvent is

more difficult because there is no easily identifiable sign that indicates a special state or limiting

condition. Conceptually, a “perfect” good solvent, commonly called an athermal solvent, is one

for which the excluded volume effects are derived entirely from the space-filling volume of the

chain itself. In practice, good solvents encompass a range of states within which R~ for long

chains is insensitive to temperature and scales with lemgg.hover some experimentally accessible

range in the self-avoiding walk manner: Rg cc M”, 0.58< v <0.60. It has long been suspected,

however, that data obtained in even the “best” good solvents are not in accord with the athermal

idealization. ‘-GIn 1988 Fujita5 summarized the evidence suggesting that excluded volume effects

in dilute solutions become observable only at chain lengths that are an order of magnitude or

more beyond the expected range for truly athermal solvents.

In the preceding paper’, we reviewed the data relevant to volume exclusion for linear

chains of several species in a variety of good solvents. The excluded volume expansion factors

for four properties— radius of gyration, second virial coefficient, intrinsic viscosity and diffusion

coefficient-were found to be expressible as universal functions of chain length, appropriately

resealed for each choice of polymer and solvent species. Thus, for chains beyond the oligomeric

range,



ax = fx(fwkf:) (1)

in which x stands for one of the four properties, each fimction fJ&) is universal, and A4~ is the

characteristic molecular weight for a polymer-solvent system that locates the onset of size

expansion effect.

Experimental data described by eq 1 are consistent with the two-parameter theory of

polymer solutions.l However, the observed forms of fx(~x) do not agree with the commonly

used two-parameter expressions, such as the Domb-Barrett (DB) equations Thus, the

experimental crossover for the size expansion factor as— from unity for M< < M! to

(M/M! )’’-2forM>>@>@ — is more abrupt than that of the DB prediction. In addition, and

especially relevant to the discussion here, the magnitudes of M: suggest a much weaker

excluded volume effect than the expectation for athermal solvents, consistent with Fujita’s

concern.> However, defining the athermal expectation is itself not a simple undertaking,’ and as

a result the general question of excluded volume weakness remains unsettled.

In this paper we describe an off-lattice Monte Carlo simulation of self-excluding chains,

undertaken in the hope of shedding additional light on the apparent weakness of excluded

volume interactions. The chains we consider are linear and self-avoiding, but they are also self-

attracting and have an effective strength of attraction that varies with the temperature. Data on

~ vs. N were gathered for various temperatures as well as for a purely repulsive (atherrnal) case.

The excluded volume effects were then organized in the reamer used previously for polymer

solutions.’ The theta condition was established, the results were used to determine (R~ )e vs. N,

and the size expansion factor, as = R~ /(R~ )e, was evaluated as a function of N at the other
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conditions. The correspondence between these results and the data for polymer solutions,

including the possibility of master curve formation,

a, = j“(N/N ~(T))

were then considered in detail.

Simulation Model

Most numerical simulations of the polymer chain near the theta condition have been

conducted on a lattice. 10~3 We used an off-lattice (continuum) model in which the polymer

chain is represented as a string of N+ 1 beads connected by rods of length CT.The beads are

treated as soft spheres that interact in pair-wise fashion through a modified Lennard-Jones

(r< rc)

(3)

I-J(r) = O (r> r.)

Thus, the potential acts between all pairs of beads, E characterizes the interaction stren=d, and rc

is the interaction cut-off distance.

When the interaction range rCis truncated at r== 21’SC the potential is purely repulsive.

The potential in this case is close to a hard-sphere condition, and we used it to approximate the

atherrnal limit. k these simulations we use the temperature T = dk& where kBis the Boltzmann

constant. Over a modest range, the choice of simulation temperature has little effect on the result
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because the repulsive potential is so steep. Thus, for example, the values of & for athermal

chains with 400 and 800 beads are about 2°A smaller at T = 3dkB than at T = d@

To study behavior near the theta condition it is necessa~ to extend the range of the

interaction. In an earlier study of the collapse transition, Baumgartner 15 set the cut-off to infinity.

However, it is computationally more convenient to truncate the potential at some finite distance,

as is done for all simulations on a lattice. In this study we set r~= 2.5 cr. Accordingly, it is

possible to vary the relative importance of monomer-monomer attraction, and thus the solvent

quality, by varying the temperature. Previous work on short chains14 led to a value for

temperature at the theta condition, Te = (3.0+ O.1)s / kB. As seen below this earlier value is an

underestimate of the actual Te for the system.

In principle, the athermal condition could be examined without modifying the model at all,

simply by raising the temperature sufficiently. The repulsive potential is not infinitely steep

however, so the effective “hard core” volume of the chain units would decrease with increasing

temperature, making the analysis of data over a wide temperature range quite complicated.

Experimentally, large variations of solvent quality are brought about not by varying temperature

but by changing the solvent. Thus, the rather drastic procedure of using temperature alone is not

even particularly realistic. Modifjing the model slightly~utting off attraction and employing a

moderate temperature— is a reasonable alternative.

k a continuum, as on a lattice, a computationally efficient method to measure R~ and

<R2> by Monte Carlo methods is the pivot algorithm. ‘s”~oIn this procedure, a monomeric unit is

selected at random, and one of the two segments formed by that partitioning is pivoted rigidly in a

random direction about the unit. The energy of the new conformation is then calculated and

compared to that of the previous conformation, and the new conformation is accepted or rejected
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based on a Boltzmann weighting factor. Madras and Soka118have shown that this algorithm is

ergodic, and that it satisfies detailed balance. It is an efficient way to determine the average

properties of dilute chains because each accepted move usually leads to a large change in chain

conformation.21

We studied a range of chain lengths, from N+l = 2 to 24000 for the athermal case and

fiomll+l =16 to 3200 for the various temperatures. For the athermal chains (rc = 21’6C;T =

&/kB)the values of R:

are given in Table 1.22

(in units of ~2), the ratio< R* > /R~, and the number of attempted moves

Values of R; for the attractive case (rC = 2.50 at the various

temperatures) are given in Table 2. Typical runs ranged from 10Gattempted moves for small N to

80x1 OGfor large N near Te. Values of R: / 02 are shown as a fhnction of N for various

temperatures in Figure 1.

AnaIysis of Data

Unperturbed Chain Properties. The theta temperature Te was determined by applying

the following scaling equation relating R~, N and T near the theta condition: 12

R; = N~(TNllZ) (4)

in which ~ = (T – Te) / Te. Accordingly, near Te the values of R; /N for various N and T

should reduce to a function of (T – Te) N1’2 alone. For data in the ranges 200< N+l <3200 and

3.0< T <3.6, the choice of TB=3. 18 + ().02 &/kB was found by trial-and-emor to produce the best

reduction to this scaling form. This value is larger than the one reported earlier for the system. 14

The quality of agreement with the scaling form @q. 4) at T = 3.18 &/kBcan be judged born

Figure 2.
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The values of R~ at Te are the unperturbed dimensions needed to calculate size expansion

fhctors. The simulation was rerunatTo=3.18 &/kBin order to obtain those values as accurately

as possible. The results are listed in Table 2. The behavior of size in the Te vicinity is illustrated

by the plots of %2 IN vs. N in Figure 3. For long chains %2 /N is independent of N at Te, and the

values for 200< N +1< 1600 at Te are indeed consistent with that expectation. However, R~2/N

at N+l = 3200 smaller by an amount (cu. 4.5 0/0) that appears to be real, indicating perhaps that

Te is slightly higher than 3.18 &/kB. We chose simply to omit the size at N+l = 3200 in the

evaluation of unperturbed properties of long chains. Thus, R~2/ a2 at Te = 3.18 E/kB is

plotted as a function of chain length in Figure 4 with a best straight line of unit slope through the

values for 200< N +1< 1600, corresponding to

[)R;
= 0.343 (72

T
e

(5)

This result is consistent with the value estimated as R~z/N at N1’2 (T – Te ) / TB = O in Figure 2.

The backbone bonds of the chain have length f ~ = o, so the value of (l?; / N)e for the

corresponding set of random walks is 62 /6. The characteristic ratio, Cm = (R: )4 /(R~ )nr in the

long chain limit, is thus equal to (0.343) (6) = 2.06. Accordingly, the Kuhn length, l’~ = C~/ ~,

is 2.06cr, and the number of Kuhn steps per chain,

N~ = N/CW (6)

is equal to 0.486N. Finally, we note that all values of < R 2 >0 /(R~ )6 for 8s N+l <1600 are

within about 10/0of the random walk value of 6. The ratio is larger for the athermal chains,

8



<R2 >/R~ -6.3 in the range 800< N+l <24000 (Table 1), and the values are in excellent

.....

agreement with those for self-avoiding walks of similar lengths on a simple cubic lattice.19

Expansion Factor. For sufficiently long self-avoiding chains, ~ scales as N’. The

exponent v has been determined previously by careful Monte Carlo simulations. The most

accurate values are 0.5877 by L1 et aL19 and 0.5876 by Nickel.*” These results are in very good

agreement with renormalization group estimates, which give v = 0.5880.23 Though we did not

try to simulate systems larger than N+ I = 24000, which is necessary for determining v in the long

chain limit to such high precision, 24 our results for the athernlal case are consistent with these

results. Thus, Figure 1 shows that the power law is a reasonable approximation for the size-

length relationship of the atherrnal case. The effective exponents decrease toward the expected

value as chain length increases:

V,ff = 0.5964 200< N-+1<6400

Veff = 0.5914 1600< N+l s 24000

Ve-f= 0.5901 6400 s hi-l s 24000

The trend is similar to that for the lattice walk data of Li e~al.:tg

Vcff = 0.5908 400< N+l s 3500

V,ff = 0.5891 1500 ~ N+ I s 25000

V,ff = 0.5885 4500< N+l g 25000

The values of v,ff over similar N ranges are smaller for the lattice walks, but convergence rate is

known to differ among self-avoiding systems.24 The data in Table 1 in fact agree nicely with the

crossover scaling form,20’24 %2= AN2V(1+BNA) for the choices v = 0.588 and A = 0.5.
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The size expansion factor, % = R.@J,T) / ~(N,Te) , was calculated for each N and T

with the data in Tables 1 and 2. For N+l ~ 1600, R~~,Te) was taken to be ~ at T = 3.18S/kB in

Table 2; for larger N it was calculated with eq 5. Results for the athermal case and at several

temperatures are shown in Figure 5. Following the procedure described in the previous paper,’

we examined the possibility of combining all data into a master curve by resealing the lengths.

We found that the data at higher temperatures can indeed be reduced in this way, but that small

systematic departures from superposeability appear as the temperature is lowered.

The master cume formed by a resealing of chain lengths for the high temperature data, 3.8

< T (&/k~) s 5.(), is SJIOWI-I in Figure 6. Superposition is good, with the slight exception of the

shortest chains at T(dkB) = 3.8, and shift factors relative to the T = 5.0 reference are well

defined. An attempt to form a master curve with the data at lower temperatures, 3.2< T (&/’kB)S

3.6, is shown in Figure 7. In this region, the values of et, depart only slightly from unity for the

largest available N, so well-defined shifi factors would be difficult to assign even if superposition

were valid. In fact, superposition breaks down, with the crossover becoming more gradual as the

temperature is reduced.

A composite of all results, now including the athermal data as well, is shown in Figure 8.

It was obtained as follows. Shill factors for the lower temperatures were assigned visually, as a

best-fit compromise with the T = 3.6 data and giving essentially the result shown in Figure 7.

That result was then shifted to best superposition with the high-temperature master curve (Figure

6). The combmed result was further shifted to best superposition with the atherrnal data. Only

the atherrnal values for N+ 1216 were used in this case. With the exception of a slightly low

atherrnal value of as for N = 15, the agreement between the shified high temperature data and the

athermal results is very good.
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Finally, the overall shifl factor for data at each temperature was used to establish. N}, the

chain length characterizing the onset of excluded volume effects, in the manner used to establish

M~ in the previous paper.’ Thus, a limiting power law,%= (const.)NP, was estimated fi-om the

athermal data, taken as the reference, by a least-squares fit. Different exponents were obtained,

depending on the range of N included in the fit. We settled onp = V,fl- 1/2 = 0.0915, obtained

by fitting the five largest sizes (N + 12 1600), and extrapolated back to the a,= 1 line to obtain

N,$ for the athermal case. Values of N,t at the various temperatures were then calculated from the

athermal value by appropriate application of the various shifi factors. Tle values of N~~(T) so

obtained are listed in Table 3.

The simulation results are compared in Figure 9 with the master curve for various

polymer species in good solvents,7 expressed in the units used here by the formula

[)
1/2

5.46 -20 N
a, –as = —

N,:
(7)

Also shown is the prediction of the Domb-Bamett interpolation formula, as modified in ref 7.

Simulation and experiment agree rather well. Thus, the power law exponent from experiment, p,

= 0.092, is essentially the same as the one fi-om simulation, V.fl- 1/2= 0.0915. The simulation

would appear to cross over to the power law in a more gradual way than does eq 7, but the

simulation departure is small compared with the uncertainty in the data upon which eq 7 is based.

That aspect is seen more clearly in the direct confrontation of simulation data and experimental

data’ in Figure 10.
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Excluded Volume Parameter. In the previous paper,7 values of (3,the binary cluster

integral for monomeric units, were obtained for various polymer-solvent systems with the

approximation, MS$ = (M$),V~,and the following relationship, based on the Flory formula:~

[)~ = (47r)312 ~ 3’2 m:

1.276 M , (M,: )“2
(8)

in which mOis the molecular weight per monomeric unit. The values so obtained were compared

with ~h~, an estimated binary cluster integral for monomeric units modeled as hard spheres.

Thus,

in which VOis the hard sphere volume.

For applying the same analysis to the simulations, eq 8 becomes

[1p = (4z)3° g 3’2 ~
1.276 N ~ (N,:)’”

(9)

(lo)

for the binary cluster integral when expressed on a per-backbone-bond basis. As in the

experimental study,’ the effective hard sphere representation to obtain ~~~ is subject to some

ambiguity. For the athermal case, the interaction is pure repulsion since the cutoff is rC = 21’6a.

Thus, with a fixed bond length cr and making some allowance for the finite steepness of the

repulsion, we assume that the equivalent hard core diameter is simply the bond length cr.

Accordingly,

12



(11)

.,

.:..-.....-----.:----....

Values of/? / cr3 and ~/ ~~,, calculated with eqs 5, 10 and 11 for the various values of N,$, are

Iisted in Table 3. Values of N~$ = 0.486 N~~from eq 6 are also listed there.

The values of ~,~: for the various polymer-solvent systems considered in the previous

paper7 were converted to values of N~~ for purposes of comparing with the simulation results.

The following relationship was used:

(12)

in which L’~ is the backbone bond length, mOis the molecular weight per backbone bond, the

values of (R; / M)e and M.,,~$were taken from Tables 2 and 4 in ref 7. (The values ofN~:

obtahed with eq 12 were always within a few percent of those calculated with eq 6 from

literature values of Cm for the various polymer species.) The values of ~ / ~~, from ref 7 are also

shown in Table 4.

The values of ~ / ~k for simulation and experiment are not precisely the same at the

same value of N~$, in part at least because of numerical uncertainty in the normalization factor

~h for each. However, it is clear that both fl/~h and N.$ for the athermal simulation are of

order unity. Among all the experimental systems, only PMMA-chloroform has values of ~ / ~~~

13



and NK~approaching univ. The others are all nominally classified as good solvent systems, but,

judging by their values of ~ / ~h and NK:, they are quite far from the athermal range.

Discussion

There is obviously a strong resemblance between the simulation results at high

temperatures and the experimental data for dilute solutions of polymers in good solvents.7 In the

variation of expansion factor with chain length, the various simulation temperatures correspond

to the behavior for the various polymer-solvent systems. The relationships obtained in both cases

obey the master-curve principle, and the simulation and experimental master curves are identical

within the uncertainties, as shown by Figure 10. Thus, for the range of simulation conditions,

flexible polymer species, and good solvent species considered here, coil expansion behavior

beyond the oligomeric size range is universal. On the other hand, simulation data near the theta

condition do not superpose with the high temperature data, indicating, as others have noted,9>19

that the two-parameter theory of polymer solutions is not generaIly valid.

The simulation data show that, with no compensating attraction between non-bonded

chain units, the pair cluster integral ~ inferred horn N~$is of the order of ~h~,the value calculated

fi-ornthe bare volume of a chain unit. Thus, ~/ ~h = 0.S3 for the athermal simulation. Among

the polymer-solvent systems (Table 4), ~/ flk is about 0.3 for PMMA-chloroforrn, but the

others have smaller values, ranging from 0.04 to 0.18 and corresponding to simulations that have

significant attractive interactions, 3.3< T <4.0 in Table 3. Comparison of experiment and

simulation on the basis of N ~$,and with PMMA- chloroform omitted, lead only to a somewhat

higher temperature range, 3.5< T <5.0. A1l this wotdd seem to indicate that atherrnal systems,

14



those with purely hard-core repulsion between non-bonded chain units, are rare indeed among

polymer-solvent systems. The excluded volume effect in even the best of good solvents for the

various polymer species is very far from the athermal limit.

This “intermediate” nature of typical good solvents can be expressed in another way, as

the value of X, the FIory interaction parameter for the polymer-solvent system. The values

available for the systems considered here,25-27extrapolated to the low concentrations that typifY

polymer coil interiors, are listed in Table 4. The theta condition corresponds to x = 0.5 and the

athemlal limit to x = O. The values for good solvent are all far from x = O, ranging from ~ =

0.365 for PMMA-chloroform to x = 0.48 for PMMA-acetone.

All this raises the question of why are there essentially no examples at all of athermal

polymer-solvent systems. Or, what amounts to the same question, why is the interaction

parameter bounded so far away from zero? We suggest that this seeming anomaly is caused by

an inherent difference in the equation-of-state properties of monomeric and polymeric liquids.

Various theories of thermodynamic interactions based on such differences have been

developed.zs-30 All are based on a corresponding-states assumption, that the thermodynamic

properties of dense liquids are universal fimctions of reduced pressure, temperature and volume

— ~ = P/ P *, ~ = T/T*, and ~ = V/V*. The species and composition dependence of

properties is assumed to reside entirely in the reducing parameters — the characteristic pressure

P*, which mainly reflects the cohesive energy density of a liquid, and the characteristic

temperature T*, which depends strongly on its thermal expansion coefficient. The pure

component reducing parameters, obtained by fitting PVT data, and some molecularly motivated

mix-mg rule provide theoretical estimates of the solution properties.

15
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The Flory-Orwell-Vrij theo~g leads to a relatively simple expression for x in the dilute

limit.31 With some harrrdess simplifications, and to the leading terms in differences of P* and T*

for the components,

* = [(d’’2-(R-2’’212+;;;
s

T:-T; ]2 (13)

in whichs andp refer to solvent and polymer, and VS and as are molar volume and thermal

expansion coefficient. The first term on the right describes the exchange (EXC) interaction and is

(“)’”and(4”2governed by the difference in P, , the volubility parameters of the components.32

The second describes the equation-of-state (EOS) interaction. It is governed by the difference in

T* of the pure components and hence mainly by the difference in their thermal expansion

coefficients. Given the wide choice of solvents available, matching the volubility parameters to

make %~xc as near zero as desired, is relatively easy. However, the values of T* appear to be

systematically larger for polymeric liquids (see Tables VIII- 1 and VIII-2 in ref 33), and it turns

out to be virtually impossible to reduce the value of XEos to zero. Values of %~xc and x Eos fOr

several of the polymer-solvent systems in this study, calculated with the data in ref 33, are shown

in Table 4. The values of ~~,rc are small in all cases; the values of z~o~ dominate the observed

magnitude of x = ~~xc + x~o~ .

The average thermal expansion coefilcient for a wide range of non-polar or weakly polar

solvents for the polymers of interest here is Z’ = 1.2x 10-5 K-l (see ref 34). For a range of non-

polar or weakly polar polymers above their glass transition temperatures, the average is

significantly smaller, Ep = 0.7x 10-3 K-’ (see ref 35). There is essentially no overlap of the two

16
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populations of expansion coefficients. The “generic” value, ~~o~= 0.30, obtained from these

averages with eq 13, is consistent with the observed lower bound of the experimental values for

x“

Finally, we note that monomeric and polymeric liquids, under comparable conditions of

intermolecular potentials and distances, might be expected to differ systematically in thermal

expansion coefficient and hence in T*. For polymeric liquids the distance between units in the

chain direction is determined by covalent bond lengths, and these are essentially independent of

temperature. The distances between their other neighbors, like all neighbors in monomeric

liquids, are free to change with temperature by the usual thermal expansion. Thus, one might

guess ctP /US =2/3, a value not very different from the observed value, ?iP /E, = 0.58. Such a

possibility, that polymeric and monomeric liquids differ systematically in this way and that this

difference affects their mixing properties, has probably occurred to others, but we have not found

mention of it in the literature.
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Table 1: Sizes and Expansion Factors for the Athermal Chain Simulations

N+l

2(2)

4

8

16

32

64

100

200

400

800

1600

3200

6400

12000

24000

<R2 >/R;

1/4

0.78

2.12

5.4

13.6

32.9

57.1

134.8

311.7

714.6

1638.4

3723.6

8472.1

17803,8

40325.0

4

5.62

6.36

6.59

6.56

6.52

6.45

6.39

6.37

6.33

6.30

6.29

6.28

6.27

6.27

Number of

Attempts x 10<

—

1.0

2.0

1.0

1.0

1.0

1.0

2.0

8.0

1~.()

16.0

16.0

16.0

20.0

20.0

(a)Calculated values -- two identical mass points separated by unit distance.
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Tab1e2: Average Square Radius of Gyration for Self-Avoiding
Chains at Various Simulation Temperatures(a).

N+l

T (dk~) 16

3.00

3.05

3.10

3.15

3.18(b)

3.20

3.30

3.40

3.50

3.60

3.80

4.00

4.50

5.00

4.2

4.3

4.3

4.3

4.3

.4.4

4.4

4.4

4.5

4.6

32 64 100

9.3

9.5

9.5

9.6

9.8

9.9

10.1

10.2

10.5

10.7

19.6

20.1

20.3

20.4

20.6

21.2

21.7

22.5

22.8

23.8

24.6

—

31.0

31.8

32.2

32.6

32.9

33.0

33.6

34.8

35.4

35.7

37.3

38.3

40.0

41.5

200

61.7

63.7

65.7

67.3

67.6

69.4

71.1

73.2

75.3

77.0

81.4

84.3

89.2

93.0

400

120.0

124.2

130.1

133.9

137.6

140.8

148.4

154.6

159.4

164.6

176.6

182.6

199.8

209.1

(a) Values of ~2 are expressed in units of square bond length 02.

800

228.5

245.5

255.1

269.8

272.9

280.5

308.0

3~6.8

~q~.o

356.7

380.0

405.3

442.3

470.0

1600

409.6

456.8

476.4

514.4

548.8

565.8

616.4

686.0

718.7

768.5

832.2

888.7

986.7

1055.3

3200

785.2

944.1

1016.9

1040.3

1168.4

1328.1

1431.0

lj62.~

1630.5

1847.8

1958.4

2204.0

2360.8

(b) Values for N+l = 4 and 8 are 0.74 and 1.84.
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Table 3: Characteristic Lengths and Exclusion Parameters
for Various Temperatures

N#’) p/(s3

3.18

3.20

3.30

3.40

3.50

3.60

3.80

4.00

4.50

5.00

atherrnal

03

(1 1800)(b)

(1700)

(700)

458

262

159

105

57.2

40.3

4.03

03

(5700)

(830)

(340)

223

127

77

50.9

P7 8-.

19.6

1.96

0

(0.09)

(0.17)

(0.27)

0.34

0.43

0.56

0.68

0.94

1.10

3.50

0

(0.022)

(0.042)

(0.064)

0.080

0.10

0.13

0.16

o.~~

0.26

0.83

(a) Calculated with N~$ = 0.486 N,$, based on eq 6.

(b) Vah.xes in parentheses are less certain than the others.
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Table 4: Excluded Volume Characteristics and Interaction Parameters
for Various Polymer-Solvent Systems.

Polymer Solvent ~ (a)

Ps

PaMS

a PMMA

i PMMA

PDMS

PIB

PI

PBD

benzene
toluene

dichloroethane
ethylbenzene

tetrahydrofuran

toluene

acetone
nitroethane
chloroform

benzene

acetone
nitroethane
chloroform

toluene
cyclohexane

n-heptane
cvclohexane.

cyclohexane

cyclohexane
tetrahydrofiran

14
17
22
31
12

21

61
12
2.0
9

160
19
4.0

66
31

160
23

39

108
67

0.13
0.12
0.11
0.089
0.14

0.11

0.056
0.13
0.31

0.145

0.052
0.15
0.32

0.068
0.10

0.043
0.12

0.11

0.14
0.18

0.44-0.48

0.40

0.48

0.36s
0.43

0.42

0.46
0.47

0.42

‘=)Values from refs 20,21 and 22.

‘) VaIues calculated with the exchange interaction component of eq 13.

1’)values calculated with the equation-of-state component of eq 13.

‘d)SoIvent NW n-hexane instead of n-heptane.

“24

MC(W ~o$o

0.004 0.37

0.02 0.53

0.1 4(d) 0.60(dJ
0.014 0.52

0.003 0.32
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Fig. 1

Fig. 2

fig.3

Fig.4

fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Figolo

Figure Captions

Mean square radius of gyration as a fimction of chain length for various temperatures.

Radius of gyration is expressed in bond length units in all the figures.

Test of the scaling relationship and establishment of the theta condition.

Values of ~2 / N as a fimction of chain length in the theta region.

Mean-square radius of gyration as a finction of chain length at Te = 3.18 E/kB.

Iine is drawn with unit slope.

Size expansion factor as a function of chain length for various temperatures.

Master curve for the expansion factor at high temperatures.

Attempted master curve for the expansion factor at low temperatures.

Expansion factor composite curve for all simulation data.

The

Comparison of high temperature and athermal master curve data with the modified

Donlb-Barrett fommla and an equation describing experimental data for polymer

solutions.

Direct comparison of master curve data from simulations and experiments.
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