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ABSTRACT 
A study was undertaken to assess the impact ofemploy- 
ing fuzzy technologies in areas of complex weapon sys- 
tem design. The technology was examined for use in a 
life-cycle cost exercise with the objective of providing a 
foundation from which to make service life assessments 
and recommendations on future weapon systems. The 
issues associated with this problem can be highly sub- 
jective and often exhibit a high degree of functional as 
well as variable uncertainty, ambiguity and noise. The 
study demonstrated that there is a potential role for the 
technology, but only in a hybridized environment not as 
a stand-alone solution methodology. 

1. INTRODUCTION 
The activities and effort described in this study are 
being performed as part of the Department of 
Euergy@OE) Defense Program @P) activities in Cen- 
ter 5100 at Sandia National Laboratories in Albuquer- 
que New Mexico. The problem being addressed 
involves the assessment of an “optimal” design life for 
use in weapon system design activities. This is part of 
the larger stockpile stewardship responsibility that 
exists in the DOE defense complex. This responsibility 
extends to the utilization, design, maintenance, disman- 
tlement, and safety of systems in this stockpile. Aman- 
Zestation of these responsibilities is to provide timely, 
cost-effective systems that satisfv all the needs of the 
nation. The analysis to follow assumes cost as one met- 
ric in assessing optimal system design life. 
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We find that new requirements are W i g  imposed on 
old systems, that technology used to produce these sys- 

tems is disappearing, and that enginems knowledgable 
in their form and function are retiring or moving on to 
other responsibilities. The full slate of problems we are 
faced with include reducing the life-cycle cost of these 
systems, shortening the design and production cycle 
times, and for the near term retaining a design and pro- 
duction capability. The simple belief is that a reduction 
in programmatic cost can be realized by significantly 
increasing the design or service life of weapon systems 
currently in stockpile. A detailed life-cycle cost analy- 
sis employing modem optimization technologies might 
answer the problem of optimum design life, but the 
broader scope of issues and their lack of definitive f’unc- 
tionality could not easily or defensibly be addressed 
with these technologies. 

The fuzzy technology has been around for some time, 
but has recently gained exposure, principally in the 
areas of process and control engineering. A number of 
attributes of the fuzzy technologies struck us as a means 
for addressing issues in the “gray” areas of technical 
analysis. Characteristics of a fuzzy model (Cox, 1994) 
include (1) imprecise control parameters, (2) a multiple 
number of potentially conflicting or elastic relation- 
ships, (3) inherent uncertainties in the control structure 
as well as a classical probabilistic result, and (4) the 
problem b e i i  addressed is highly complex, poorly 
understood and/or nonlinear. These characteristics cap- 
ture much of the problem we are faced with assessing 
optimum design for our weapon systems. 

mailto:mesengl@sandia.gov
mailto:teny@SIE.Arizona.EDU


DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, compieteness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process. or service by trade name, trademark, manufac- 
turer, or otherwise does not necessarily constitute or impiy its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessariiy state or 
reflect those of the United States Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 

I 



2. FUUY TECHNOLOGY DESCRIPTION 
This short section provides a perspective of the ele- 
ments characteristic of the “fuzzy” technologies which 
provide an engineer with another tool that can be used 
to solve increasingly complex design, decision. and 
analysis problems. The objective of this work and this 
section in particular is to evaluate a technology for use 
by engineers in solving complex problems and not to 
evaluate the fundamental theoretical aspects of the tech- 
nology (This would be well beyond the scope of this 
paper.). The technology provides the engineer with 
another “mathematical construct” for mapping design 
or analysis variables to a solution space. Function the- 
ory defines operations and set characteristics which per- 
mit us to map variables within an infinitely continuous 
real space. Boolean algebra provides us with the ability 
to perform relational mappings in discrete space. It 
appears that the fuzzy technologies provide us with a 
capability to perform a modified form of mapping 
within a variable space of our definition and design. 
The mathematics provide us with the operators and a set 
of requirements for the variable space. 
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The essence of “fuzzy” technology is the unique nature 
of its underlying set theoretic characteristic. In classi- 
cal functional theory we can immediately interpret the 
validity or truth of a solution variable given the inde- 
pendent parameter values. For example, an ideal gas 
law mapping between pressure and specific volume, 
each set to zero. and a temperature value of l.Oxl$ is 
known to be invalid. In the m a  of fuzzy technologies 
this result must be assessed before a degree of validity 
or truth can be asmtame * d. It is the set theoretic char- 
ac6xistic of this technology that enables and r e q h s  
the follow-on assessment. 
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3. MODEL DEVELOPMENT 
In order the assess the utility of “fuzzy” technology for 
use in the design life optimization problem, a Ctt code 
was written that captured the fundamental characteris- 
tics of the technology. The code was restricted to a lim- 
ited number of operator concepts. rule generality, and 
defuzification methodologies. The objective of the 
code was to provide an operational test bed to gain 
some experience with this approach to solving design 
problems and to provide the framework from which the 
assessments on the utility of the technology could be 
made. 

C t t  was chosen as the language tool because of past 
experience in the language and the ability to develop 
rapid prototypes of new algorithms. The operators 
were initially limited to Zadah’s rules of fuzzy set com- 

binatorics and a subset of defuzificationmethodologies. 
The observed nonlinearity of the problem indicated that 
some variables were solutions to a subset of the model 
parameters. This rewed a rather complex control 
structure for an evaluation algorithm. 

3.1 Validation 
There does not appear to be formal mathematical theo- 
rems which can be used to validate a model based on 
fuzzy technologies. One reference (Carraanza, 1992) 
provided an interesting approach for assessing the sta- 
bility of fuzzy controllers. This validation methodol- 
ogy is well suited for the controller situation since it is 
possible to delineate acceptable states for the fuzzy con- 
troller. Validating fuzzy technologies in a system 
design effort is more difficult since we may only be able 
to bound the problem. The method does not appear to 
lend itself to assessing the accuracy of the solutions 
which is the validation problem that we are faced with. 

A solution to the problem of validation is to assess the 
accuracy of the model on a problem of comparable 
characteristics, and by inference postulate the accuracy 
of a models. Since problems in system design are 
expected to be highly non-linear it was decided that a 
fuzzy interpretation to the ideal gas law could be used 
in a validation process: 

T= ( P . u ) / ( n . R )  (1) 
Table 1 provides a listing of the initial model variables 
and the semantic levels or fuzzy sets that represented 
the descretized levels associated with the model vari- 
ables. 

Table 1: Validation variables, hedges, and linguistic 
sets 

I Hedges I Sets Domain 
Variable 

Also listed in the table are the “hedges” used in the val- 
idation problem. In fuzzy technologies, a hedge (Cox, 
1994) is a technical term that represents a class of func- 
tional modifiers applied to the underlying fuzzy set 
membership functions. These modiiiers tend to inten- 
s i fy  or diffuse membership intensity. 
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Three semantic levels were selected for each of the 
model variables in the problem. The membership func- 
tions selected during the initial tests were low-order lin- 
ear functions. The functions for temperature are 
presented in Figure 1. A higher order set of member- 
ship functions was used later in the validation process 
and is plotted in Figure 2. 
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Figure 1. Linear membership functions for the temper- 
ature model variable. 
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Figure 2. Nonlinear membership functions for the tem- 
perature model variable. 

A very simple process was used to define the initial set 
of validation des .  The domain of the model variables 
was selected to range from -100 OC to 1300 OC, with a 
corresponding range for the pressure and specific vol- 
ume. A combinatorics matrix was used to represent all 
the combinations of semantic levels for the independent 
model variables. This matrix is presented in Table 2. A 
fuzzy rule was written for each element of the combina- 
torics matrix. The rules were of the f o m  

if PRESSURE is LOW and SPVOL is LOW then 
TEIVlPElRMuRE is VERY LOW 
The initial calculations used the linear and the nonlinear 
membership functions in conjunction with the nine 
rules developed from the matrix in Table 2. The 
domain used for the pressure variable was 0.1 to 0.5 
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MPa, while the specifk volume domain ranged from 
0.5 to 0.9 m3/Kg. 

Table 2 Ru1.e combinatorics for solution space, 
temperature. 

The results of these calculations are provided in Figures 
3A through 3D. 
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E m  3. (A) Linear fuzzy representation of the ideal 
gas law. (B) Nonlinear fuzzy representation of the ideal 
gas law. (C) Semantic levels reduced to HIGH and 
LOW. (D) Reduced rule set. 

The points of intexest are the near-identical behavior 
between the linear and nonlinear models. This provides 
additional verification that the membership function 
shape is not a strong player in these coarsely des- 
cretized problems. The effect of using a coarser des- 
cretization of the semantic levels can be seen in Figure 
3C. The results exhibit less detail than those in Figures 
3A and 3B, but the essential levels and trends associ- 
ated with the underlying model have been preserved. 

The last test involved reducing the rule set. The idea 
was to assess the possibility of using a design of experi- 
ment technique in the generation of rule sets. The rules 
that were removed consisted of those highlighted in 
Table 2. From Egure 3D. we can see that the perfor- 



mance of the modified rule set is severely degraded, 
especially in the regions covered by the removed rules. 
Further analysis needs to be conducted in order to 
assess “completeness” issues associated with fuzzy rea- 
soning algorithms. It appears that a larger problem 
needs to be defined and a rigorous application of Tagu- 
chi techniques used in order to assess the issues of com- 
pleteness that surfaced with this very simple analysis. 

Tests were also exercised to assess the impact of the dif- 
ferent defuzification algorithms used in the preliminary 
code. Three methods were examined: (1) the centroid 
method, (2) the averaged maximum method, and (3) a 
maximum technique that selects the leading edge of the 
maximum truth plateau. The centroid method is simply 
a weighted average over the entire solution variables’ 
domain space. The weighting consists of the product of 
the domain value and the associated degree of truth. 
The averaged maximum method represents the 
weighted average of the maximum truth plateau of the 
solution variable. Each method produced unique 
results. The results in Figure 3 represent the utilization 
of the averaged maximum method. The centroid 
method provided results which most closely approxi- 
mated the mean shape of the gas law. However, the 
results at the extremes were clearly inferior to those 
generated by the maximum methods. The analyses to 
follow will use the averaged maximum technique for 
defuzification. 

3.2 Prelimhiary Expansion 
The next test that had to be performed consisted of an 
expansion into the treatment of “issues.” The com- 
plexity of the problem requires that a number of issues 
had to be resolved prior to a final solution of the prob- 
lem variables. In order to test issue resolution, an addi- 
tional model variable was added to the decision 
problem. The variable, RADIALION. was assumed to 
affect gas temperature directly and indirectly through 
the specific volume. (It should be noted that this vari- 
able is an artificial construct and was used for test pur- 
poses only.) The added influences are shown by the 
dotted lines in Figure 4. 

The physics of this problem is non-real and has been 
performed merely for code validation activities. In this 
scenario the specific volume is determined based on a 
rule set relating radiation and the specific volume of the 
gas. Once the specific volume has been estimated via 
the defuzification process, another rule set was executed 
that performed the assessment of temperature based on 
the additional model variable and the rule set used for 
the first part of the validation process. 

ValidaGon Problem 

Figure 4. Muence diagram for the idealized ideal gas 
validation problem 

3 3  Generic Observations 
A number of fuzzy technology observations can be 
made at this juncture of the study. The observations 
pertain to (1) the number of semantic levels for use in 
fuzzy analysis problems, (2) the completeness of the 
rule set. (3) the defuzification methodologies, and (4) 
the order of membership functionality. The resolution 
of the solution variable results is directly proportional 
to the number of semantic levels and rules employed in 
the analysis. If a great deal of resolution is required 
increase the number of levels. It has also been observed 
that there may be a completeness issue associated with 
the implemented rule set. 

Each defuzification method possesses varying degrees 
of suitability dependiag on the problem being worked. 
The centroid method may be appropriate for policy 
analyses where detail is unimportant. The maximum 
edge method may be best suited for use in the safety 
analysis where model conservatism is important. 
The averaged maximum seems to be suited best for 
optimization problems such as the design life problem. 
Finally, there appears to be an insensitivity to the func- 
tional form of the membership functions associate with 
the semantic levels. It appears that each situation must 
be assessed on its’ own merits. 

4. DETAILED PROBLEM DESCRIPTION 
These last sections examine the potential for the devel- 
opment of a limited service-life estimation model. The 
objective of the model was to provide sufficient evi- 
dence of the utility or nonutility of using fuzzy technol- 
ogies in the estimation of weapon system service life. 
As indicated earlier the performance metric identified is 
the life-cycle cost for a weapon system. Generic ele- 
ments comprising a life-cycle costing model (Fabrycky, 
1991) consist of (1) research and development costs, (2) 
production costs, (3) operations and maintenance sup- 
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port costs, and (4) retirement and disposal costs. Figure 
5 provides a high-level view of the problem being 
addressed. The cost components have been broken out 
in slightly more detail, but do not address the level of 
detail needed to perform a lifecycle cost analysis. The 
left side of the figure is an indicator of the direct effects 
that system service life would play in a costing model: 
the indkct effects are not detailed in this figure. A sub- 
set of the indirect effects m included in Figure 6. 

4.1 Information Uncertainties 
One problem that has to be considered is the different 
type of uncertainty associated with the model depicted 
in Figure 5. The uncertainty associated with the cost 
parameters can be attributed to variabilities in the inde- 
pendent variables of the model. Classical statistical 
techniques should be used to assess the effects of this 
uncertainty. The second class of uncertainty is that 
associated with parameters directly affected by service 
life and the indirect effects on the cost variables of the 
life-cycle cost model. This uncertainty can be classified 
as a functional uncertainty which is a lack of under- 
standing of the underlying functional relationship or 
mapping between the independent variables and the 
solution variables. 

It was felt that there are two generic approaches to solv- 
ing this hybrid problem. One approach is to use the 
fuzzy technology to dete‘rmine the cost associated with 
selected cost elements of the lifecycle cost model. The 
second approach is to use the fuzzy model to “modify“ 
the cost estimates provided through a more traditional 

functional model. The implementation of the two 
approaches Wered only in the addition of an extra rule, 
which in effect constrained the results of the predictive 
facet of the fuzzy model. 

Indirect Service Life Cost Effects 
(Umited Scope) 

Figure 6. Indirect effects of service life. 

The object of this phase of the service life activity was 
not to generate a solution but to assess technologies 
which might be employed to develop a solution. The 
variables selected for inclusion in this preliminary 
model consisted of the following: (1) “service life.” (2) 
“engineering skills,” (3) “mission complexity,” (4) 
“program risk,” (5) “development cost,” (6) “test cost,” 
(7) “operations support,” (8) “materials selected,” (9) 
“testing complexity,” and (10) “disposal complexity.” 

Combined Analysis Model 

Direct Service Life Effects 

lmpactlng Functlonal 
Model varlable Unceltalnty 

Probablllstlc 
Outcome 

Figure 5. Service life optimization model with fuzzy and functional elements identified. 
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This is not an all-inclusive list of problem space vari- 
ables, and for purposes of this analysis each of the 10 
variables was not considered in equal detail. Each of 
these domain variables was assigned either two or three 
semantic levels for inclusion in the model. In addition, 
one or two hedges were assigned to enable semantic 
intensification or diffusion in the problems space. The 
rule set used in this study is provided in the Table 3 
below. The row separations correlate with the separa- 
tion of the issues that had to be addressed prior to the 
indirect cost analyses. 

The rule sets addressed the issues of (1) programmatic 
risk, (2) test complexity, (3) materials selection. and (4) 
operational support. The h a l  two rule sets were used 
to solve for development and test costs. The last two 
rule sets contain a highlighted rule which contains only 
the consequent part of a standard rule predicate. It is 
these extra rules which were required to transition the 
model from ;I predictive algorithm to that of a proscrip- 
tive model. These rules use an “ABOUT” construct 
which in the technology is a fuzzied representation for 

a number. Thus ABOUT 5 represents the fuzzified 
approximation to the value 5. A number of the variables 
used in this model do not possess a classical measurable 
descriptive scale. The variables associated with “engi- 
neering skill level,” or “programmatic risk” are metrics 
which do not possess an absolute scale. At best, the 
scales associated with these and similar variables can 
only be used in studies concerned with relative effects. 

4.2 ResultsAnalysis 
A series of 25 cases wererun to span aspectrum of ser- 
vice life, engineering skill levels and mission complex- 
ity. The service-life assessments ranged from 10 to 90 
years. The other two variables are founded on a relative 
scale. Four sets of these cases were run to assess the 
effects of different defuzification algorithms and to 
assess the differences between the predictive and the 
proscriptive versions of the model. The results of these 
fist set of predictive calculations is presented in Figure 
7. 

This figure provides a look at two of the three indepen- 
Table 3: Fuzzy rule sets used in the life cycle cost feasibility study. 

Rules by “issue” 

if SERVUE-LIFE is LONG and MISSION-PROFILE is COMPLEX then FGM-RISK is VERY HIGH 
if SERVCIE-LIFE is LONG and SKILLS is NOVICE then PGM-RISK is VERY HIGH 
if SERVCIE-LDJ3 is SHORT and SKILLS is HIGHLY CAPABLE then PGM-RISK is VERY LOW 
if SERVUE-LIFE is NOMINAL and SKILLS is CAPABLE then PGM-RISK is LOW 
if SERVCIE-LIFE is NOMINAL and SKILLS is NOVICE then PGM-RISK is SOMEWHAT HIGH 

if SERVUE-LIFE is SHORT and MISSION-PROFILE is ROUTINE 

if SERVCIE-LIFE is LONG and MISSION-PROFILE is COMPLEX 

if SERVUE-LIFE is NOMINAL and MISSION-PROFILE is ROUTINE 

if SERVCIE-LIFE is LONG then MATERTALS is EXOTIC 
if SERVUE-LIFE is NOMINAL then MATERIALS is SOMEWHAT EXOTIC 
if SERVUE-LIFE is SHORT then MHERULS is VERY ROUTINE 

if SERVUE-LIFE is LONG then OPS-SUPPORT is VERY HIGH 
if SERVCIE-LIFE is SHORT then OPS-SUPPORT is SO- LOW 

if PGM-RISK is HIGH and MATERIALS is EXOTIC then DEV-COST is HIGH 
if TEST-COMPLX is INCREASED then DEV-COST is VERY HIGH 
if TEST-COMPLX is SOMEWHAT DECREASED then DEV-COST is LOW 
if PGM-RISK is LOW and MATERTALS is ROUTINE then DEV-COST is VERY LOW 
if PGM-RISK is LOW and MATERIALS is EXOTIC then DEV-COST is SOMEWHAT HIGH 
if PGM-RISK is VERY LOW and MATERIALS is ROUTINE then DEV-COST is VERY LOW 
then DEV-COST is ABOUT5 

if MATERIALS is EXOTIC then TEST-COST is SOMEWHAT HIGH 
if MAlI3RM.S is ROUTINE then TEST-COST is LOW 
then TEST-COST is ABOUT7 

then TEST-COMPLX is DECREASED 

then TEST-COMPLX is SIGNIFICANTLY INCREASED 

then TEST-COMPLX is SO- DECREASED 
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dent variables that were considered in these analyses. 
The average maximum defudication is far more indic- 
ative of the underlying coarseness of the semantic lev- 
els selected. The centroid defuzication method, which 
is a weighted average of cost over the entire domain, is 
less sensitive to the underlying model coarseness. As 
expected, increases in service life or mission complex- 
ity results in increases in system cost. In this case, sys- 
tem cost includes only development and test cost. 

Costing (Ave Max) Costing (Centroid) 

Figure 7. Results of costing analysis using “average 
maximum” and “centroid” defuzification. 

Cost Model 

The test nms were set up based on Taguchi’s design of 
experiment techniques (Phadke, 1989) and as a result 
provide a great deal more information if statistically 
analyzed. Taguchi techniques involve the utilization of 
a design-of-experiment technique in which orthogonal 
arrays are used to proscribe combinations of variable 
settings to be used in a series of “experiments.” For 
each combination of variable settings, a calculation or 
experiment is done to assess the performance of the sys- 
tem under consideration. Once a l l  trials or experiments 
are completed, a statistical analysis can be performed 
which provides sensitivity information of the model or 
systems variables. The method also works very well in 
performing noise analysis calculations on system 
designs. The use of the orthogonal arrays preserve cer- 
tain statistical properties which permit the subsequent 
analysis required. The results of the Taguchi analysis 
are provided in Figure 8. 

The results of the Taguchi analysis show that “for the 
rule set selected for this study,” service life is the most 
important design parameter identified in these analyses. 
It must be remembered that this analysis is not assess- 

Cost Model 
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Figure 8. Results of the Taguchi analysis for the predictive fuzzy cost model. 
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Figure 9. Results of costing analysis from the proscriptive model. 



ing parameter sensitivities as is the case in a traditional 
statistical analysis, but is assessing the sensitivity of the 
variables coupled with the rule base. A different rule 
base may reveal a different parametric sensitivity. It 
needs to be remembered that the sensitivities represent 
the effect that a parameter exhibits over an average of 
the other analysis parameters. IU this case, service-life 
sensitivity represents the sensitivity of service life aver- 
aged over a range of values representing engineering 
skills and mission complexity. The figure shows that 
service life on the average is an order of magnitude 
more important than the other two parameters. 

As can be seen fiom the results of the proscriptive 
model presented in Figure 9, service life is the most 
important parameter in the fuzzy model, but the relative 
importance has been severely constrained. The results 
fall much closer to the constrained values of 1.2 M$, 
which was an arbitrarily selected fuzzy limit. Similar to 
the predictive model, the centroid defuziication tends 
to smooth the effects of the underlying semantic level 
coarseness. 

‘ 

5. CONCLUSIONS 
The fuzzy technologies examined in this study appear 
to possess a degree of utility applicable to the analysis 
of highly complex problems that possess a significant 
degree of functional as well as parametric uncertainty. 
The technology appears fo provide a unique method for 
constructing metrics for abstract concepts such as engi- 
neering skill level or programmatic risk. The technol- 
ogy provides a foundation upon which it is possible to 
operate with subjective and c d c t i n g  ~ I I ~ O ~ ~ ~ O I L  It 
seems that the optimal method of implementation of 
this technology is in a hybrid environment in which the 
technology’s strengths are used to augment a traditional 
analysis methodology. 

The fuzzy approach to solving the functionally ambigu- 
ous aspects of the life-cycle cost analysis problem 
appears to be appropriate when melded with traditional 
statistical technologies. The use of the technique in a 
purely predictive mode is extremely labor intensive and 
potentially difficult to validate on complex problems. 
The technology used in a proscriptive mode is ideally 
suited for this problem. Classical functional theory can 
provide the foundations fiom which base cases can be 
generated; the fuzzy technology can be used to asses the 
impact of uncertain issues such as new technologies, 
processes, missions, or environments on design issues. 
Fuzzy technologies have.a role in the analysis of com- 
plex design problems but is not a panacea. 

in a production environment and a d d i t i d  work needs 
to be performed to develop an improved interface 
between fuzzy technology and traditional functional 
methodologies. The results observed in the preliminary 
model verification seem to indicate that there may be 
issues associated with completeness. These issues of 
rule completeness need to be addressed to aid in the 
model validation process. Finally, there appears to be a 
unique opportunity to examine a union of fuzzy tech- 
nologies and Taguchi techniques to assess the impact of 
rules in a model. Taguchi techniques are typically 
applied to problems in which parametric sensitivities 

tional uncertainty, and it might prove useful if the pow- 
erful Taguchi methodologies could be generalized and 
provide benefit in this technology area to assess the 
impact of a rule or set of rules in a model. 

are beig assessed. FUZZY technologie~ deal with func- 
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