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ABSTRACT 
The dynamical principle for a population of interacting 

individuals with mutual pairwise knowledge, presented by the 
author in a previous paper for the case of constant knowledge, is 
extended to include the possibility that the knowledge is time- 
dependent. Several mechanisms are presented by which the mutual 
knowledge, represented by a matrix K, can be altered, leading to 
dynamical equations for K(t). We present various examples of the 
transient and long time asymptotic behavior of K(t) for populations 
of relatively isolated individuals interacting infrequently in local 
binary collisions. Among the effects observed in the numerical 
experiments are knowledge diffusion, learning transients, and 
fluctuating equilibria. Evidence of metastable states and 
intermittant switching leads us to envision a spectroscopy 
associated with such transitions that is independent of the specific 
physical individuals and the population. Such spectra may serve as 
good lumped descriptors of the collective emergent behavior of 
large classes of populations in which mutual knowledge is an 
important part of the dynamics. 
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INTRODUCTION 

In a previous paper [Schmieder, 1994, hereafter referred to as Paper I], the 
author developed an approach to simulating the emergent collective dynamics of 
populations of objects that have minimal cognitive ability. It is assumed that the 
individuals have the ability to store and process knowledge about other 
individuals, and that their individual actions depend on that knowledge. This 
approach will be most appropriate to small populations of complex individuals 
such as simple animals, robots, computer networks, agent-mediated traffic, 
simple ecosystems, and games. 

To quantify this idea, a simple dynamical principle based on reasonable 
physical arguments was proposed: First, we define a set of dynamical equations 
describing the time evolution of the state vector X of the system. Next, we define 
a matrix K whose elements are a normalized measure of the amount of pairwise 
knowledge linking every pair of individuals. Finally, the dynamical equations for 
X are modified by insertion of K to modify (generally, weaken) the pairwise 
interactions. The combined { X,K} dynamical equations therefore describe the 
behavior of the population modified by the cognitive ability of the individuals. 

In Paper I, it was assumed that the matrix K is constant in time. This enabled 
us to demonstrate a variety of interesting behaviors associated with partial and 
incorrect knowledge. For instance, we found that a set of point vortices with 
”completely correct’’ mutual knowledge would circulate forever in a smooth 
centric flow, whereas if they were given some ”incorrect” mutual knowledge, 
they would move chaotically, switching intermittantly between several quasi- 
stable configurations and complete chaos. 

In this paper, we examine some consequences of allowing the knowledge K to 
evolve in time. After some preliminary remarks about time-dependent 
knowledge, we identify some physically reasonable mechanisms by which K(t) 
can change. Next we examine some transient effects in small populations, and 
some phenomena that appear as asymptotic equilibria at long times. As expected, 
we find processes like diffusion, learning transients, and fluctuating equilibria. In 
addition, we envision a spectroscopy derived from transitions between 
metastable configurations. Such spectra may be useful descriptors of the 
emergent collective behavior of populations in which knowledge plays a 
significant role, independent of the specific individuals or population. 
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Definition of the Knowledge 
We reiterate here the definition of K presented in Paper I. K represents the 

amount of knowledge, normalized to (-l,l), not the knowledge itself. It is derived 
from physically defined probabilities as follows: 

We focus attention on two individuals in the population, { i} and {j} . Assume 
that (j} can be in any one of G possible states, and that the probability that { i} is 
able to correctly identify the state of { j } is pij. Then the (mutual) knowledge Ki is 
defined as 

Gpij - 1 

Gpij - 1 

Kij = 

The meanings of these relations for various values of pij are shown in Table 1. 
For a 1-bit state, G=2, and both formulas above reduce to &j=2 pij - 1, or pij 

=( 1+Kij)/2. In the limit G->m, K~->pu. 
We emphasize that pij is presumed to be determined by the complex internal 

structure of the individual, and therefore is traceable through physics (or 
perhaps biology!). It can be measured empirically by asking ( i }  to identify the 
state of (j} , and tabulating the answers from many repeated trials. Therefore, the 
knowledge K is also traceable through physics, and we may assume it is a well- 
defined physical quantity. 

Note that K refers to whatever state variables of the individuals we wish. It 
could refer to position, size, age, color, sex, state of motion, internal state, or any 
other properties of interest. We could incorporate all properties into a single state 
variable, or we could separate them and define several matrices K ,  K', K '  ... , each 
with its own associated probabilities p, p', p" ... . 
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Dynamical character of the knowledge 
It is tempting to actually define the knowledge K as a dynamical variable, 

since we could simply specify additional numerical quantities (the matrix K(t)) 
that enter the physical equations of motion. We could modify the state of the 
system described by the configuration X to a system described by {X, K},  and 
both X and K would then evolve according to well-defined dynamical equations. 
In this context, K would act more like properties of the individuals, i.e., 
dynamical variables. In this case, the population is essentially expanded to 
include two species, those described by X and those described by K. 

However, K really describes pairwise properties of individuals. Thus, it has 
the character of an interaction between individuals rather than a property of a 
single individual. In this context, K acts more like constraints on the system, 
similar to forces that constrain particles in a rigid body. We would expect that as 
K - 9 ,  the forces of constraint would vanish, and the system would be just a 
collection of independent individuals. 

In principle, both of these viewpoints are correct. An individual can have two 
kinds of knowledge: knowledge that does not represent other individuals, and 
knowledge that does represent other individuals. Both kinds of knowledge can 
affect the behavior of the individual, and both can be altered by interactions 
between individuals. The former are more akin to dynamical variables, while the 
latter are more akin to constraints. Since we are more interested in the pairwise 
knowledge that affects pairwise interactions, we will generally think of K more 
as a constraint on the system rather than a dynamical variable. 

General behavior of knowledgeable populations 
We would expect to see certain general behavior in all systems in which 

knowledge is part of the dynamics. One of these is knowledge di f f s ion  . Suppose 
a quantity of knowledge is given to one individual in the population. During 
interactions, this knowledge is shared with other individuals, and in the absence 
of losses the total amount of knowledge in the population grows. If losses do 
occur, the total amount of knowledge in the population will grow to an 
equiZibrium. Thus, the population will exhibit a Zeurning transient. In a finite 
population, the equilibrium knowledge will exhibit fluctuations around its 
equilibrium value. We will find all these phenomena in the examples presented 
in this paper. 
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MECHANISMS OF KNOWLEDGE ALTERATION 

In this section, we examine several mechanisms by which the knowledge 
matrix elements K,j can change in time. This list is not exhaustive; rather, it is 
meant simply to provide several mechanisms with which we can exhibit the basic 
phenomena associated with variable knowledge. Included here are three 
individual mechanisms (creation, information, destruction), and two pairwise 
mechanisms (incretion, decretion). These processes are roughly comparable to 
inspiration, learning, forgetting, sharing, and eroding. Figure 1 shows schematics 
of the 5 mechanisms. In each frame, some measure of the knowledge K is plotted 
as a function of time. It is clear that the several mechanisms can compete, 
possibly producing equilibria at long time, and we will find this to be the case. 

Our interest lies mainly in the pairwise mechanisms, since they lead to more 
interesting behavior. Hence we will first mention and then generally neglect the 
individual mechanisms. 

A possibly important mechanism of knowledge alteration in populations of 
complex objects is group action: a group of critical size may take some action that 
produces new knowledge for the individuals, while a smaller group takes no 
action. Similarly, there might be a specific group size, or a maximum group size 
that can effect such actions. There will be a rich variety of such mechanisms, and 
the behavior of populations correspondingly complex and interesting. However, 
since they can be generated by a simple extension of the pairwise mechanisms, 
we omit explicit development of these here. 

Creation 
Perhaps the simplest mechanism for increasing knowledge in the population 

is to create it mirabile Dei gratia. For this purpose, we can use the Heaviside unit 
step function: 

Kij (t) = Kij (0) + AKij H(t) 

and simply define AKj arbitrarily. Obviously the same mechanism can be 
invoked to suddenly delete the knowledge from the population. 
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Information 
A second means of increasing knowledge is by receiving information, or 

learning. An individual { i} receives some information Id about another individual 
{j}, and stores it internally as knowledge Kij. We therefore need to relate the 
incoming information I to the stored knowledge K. 

In the classical definition of information (Brillouin, 1962), we are presented 
with a system having R possible configurations. Initially, we have no knowledge 
of the configuration of the system. If we receive an amount of information I=c 
ln(R/R'), where c is a units constant, we have enough knowledge to reduce the 
number of possible configurations to R' . 

To apply this convention to the present case, let gij represent the number of 
states that {i} would infer that {j} has available to it. If {i} initially infers gij(O), 
then receives information I i  (t), and thereby infers gij (t), the classical relation is 

Since {i} makes guesses about the state of {j} with probability pij of being correct, 
{ i} would infer that { j } has 

states available to it. Combining these relations and inverting to obtain &j (t), we 
obtain 

which gives the increase in knowledge K i  due to receipt of information 18. 
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If we simply use the definition pij=l/gij in the formula for Iij, we obtain 

This relation shows that the receipt of information causes a simple exponential 
increase in the probability of correctly identifying the state of the transmitter. 

Note that Ii can be negative: this represents incorrect information that 
produces incorrect knowledge in { i} . It makes { i }  a poorer guesser than it was 
before receipt of the information: pij (t)<pij (0). 

Let us restrict the system to have G=2n possible states, i.e., it is an n-bit 
system. If the initial configuration is one of zero pairwise knowledge, then 
Ki(0)=0, and pij(O)=l/G=24. If {i} receives exactly I;j(t)=n bits, it would be able to 
identify the state of {j} with certainty, i.e., pi(t)=l. This gives 

I=( 1/29 exp(n/c) 3 l/c=ln(2) 

From this we find the knowledge attained from receiving Iij(t) bits of 
information: 

Kjj(t) = 

For a 1-bit state, n=1, and KU (t)=2Iij(t)-i, valid for the full domain - d I i j  (t)<l. 

Destruction 
Spontaneous loss of knowledge, i.e., forgetting, is an obvious mechanism for 

knaoeldge change. If the process is quasi-continuous, we can invoke a rela tion 
like 

Kij (t) = Kij (0) - Kg (0) t/t 

If the interval t is sufficiently small, a large number of steps will approximate an 
exponential decay, with characteristic time constant z. 
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Pairwise interactions 
Populations normally consist of well-defined, relatively autonomous 

individuals that move (literally or figuratively) relative to one another. 
Infrequently, pairs of individuals interact ("collide"), at which time something 
interesting happens. Figure 2 shows schematically one possible sequence of 
successive pairwise interactions of 4 individuals. We assume that the collisions 
are relatively well-isolated from other individuals, and relatively abrupt in time. 

If the individuals are cognitive, their individual knowledge can be altered by 
the interaction, and such changes are likely to be complex. However, two very 
simple processes appear to capture much of the dynamics of such pairwise 
interactions. We can formulate these as follows: 

(1) Interacting individuals each copy a fraction of the total 

(2) All other individuals lose a fraction of the knowledge they have 
knowledge carried by the other individual; 

of the interacting partners. 

The first mechanism seems obvious and reasonable, and while it is 
superficially similar to diffusion, it has no known direct analog in physics. We 
refer to this process as knowledge incvetion. 

The second is not so intuitively obvious, and while it bears some similarity to 
spontaneous decay, there is again no direct analog in physics. This process will 
be called knowIedge decretian.. We are familiar with this mechanism in a social 
context; with the passage of time, we tend to know less and less about a lost 
friend (so long as that friend is interacting with others). After a year of no contact 
with the friend, we may not know if he or she has the same address, phone 
number, or job. After several years, we may be unsure whether he or she is 
married, healthy, or still working. After 20 years we may not know whether he or 
she is still alive. Note that we have not forgotton; it is the external interactions of 
the individuals with other individuals that leads to our loss of knowledge about 
them, This erosion of knowedge is easily compensated-a single brief interaction 
will regenerate all this knowledge, and much more. 

We now elaborate linear versions of these two mechanisms in detail, and 
subsequently combine them to obtain a dynamical equation for the knowledge K. 
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Linear incretion 
The first pairwise mechanism, knowledge increase by copying, seems 

intuitively obvious. Assume that individuals { A,B,C } are initially completely 
independent of each other (they have no knowledge of each other). For a while, 
all individuals proceed according to their independent dynamics. After an { A,B} 
interaction, individuals {A} and { B } know about each other, but neither knows 
anything about { C} . Next, a { B,C} interaction occurs. Now individuals { B} and 
{C} know about each other, and therefore, { C} knows something about {A},  
although {A}  knows nothing yet about { C}. This process leads to an expansion 
and general increase of knowledge within the population. 

We can formulate this in a linear limit as follows: Before the { i j }  interaction 
the knowledge held by {i} and {j} can be represented symbolically as 

Ki={ Ki1, Ki, ... Ka} 
Kj={ Kjl , Kj2 ... KB } 

where OSKi,,Kh51 and Kii=Kj=l, and N is the number of individuals in the 
population. We now assume that during the interaction, { i} gains a fraction (a) of 
all the knowledge held by {j} . After the interaction, { i} 's knowledge is 

The same relation, with i<->j, is obtained for { j  }Is post-interaction knowledge. 
Written as a recursion relation, this transformation is 

Kiq (n+l) = Kiq (n) + a Kjq (n) 
Kj~l(n+l) = Kjq(n) + a Kiq(n) 

q=1 ... N 
q=1 ... N 

with the proviso that any matrix element Kj>l  is automatically truncated to 
Kj=l ,  and also Kii=Kj=l always. 
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Linear decretion 
The second mechanism, knowledge decrease by erosion, is not intuitively 

obvious. The following argument demonstrates the reality of this process: In any 
interaction, both partners are inevitably and permanently altered (this must be 
so, or else no interaction took place). We can indicate this by {A,B}-->{A',B'}. 
Next, {B'} and { C} interact: { B',C}->{ B",C'} e However, since {A'} has no means 
to know how {B'J was altered by { C }  during this event, it knows less about {B"} 
than it did about { B'}. With the passage of more and more time, {A} has less and 
less knowledge of { B 1 because {A} has no knowledge of { B}'s other interactions. 
This process clearly leads to a contraction and general decrease in knowledge. 

As above, we formulate this in a linear limit: Before the { i j  } interaction, the 
set of individuals that has knowledge of { i}  can be represented by the ith vector 
of the transpose matrix KT, and similarly for {j}: 

KTi={ Kli, K2i, ... Kji ..., KM } 
KTj={ Klj ,  K2j, ..., K i  ..., Kp~j } 

We now assume that during the interaction, every individual { p#j } that has 
knowledge Kpi of {i} loses a fraction (b) of that knowledge. Then after the 
interaction, 

KTi'= KTi - b (1-Sjj) KTi 
= {Kl i ,  K2i ... Kji ... KM } - b { Kli, K2i ,.. 0 ... K N  } 
= {(l-b)Kli, (1-b)Kzi ... Kji ... (l-b)KN} 
= { K l i ,  K,  ... Kj i  ... K N }  

Similarly, every individual { p+i} that has knowledge I$,j of {j} loses a fraction (b) 
of that knowledge, and we have the same relation with i<->j. 

Written as a recursion relation, this transformation is 

Kpi(n+l) = Kpi(n) - b Kpi(n) 
Kpj (n+l) = Kpj (n) - b Kpj (n) 

p= 1. ..#j .. .N 
p= 1 *. .#j . . .N 

with the same provisae as in the previous section. 
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Combining incretion and decretion 
The two binary interaction mechanisms naturally (perhaps unavoidably) 

appear together in the dynamics. They are conveniently visualized together as a 
matrix transformation K-{ i,j}->K’, or K { i j  } K’. For example, if we have N=7 
individuals, the matrix K’ after an {i,j}={ 3,5} transformation is: 

i\j 1 2 3 

1 K12 t 1-bK13 

K2 1 1 t 1 -b)K23 

K4 1 K42 t 1-b)K43 

K31+aK51 K32+aK52 1 

Kg 1+aK3 1 K52+aK32 K53+ a 

Kg 1 K62 (1 -b)K63 

K7 1 K72 (1 -bF73 

6 

K16 

K26 

K36+aK56 

K46 

Kg 6+aK36 

1 

K76 

7 

K17 

K27 

K37+”K57 

K47 

K57+”K37 

K67 

1 

It is readily seen that knowledge incretion has the general form of a 
transverse extension, 

x ’ = x + a y  
y ’ = y + a x  

while knowledge decretion has the general form of a longitudinal contraction 

The simple vector diagrams shown in Figure 3 capture these relations. They 
strongly suggest that circumstances can easily be found in which incretion and 
decretion compensate, producing a population of asymptotically constant, but 
fluctuating, total knowledge. 
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Successive interactions 
Multiple successive binary interactions will be represented by multiple matrix 

transformations K{ i j  }K'{ i'j'} K '  ... The result of successive transformations clearly 
depends on the sequence of interacting partners, which in turn may depend on 
the dynamics of the individuals themselves. We illustrate this for four 
individuals { A,B,C,D} interacting with incretion and decretion. Assume that 
initially the individuals have no knowledge of any individuals other than 
themselves. Then K takes the following forms sequentially for two different 
collision sequences: 

1 0 0 0  

0 1 0 0  

0 0 1 0  

0 0 0 1  

{B,C) 
1 0 0 0  

O l a O  

O a l O  

0 0 0 1  

{ A 3  1 
1 a a2 o 
a 1 a 0 

0 (1-b)a 1 0 

0 0 0 1 

{ C,D 1 
1 a (1 -b)a2 

a 1 (1-b)a 

0 (1 -b)a 1 

0 (1-b)a2 a 

I A B  1 
1 (1-b)a (1-b)2a2 

a 1 (1-b)a+a 

a2 (1-b)a+a 1 

0 (1-b)2a2 (1-b)a 

0 

0 

a 

1 

0 

a2 

a 

1 

1 0 0 0  

0 1 0 0  

0 0 1 0  

0 0 0 1  

A,C 1 
l o a 0  

0 1 0 0  

a 0 1 0  

0 0 0 1  

I A m  
1 0 a 

0 1 0 

(1-b)a 0 1 

a 0 a2 

{BDJ 
1 

a* 

(1-b)a 

a 

IACJ 
1 

( 1 -b)a2 

(I-b)a+a 

a 

a 

a3 

1 

a* 

( 1 -b)a 

a 

0 

1 

2a (I-b)a+a 

( 1 &)a3 a 

l+a2 (1-b)2a 

( 1 -b)a2 1 
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State-independent pairings 
Normally, we might expect that the selection of collision partners { i,j } would 

depend on the individual state variables { Xi(t),Xj(t)}. For instance, individuals 
would experience a collision when their spatial positions coinicide, or when their 
internal structures are in resonance. The complete population behavior would 
emerge from the simultaneous solution of the coupled { X(t),K(t)} dynamical 
equations. 

If, however, we assume that the selection of interacting pairs (i,j} is 
independent of { &(t),Xj(t)}, we can investigate the dynamics of K(t) independent 
ofthe individuak comprising the population. This will be a good approximation, say, 
if the fraction of the individual used to store the knowledge is small. In such 
populations, every individual looks like every other individual. An example is a 
computer network. With protocals such as TCP/IP, the exchange of data between 
any pair of computers is independent of the details of the computers. 

We conclude from this that, with respect to the movement of knowledge 
within a population, so long as the individuals are "big and stupid," it does not matter 
what they are. We will use this approximation to study several exemplary 
systems. 

Note that the change of knowledge during the { i j  } interaction may very well 
depend on K itself. For instance, we could easily define a process in which 
knowledge is copied only if it exceeds a threshold, or has some other property. 
Thus, the dynamical equation for K(t), even without coupling to the equations for 
X(t), may very well be nonlinear. 

Random pairings 
Another approximation we will find useful is to assume that the interacting 

pairs { i j  } are selected at random. This assumption imposes "full mixing" on the 
population, and converts it from a deterministic system to a stochastic one. It 
therefore has the useful potential for exhibiting average behavior, such as the 
learning transient and fluctuations, that otherwise would be masked by systemic 
behavior. 

Thus, we will find it useful to examine the behavior of populations with 
random, state-independent pairing, since they will exhibit properties of the 
knowledge dynamics that cannot be seen in more complex populations. 
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DYNAMICAL EQUATIONS FOR K 

Discrete-time 
For { i}-{j} pairwise interactions, we define an interaction matrix r(i,j} by 

and a corresponding noninteraction matrix A{ i,j} by 

For example, for N=4, we have 

0 0 0 0  
A{2,3}= 0 0 1 0 

0 1 0 0  
0 0 0 0  

Thus, for pairwise interactions, r has 1's on the diagonal only for the 
interacting partners and zeros elsewhere, while A has 1's for the off-diagonal 
elements of the partners and zeros elsewhere. A straightforward extension allows 
us to include collisions of more than 2 partners. 

Let us identify the interacting pair {ij} with the generation (n). With these 
definitions, we can write the dynamical equation for K, including only incretion 
and decretion, as 

K(n+l) = K(n) + a T(n).K(n) - b K(n)*A(n) 

In order to complete the dynamical model of the population, we must specify 
how the matrices r(n) and A(n) and the state variables X(t) evolve in time. A 
typical behavior we might expect is that r (n)  and A(n) remain constant while X(t) 
evolves continuously in time. Infrequently, a binary collision occurs, the partners 
being determined by X(t). This allows us to specify r(n) and A(n) and update 
K(n) to K(n+l). After that, X(t) continues to evolve until the next collision. 
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Continuous time 
In the limit of continuous time, we consider the matrices I? and A to be 

continuous functions oft. That is, every element in T(t) and A(t) is a function of t. 
In a sense, every individual is interacting continuously with every other 
individual, although some of these interactions may be defined to be zero. With 
this assumption, the recursion relation goes over into a differential equation 

dK -=a T o K - b  K O A  
dt 

where ar(t) and bA(t) play the role of time-dependent frequencies. The simplest 
assumption we could make is that T and A are constants. This allows us to write 
the formal solution of the previous equation as 

K( t) = eatr K( 0) e-bu\ 

If in addition, al? = bA = Q, we have 

This is a similarity transformation, and it is interesting because under such 
transformations, eigenvalues and matrix norms are preserved. There is obviously 
complete formal identity between the last expression and the propagation of 
matrix operators forward in time, familiar from quantum mechanics. For 
instance, if  !2 and K commute, K is constant in time. This is, of course, not a 
coincidence: earlier we remarked on the dualism of regarding K as a dynamical 
variable versus a constraint. Here we see that dualism: K plays the role here of an 
observable physical quantity; its evolution in time is given by the well-known 
relation for observables in the Heisenberg picture. 

The circumstance that aT + bA ruins this neat picture; we must admit that the 
evolution of knowledge K in general is more complex. This is traceable to the fact 
that the individuals in these populations are not simple objects that have well- 
defined symmetry and obey Newton’s Third Law. The emergent behavior of our 
systems will, of course, be correspondingly richer. 
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NUMERICAL EXPERIMENTS 

In this section, we present several numerical experiments that illustrate the 
transient behavior of knowledge. We will assume a small population of 
individuals experience infrequent isolated binary collisions (numbered by n) that 
change their mutual knowledge K(n) only by the pairwise processes of incretion 
and decretion. Furthermore, we will assume the pairings are selected randomly, 
and independent of any state variable X. The dynamical equation for K(n) is that 
given above for discrete time, in which the matrices T(n) and A(n) are randomly 
reset after every collision. 

Knowledge Diffusion 
We have remarked that the spread of knowledge by incretion and decretion is 

similar to diffusion. Figure - 4 shows this clearly. Initially, a population of 30 
individuals with no knowledge of each other was established; the matrix K is the 
unity matrix, Kii(O)=6ij, indicated by the black squares on the diagonal. At 
successive generations, the incretion/decretion mechanisms (with rates a=0.5, 
b=0.5) were applied, choosing nearest neighbors randomly for interacting 
partners. This causes off-diagonal elements K$n) to be incremented, indicated by 
the gray squares. After 30 generations, the diagonal has diffused into a band; 
each individual knows about several others within its immediate neighborhood, 
but knows little or nothing of more distant individuals. After 300 generations the 
matrix has equilibrated, and never diffuses beyond the ragged diagonal band. 

Several interesting structural entities emerge in these matrices: 

(1) Experts: These individuals know about significantly more other 

(2) Celebrities: These individuals are known by significantly more 

(3) Isolates: Distant individuals know more about one individual 

individuals than the average individual does. 

other individuals than the average individual. 

than do close ones. 

The last of these is most surprising. Apparently during the diffusion process, 
knowledge can be transferred through some individuals to others (which then 
lose it)f resulting in "islands" of knowledgeable individuals. 
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Individual knowledge 
The knowledge Ki held by individual {i} is the sum of its knowledge of all 

other individuals and of itself 

Figure - 5 shov 3 populations of 9 individuals interacting as described 
above, for 100 generations. The initial population in each case was set with 
random mutual knowledge (Ki+j=O). 

For Fig. 5(a), the incretioddecretion rates were a=l, b=0.1. This population 
learns quickly and its knowledge erodes relatively slowly, leading to relatively 
high individual knowledge (near the maximum Ki=C( 1>=9). Irregularly, the 
individual Ki fluctuate downward, although there is no directly compensating 
upward fluctuation in other individuals. 

For Fig. 5(b), the incretion/decretion rates were a=0.5, b=0.5. In this 
population, knowledge grows and erodes are roughly the same intermediate 
rate. The individual K, undergo upward rises, followed by sudden drops, 
producing a sawtooth pattern. 

For Fig. 5(c), the incretioddecretion rates were a=0.1, b=0.1. This population 
learns slowly, but its knowledge also erodes slowly. The result is that the rise and 
fall of any individual's knowledge is more symmetrical than the sawtooth 
pattern, and the fluctuations are smaller over the same time scale. 

A striking result of these simulations are the rather long swings, either 
upward or downward. One might have expected more randomness, considering 
that the collision partners were randomly chosen at each generation. We 
interpret this behavior as an expression of the coupling between all the 
individuals: they are not independent, since they have some knowledge of each 
other. Hence, complete chaotic behavior would not be expected. But they are also 
not totally dependent, so some stochasticity is reasonable. We conclude that we 
are seeing behavior that is characteristic of the peculiar processes of incretion and 
decretion. We would expect other mechanisms of knowledge change to introduce 
their own characteristic behaviors. 
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Total population knowledge 
The total knowledge K of the population is the sum of all individuals' 

knowledge: 

Figure 6 shows K(n)  for the same three cases of the population of 9 
individuals. These figures show that the total knowledge K(n) is not constant, 
although it appears to stay within bounds. 

Learning Transient 
If we start with no pairwise knowledge I$j(O)=6i, the matrix elements 

gradually increase by the process of incretion. Eventually, this increase will be 
countered by decretion, so that K(n) will approach some equilibrium value at 
long times. This process can be described as a Zearning transient. Figure - 7 shows 
this clearly for the population of 9 individuals as above with incretion/decretion 
rates a=l,  b=O.l. Initially the total knowledge was K(O)=9. As the individuals 
interacted, their pairwise knowledge increased, then approached an equilibrium 
value slightly below the maximum possible Cij (1) = 8 1 . 

The number of generations in the transient (the "rise time") will be of the 
order of a few times N/a, as seen from the following argument: If we selected 
interaction partners systematically, never choosing any individual more than 
once, it would take exactly N/2 generations to mix the N individuals. But when 
collision partners are randomly selected, it becomes increasingly likely that the 
next selection will include previously selected individuals, hence not contribute 
to the mixing. Therefore, several times N/2 generations will be required to select, 
say, half the individuals. Since the fractional mixing at each collision is a, by 
definition of the incretion process, it should take several times (N/2)( l/a) 
generations to produce half full mixing, i.e., the FWHM of the learning transient. 
The numerical experiments confirm these ideas. 

It may be noted that if the population starts with more than its equilibrium 
knowledge K(n->=), K( n) drops asymptotically. Figure 8 shows results of 
numerical experiments on two populations of 20 individuals with incretion, 
decretion rates a=1, b=l. Within the fluctuations, the knowledge in the two cases 
approaches the same asymptote. 
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Asymptotic equilibrium knowledge 
Whatever the dynamics of the knowledge matrix K, it will typically evolve 

from an initial matrix to an equilibrium at long times. The general behavior of the 
equilibrium knowledge K(n) for n->= as a function of the incretion,decretion 
rates a,b therefore is of interest. Figure 9 shows numerical experiments on 3 
populations of 4 individuals. Each population has a fixed value of the decretion 
rate b (0.1, 0.5, and 1.0). Each population is carried through 1000 generations, 
during which the interacting pairs are selected randomly. In Fig. 9, we plot the 
normalized total population knowledge 

r 

at the n=lOOOth generation, as a function of the incretion rate a. This quantity is a 
reasonable approximation to the asymptotic value k,(=). It approaches 1 as 
every individual approaches full knowledge of every other individual. 

The plots indicate that increasing a increases the total knowledge, while 
increasing b reduces the total knowledge, as expected. An interesting general 
result is that for b=a, km(m) -- 0.5. That is, if the incretion and decretion rates a,b are 
comparable, the asymptotic total population knowledge is about half its rnaximzim 
possible value. 

Another interesting observation is that for small b there is a substantial range 
of a within which the asymptotic knowledge is independent of a .  Apparently, the 
asymptotic equilibrium knowledge is controlled more by decretion than by 
incretion. The incretion, however, determines the duration of the transient to 
reach the asymptotic equilibrium. 

We have empirically found that k,(m) can be approximated quite well by the 
remarkably simple function 

f(a,b) = 1 - e ~ p [ - ( a / b ) ~ ’ ~ ]  

Figure 10 shows plots of this function. The curves of Fig. 9 can be identified as 
sections of this plot. We have no understanding of the significance of this 
formula. 
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The behavior of the knowledge for small a,b is quite peculiar. For b=O, 
knowledge is never lost, SO km(w) will grow inevitably to its maximum possible 
value: k,(-)ab,O=l I But for a=O, there is no increase of knowledge, so any initial 
knowledge will be lost: k,(W),=O b s .  Thus, there is a discontinuity at a=b=O, and 
the long-time evolution of the population is extremely sensitive to the relative 
values of a and b, In this region, k,(w)=O if a > b, km(=)=l if a < b. Thus, in the 
limit that a population increases and decreases its knowledge very slozdy, all the 
individuals will eventually attain either complete knowledge or zero knowledge. Because 
organisms in Nature are very complex, the rate at which they alter their 
knowledge is numerically very small (the fractional change in any interaction is 
very small). Therefore, we might conclude that to the extent that the mechanisms 
of incretion and decretion are significant in Nature, real populations will be 
inherently unstable: eventually either all individuals will share the same 
complete knowledge of each other, or eventually all individuals will have no 
knowledge whatever of other individuals. 

Fluctuations 
At equilibrium, the total knowledge K(n) fluctuates around its equilibrium 

value. The magnitude of these fluctuations is smaller in a population with a 
larger number N of individuals, and depends on the values of a and b. We have 
found that in some cases these fluctuations can be minimized. 

Figure - 11 shows results from a set of experiments on a population of 10 
individuals interacting by knowledge incretion and decretion with a=l  and 
b=0.1, 0.2, 0.3, 0.5, and 0.8. Collision partners were selected randomly, and the 
population was first evolved for 10,000 generations, enough to be fairly certain 
that it had reached equilibrium. Then it was evolved for another 1000 
generations. The histograms show the number of times the value k, (bin width 
0.01) occurred in the 1000 generations, i.e., it is the trace of the fluctuating 
population knowledge. Surprisingly, the fluctuations have a minimum at b=0.3. 

The magnitude of the fluctuations is associated partially with the stochasticity 
of selecting collision partners at random. But we might also expect larger 
fluctuations if the individuals were somehow nonlinearly coupled by their 
knowledge; the total population knowledge K(n) would undergo larger swings 
because of theis coherence. Therefore, we conjecture that the minimum 
fluctuations are produced by randomly selecting partners, and additional 
fluctuations are produced by coherent effects of the mutual knowledge itself. 
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Eigenvectors and eigenvalues 
Eigenvectors of the matrix K represent linear combinations of the individuals 

constructed in such a way that the eigen-individuals have no knowledge of each 
other. Thus 

defines the eigen-individual Si. The eigenvalues K i  represent the total knowledge 
held by the eigen-individuals. 

Eigenvalues and eigenvectors are important to this work, since they are 
another measure of the collective properties of the knowledge, in the same sense 
as the total population knowledge K(n). We therefore expect to see the processes 
of diffusion, learning transients, asymptotic equilibrium, and fluctuations in the 
eigenvalues. 

Figure - 12 shows values of Ki vs generation for two populations of 10 
individuals, one with a=l,  b=.3 and one with a=.3, b=.05. These numerical 
experiments suggest that one eigen-individual usually dominates, containing 
almost all of the knowledge, while the others fluctuate around roughly the same 
(lower) value. The learning transient is clearly seen in the eigenvalues, as 
expected. 

Figure - 13 shows another series of numerical experiments, all constrained to 
have a=b. Together with Fig. 12, these results suggest that the dominance of one 
eigen-individual is associated with small b. In the limit b->O, the singular eigen- 
individual has knowledge K=N, and all other eigen-individuals have knowledge 
K=O. A low rate of decretion leads to dominance by one eigen-individual, while a 
high rate of decretion leads to democratization among several eigen-individuals. 
The dominant eigen-individual is a single assembly of all the individuals in the 
population. Another way of describing this is as follows: Mutual knowledge 
provides links between individuals, enabling the assembly of a coherent 
structure. If those links are eroded quickly, the structure cannot persist. 

Figure - 14 shows that the population of 10 individuals has not yet reached 
equilibrium, even at 10,000 generations. This is consistent with the idea that each 
individual needs perhaps 10/a interactions to be significantly modified, and for N 
individuals to be modified by sequential pairwise interactions we must therefore 
have (N/2) lO/a=(5) 10/0.0 1=50,000 generations. 
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All of this is understandable in the following way: Initially, the population is 
comprised of N independent individuals (rows in K). Successive generations mix 
these individuals (by adding a fraction of each row to other rows), so that the 
rows (iOe.! individuals) are no longer independent. If there is no mixing of 
columns (b=O), the rows become more and more mixed with time, asymptotically 
approaching complete linear dependence. If there is some mixing of columns 
( b d ) ,  this process of mixing is hindered, so the rows retain some measure of 
independence. The independence is manifested as lower equilibrium population 
knowledge K(n->-), larger fluctuations of K(n->W), and reduced asymmetry of 
the matrix K. 

Note that the value of b is related to the probability that the individual 
changes its state during the interaction: smaller b means lower probabliity of 
change, or more stable individuals. We therefore have the implication that 
populations that are very stable spontaneously assume a configuration with one 
eigen-individual that has complete knowledge of all other individuals, while all 
other eigen-individuals are independent. On the other hand, when b is large, the 
individuals have high probability of changing state upon interaction, and the 
population does not separate as cleanly into one dominant eigen-individual. 

There are numerous physical analogies that can help visualize this situation. 
For instance, very slow solidification at low temperature results in crystalline 
solids with high order, while fast solidification at high temperature results in 
amorphous solids with low order. We can think of the crystal atoms as 
comprising one large eigen-individual; every atom has complete knowledge of at 
least one other atom; the entire solid is thereby linked. 
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Symmetry 
In general, the matrix K is asymmetric for finite values of (a,b). We interpret 

this to mean that { i }  may know more (or less) about individual {j} than {j} 
knows about {i} . This concept is quite natural: a circling hawk knows some 
things about a mouse on the ground below, but the mouse knows little of the 
hawk. For (a,b) sufficiently small, K will be nearly symmetric, Le., individual 
pairs will be approximately symmetric in their pairwise knowledge. 

It was noted previously that asymmetry in K is indicated by the appearance 
of imaginary parts of the eigenvalues. Numerical experiments suggest that the 
symmetry of K at eqiiilibritim is greater than the symmetry of n rnndom mntrix. That is, 
if we initialize a population with random pairwise knowledge, after equilibration 
by many interactions of randomly selected partners, the pairwise knowledge will 
be more symmetric. As an example, consider the following matrix describing a 
population of 10 individuals, in which the off-diagonal elements in this matrix 
were generated randomly: 

1 0.18 
0.8 1 1 
0.45 0.18 
0.85 0.46 
0.69 0.87 
0.98 0.56 
0.61 0.041 
0.98 0.29 
0.1 0.35 
0.4 0.76 

0.37 
0.7 

1 
0.49 

0.046 
0.88 
0.62 
0.3 
0.21 
0.44 

0.66 0.42 0.42 0.3 0.96 
0.74 0.77 0.74 0.007 0.79 
0.28 1. 0.76 0.18 0.34 

1 0.21 0.88 0.75 0.71 
0.3 1 1 0.14 0.38 0.93 

0.027 0.078 1 0.21 0.94 
0.46 0.99 0.39 1 0.18 
0.21 0.084 0.96 0.8 1 
0.88 0.57 0.12 0.9 0.73 
0.4 0.29 0.46 0.37 0.58 

0.99 
0.024 
0.97 

0.037 
0.25 
0.5 
0.28 
0.12 

1 
0.08 1 

0.4 
0.48 
0.28 
0.92 
0.22 
0.98 
0.63 
0.65 

0.033 
1 

The eigenvalues, which sum to 10.00000 (=the trace of the matrix), are: 

5.48365 
0.993922 + 0.563914 I 

0.796437 + 0.375661 I 

0.343349 + 0.79 1205 I 

0.3374 18 

0.993922 - 0.563914 I 

0.796437 - 0.375661 I 

0.343349 - 0.791205 I 

-0.04424 + 0.120764 I 
-0.04424 - 0.120764 I 
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After 1000 generations using a= 1 ,b=. 1, the matrix and its eigenvalues became 

1 0.25 
0.094 1 
0.35 0.25 
0.45 0.25 
0.25 0.19 
1 0.43 
0.28 0.25 
1 0.43 
1 0.25 
0.39 0.25 

4.09448 
1.55883 
1.21 346 

0.12 
0.14 
1 
0.1 1 
0.76 
0.41 
0.22 
0.4 
0.38 
0.5 

0.822087 + 0.0908688 I 
0.822087 - 0.0908688 I 
0.689982 
0.40343 1 
0.2479 12 
0.0840975 
0.0636397 

1 
0.85 
0.7 
1 
0.5 1 
1 
0.61 
1 
1 
0.75 

0.12 0.12 0.5 
0.18 0.085 0.78 
1 0.21 0.78 
0.12 0.12 0.48 
1 0.15 0.57 
0.32 1 1 
0.15 0.38 1 
0.33 1 1 
0.36 0.26 1 
0.21 0.27 0.78 

0.12 
0.027 
0.16 
0.029 
0.13 
0.85 
0.06 1 
1 
0.5 
0.14 

0.063 
0.1 1 
0.12 
0.063 
0.1 1 
0.3 
0.12 
0.34 
1 
0.12 

0.045 
0.03 
1 
0.036 
0.7 
0.46 
0.3 
0.36 
0.13 
1 

where again the eigenvalue sum is 10.00000. The second matrix is f 
conditioned; it represents an equilibrated population. Its elements fluct 
wildly from generation to generation, which will produce wildly fluctua 
behavior of the individuals, but the population as a whole exhibits relati 
stable behavior. 
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Metastability and spectroscopy 
Figure - 11 shows the evolution of the small eigenvalues of a population of 10 

individuals interactin by incretion , decretion with rates a=b=O.Ol. The only 
difference between the two experiments was the exact sequence of interacting 
partners at each generation (they were randomly chosen in each case). It is 
evident that the population sometimes had a relatively constant eigenvalue, and 
that sometimes one of those eigenvalues experienced a sudden change. This 
suggests the interesting implication that certain configurations of the knowledge 
matrix K are more stable than others, and some may be very stable (i.e., 
metastable). Metastable configurations can switch spontaneously to other 
configurations, and there could be a characteristic time for this switching. The 
jump in eigenvalue in such a switch is analogous to the energy difference 
between bound states of a quantum system. This difference can be expressed as a 
spectral line. In observing this line we are observing transitions between two 
discrete configurations of the population knowledge. Thus, we have the 
suggestion of a rich and very complex spectroscopy associated with populations 
based entirely on the dynamics of their pairwise knowledge. 

It is emphasized that this is independent of any specific physical dynamical 
model, definition of the individual, population size, etc. 
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RELATION TO OTHER WORK 

System that can be described as a population of cognitive individuals are almost 
always described making use of the verb ”to know.” Regardless of whether the 
objects exhibit intelligence in human terms, we say that the object ”knows” about 
other objects” and ”knows what to do.” Examples of these systems include 
globally coupled relaxation oscillators [Christiansen and Levinsen, 1993; Hansel, 
Mato, and Munier,1993], metapopulations [Gilpin and Hanski, 19911, cellular 
automata [Gutowitz, 19911, simulated fish schools [Huth and Wissel, 19921, 
flocking birds [Kshatriya and Blake, 19921, artificial life [Langton, 1989,19921, 
and ant swarms [Milonas, 19921, to name but examples. It is, however, possible to 
incorporate the present language in the larger body of theory and modeling of 
individual-based population models [DeAngelis and Gross, 1992; Lomnicki, 
19881, and through that, with a much broader spectrum of models and theory 
[Goel, Maitra, and Montroll,l971; Hoppensteadt 1982; Kampis, 1991; Murray, 
1993; May, 19751. 

CONCLUSIONS 

We have noted that the knowledge matrix K can be treated either as a 
dynamical variables or as constraints. We found that many properties of K(t) can 
be found without reference to any specific dynamical system. General 
considerations predict that in any dynamical system, K will exhibit diffusion, a 
learning transient, and a fluctuating asymptotic equilibrium. We proposed a 
variety of mechanisms by which the knowledge can be altered: creation, 
information, destruction, incretion and decretion. 

The dynamical equations for K(t) were derived for discrete and continuous 
time. In a series of numerical experiments, we found configurations of K 
corresponding to experts, celebrities, and isolates. The knowledge held by an 
individual usually varies, as does the total population knowledge. The properties 
predicted above are observed in these experiments. The FWHM of the learning 
transient is a few times N/2a. We found that if K(t) changes very slowly, the 
population eventually relaxes to either complete mutual knowledge, or zero 
mutual knowledge. The fluctuations at equilibrium can be minimum for certain 
values of the incretion, decretion rates a,b. 
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For small decretion rates b, the population is formed into one eigen- 
individual that contains essentially all the knowledge. For high b, the population 
forms a set of roughly comparable individuals that share the knowledge. 
Numerical experiments suggest that the population can form various metastable 
configurations, and that it can switch spontaneously between these 
configurations. The spectroscopy associated with these transitions may be a 
useful indicator of the eigenvalue structure. 

This paper was concerned primarily with demonstrating certain fundamental 
behaviors of K(t) common to all cognitive dynamical systems. We placed most 
emphasis on the incretion,decretion mechanisms for changing K( t). With this 
background we can look forward to applying this formalism to more 
complicated populations. 
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Table 1 - Correspondence between mutual knowledge and probability 
Probability that { i} correctly 

identifes the state of {j}) 
{ i} 's knowledge of { j } 

Kii Pii 
completely correct 1 1 certainty 

partial, correct O<Kij <I 

partial, incorrect -1<Kij<O. 
none 0 

1/G<p ij <I 

O<pG<l/G less than random 

greater than random 
1/G random 

completely wrong -1 0 zero 
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CREATION 

INFORMATION 

L DESTRUCTION 

INCRETION 

DECRETION 

Figure 1 - Five mechanisms for changing the knowledge, together 
with popular and technical descriptors of the processes. 
In each frame, some measure of the knowledge is plotted 
as a function of time. 
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Figure 2 - Schematic of four individuals that change their total 
knowledge by pairwise interactions. In this Feynman-like 
diagram, time increases upward. 
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Figure 3 - Vector diagrams representing (a) knowledge incretion 
and (b) knowledge decretion. 
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Figure 4 - Diffusion of knowledge into a population. The matrix 
elements KS are plotted as black (I&j=l) or gray ( K i d )  
squares for: (a) initial population (no mutual knowledge); 
(b) after 30 generations; (c) after 300 generations. 
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Figure 5(a) - Knowledge held by individuals as a function of time. 
The plots show Ki=CjKij for each of 9 individuals 
interacting randomly with incretion,decretion rates 
a= 1 .O, b=O. 1 . The initial mutual knowledge between all 
individuals was random. 
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Figure 5(b) - Same as Fig. 5(a), for incretion,decretion rates a=0.5, 
b=0.5. 
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Figure 5(c) - Same as Fig. 5(a), for incretion,decretion rates a=O. 1, 
b=O.O 1. 
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Figure 6 - Total knowledge held by a population as a function of time. The plots show 
K=Z ij Kij for 3 populations of 9 individuals interacting randomly with 
incretion,decretion rates (a) a=l.O, b=O. 1; (b) a=0.5, b=O.5; (c) a=O. 1, b=O. 1. The 
initial mutual knowledge was random. 
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Figure 7 - Learning transient. The plot shows the total knowledge 
K=Ci Kij of population of 9 individuals with 
incretion,decretion rates a= 1 ,b=O. 1. The initial mutual 
knowledge was zero (i.e., there was only self-knowledge 
Ki(O)=l). 
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Figure 8 - Learning transient. Same as Fig. 7, but for 20 individuals 
with incretion,decretion rates a=l,b=l . Initial total 
knowledge including self-knowledge: (a) 200; (b) 20. 
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Figure 9 - Equilibrium total knowledge normalized as 
[K(n->w) - N]/N(N-1) as a function of the incretion rate a 
for three values of the decretion rate b. (a) b=0.1; (b) 
b=0.5; (e) b=1.0. The 3 population of 4 individuals were 
carried through 1000 generations. 
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INCRETION RATE a 

Figure 10 -Analytic approximation to the data in Fig. 9. 
(a) The surface f(a,b) = 1 - e~p[- (a /b)~’~] ;  
(b) Three sections of the surface that correspond to the 
numerical experiments in Fig. 9. 
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Figure 11 - Obtaining minimum fluctuations of the asymptotic 
equilibrium knowledge. The population of 10 individuals 
evolved through 1000 generations with a=l, b=O. 1,0.2, 
0.3,0.5, and 0.8. Minimum fluctuations occur for b=0.3. 
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Figure 12 - Eigenvalues as a function of time for a population of 10 
randomly interacting individuals. (a) a=l, b=.3; (b) a=.3, 
b=.05. 
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Figure 13 - Eigenvalues as a function of time for a population of 10 
randomly interacting individuals. All examples have a=b. 
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Figure 14 - Approach to equilibrium for very small incretion and 
decretion, for a population of 10 randomly interacting 
individuals. a=b=.Ol 
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Figure 15 - Switching and spectroscopy. A population of 10 individuals with 
random initial mutual knowledge was advanced twice through 1000 generations 
with random incretion, decretion collisions of rates a=b=.Ol . The obvioius 
transitions near generations 3000 and 7000 in the second experiment suggest that 
the spectra assocaited with these transitions is characteristic of the population 
and its dynamics. 
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