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Abstract 
Applications for high current (> 1 kA) ion beams are increasing. They include hardening 
of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly 
driving fusion reactions to create energy. The space-charge of ions limits the current that 
can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the 
accelerating electric field must be kept low enough to avoid the generation and 
acceleration of counter-streaming electrons. These limitations have resulted in ion 
accelerator designs that employ long beam lines and would be expensive to build. Space- 
charge neutralization and magnetic insulation of the acceleration gaps could substantially 
reduce these two limitations, but at the expense of increasing the complexity of the beam 
physics. We present theory and experiments to determine the degree of charge- 
neutralization that can be achieved in various environments found in ion accelerators. Our 
results suggest that, for high current applications, space-charge neutralization could be 
used to improve on the conventional ion accelerator technology. There are two basic 
magnetic field geometries that can be used to insulate the accelerating gaps, a radial field 
or a cusp field. We will present studies related to both of these geometries. We shall also 
present numerical simulations of ccmulticusp77 accelerator that would deliver potassium 
ions at 400 MeV with a total beam power of approximately 40 Tw. Such an accelerator 
could be used to drive fusion. 
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I. Introduction 
A conventional induction linac involves the use of many acceleration gaps as depicted 

inFig. 1 
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Fig. 1 A schematic of an acceleration gap for a conventional induction linac 

The voltage across each acceleration gap is separated from the neighboring gaps by induc- 

tive isolation, which is enhanced by the use of ferromagnetic core materials. The integral 

of the voltage over time that can be applied to each gap is determined by the saturation 

field of the core material and the cross sectional area. The core material is a significant 

fraction of the cost of a conventional accelerator and thus its use should be minimized if 

possible. This can be accomplished by decreasing the ion pulse length and the final accel- 

erating voltage, while increasing the ion current to maintain the beam power. However, 

large beam currents result in strong space-charge induced electric fields that tend to spread 

the ion beam outward radially. The magnitude of the electric field is given by the formula 
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where IB is the ion beam current, r is the radius, and VB is the ion velocity, and JB is the ion 

beam current density, MKS units will be used throughout this report. Increasing the beam 

radius decreases the outward electric field, but it also increases the mass (cost) of the core 

material. The ion beam is held together by the use of quadrupole magnets, with an alter- 

nating gradient direction. The amount of current that can be transported is then determined 

by the strength of the quadrupole focussing magnets. This limit could be increased if the 

space-charge of the ion beam is partially cancelled by the presence of electrons, which 

have the opposite charge. We refer to this as space-charge-neutralization. These electrons 

could be introduced into the beam from the drift tube walls or possibly by the injection of 

some plasma into the beam path. However, electrons within the vicinity of the acceleration 

gaps will be accelerated in the direction opposite of the ions. Since electrons are much 

lighter than ions they will obtain higher velocities than the ions and will constitute an 

undesirable loss of power. This loss can be avoided by applying a strong magnetic field 

across the accelerating gap. Single particle equations of motion indicate that the electrons 

will not be able to cross the gap when the following condition is satisfied 

where Y =rA, is the magnetic stream-function with the subscripts (a,c) for points on the 

anode and cathode, d e  is the mass-to-charge ratio of an electron, V is the voltage across 

the gap, and c is the speed of light. An electron leaving the cathode is turned back toward 

the cathode before reaching the anode as long as this relationship is satisfied. Equality of 

both sides of relation (2) defines maximum magnetic insulation voltage, V,. 

It has been demonstrated that accelerating field strengths considerably in excess of the 

breakdown threshold can be used efficiently when the accelerating gap is magnetically 

insulated', which is an added advantage of using magnetic insulation. The possibility of 

significantly reducing the length of an ion induction linac by using magnetic insulation 
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and space-charge neutralization has been recognized for quite some time2. Experiments 

were conducted with several acceleration stages insulated by a radial magnetic field3, see 

Fig. 2 
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Fig. 2 Schematic of an accelerator gap using a radial magnetic field for insulation. 

Efficient insulation and post acceleration was demonstrated, but several problems were 

also found. The charge neutralization in the return flux region was not sufficient for effi- 

cient transport between stages. Successful operation necessitated a gas background, which 

is incompatible with acceleration in a constant ion charge state. Furthermore, the inner 

field coils needed to generate a radial magnetic field, required support structures (not 

shown in the figure) that blocked a portion of the annular beam. Repetitive operation of 

such an accelerator would cause severe erosion of these supports and would produce out- 

gassing that could result in beam stripping. Finally, the azimuthal symmetry of the beam 

was removed by the support structures. This caused inefficiencies in the accelerating gaps 

and could result in beam emittance growth. We shall address some of these issues in this 

report. We shall show that a sufficiently high degree of charge-neutralization can be 
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obtained by using a preformed plasma and that the ions will not be stripped for a reason- 

ably short accelerator. However, achieving the required beam intensity with only a few 

acceleration stages implies large diamagnetic forces on the applied magnetic field, which 

will result in focussing of the beam at each acceleration stage. We will present an analytic 

calculation to determine the magnitude of this effect. 

. 

Using only field coils outside of the beam results in a cusp field43 to insulate the accel- 

erating gaps. This multicusp geometry does not require a central conductor, which greatly 

simplifies the construction, see Fig. 3. The bulk of our work was directed toward studying 

the feasibility of this field geometry, 
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Fig. 3 A schematic of an acceleration stage of a multicusp accelerator. 

The ion beam entering from the left is accelerated by a voltage V at the gap, which is insu- 

lated by a cusp magnetic field. Notice how the cusp geometry allows electrons to enter and 

- follow the beam to the next acceleration stage. As the beam ions enter the drift region, 

they are forced to rotate azimuthally as they cross the cusp field. This rotation leads to a 

focussing force (solenoidal focussing) in the drift region that is proportional to the square 

of the magnetic field strength. The maximum current density, which can be transported in 
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the drift region can be found by balancing the net space-charge force against the solenoi- 

dal focussing force. The result is 

eZEo p cB2 
Jsx = 2M(l-f)  ' (3) 

where eZ/M is the charge to mass ratio of the ion, pc is velocity of the ion, B is the 

strength of the magnetic field, and f is the degree of space-charge neutralization. The criti- 

cal parameter is the degree of space-charge neutralization. Notice that the current density 

scales as em, so this type of accelerator scheme will be more effective for lower mass 

ions and thus would be very effective at accelerating protons. Such an accelerator cokd be 

used to generate neutrons, which can be used for a variety of applications. Medium mass 

ions such as potassium would be more appropriate for a fusion driver, so that high beam 

intensities can be reached with the proper range of the ion in the ICF capsule. 

II. Focussing constraints on ion induction linacs for inertial 
fusion 

The DOE-sponsored program to develop high-intensity accelerators as inertial fusion 

drivers has been active for about two decades. As envisioned, an induction linac generates 

multiple beams of 10 GeV uranium ions with a 10 ns pulse length. The beams propagate 

ballistically to a small target in a reactor chamber. The accelerator and its attendant beam 

transport lines are complex and occupy a considerable amount of space. Over the sp-an of 

the Heavy Ion Fusion program, technical problems that involve conventional accelerator 

theory (such as the design of achromatic final focussing lens with ideal space-charge 

forces) have been pursued with vigor. In contrast, several daunting problems reflecting the 

unprecedented beam intensity levels have not been emphasized. Advanced concepts (such 

as beam neutralization and self-pinched propagation) have been consistently portrayed as 

potential solutions but not seriously addressed. In principal, the space-charge neutraliza- 

tion methods developed at Sandia National Laboratories for the Light Ion Fusion program 
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could impact the design of a fusion accelerator. Neutralization would allow higher current 

transport. Therefore, the required total energy could be generated by beams with reduced 

kinetic energy and ion mass. 

The goal of this report is to quantify whether neutralization can significantly impact 

accelerator driven fusion. The long duration of the Heavy Ion Fusion program testifies that 

the determination of feasibility is not a straightforward issue. We shall derive simple con- 

straints on the allowable focussing errors for two test cases: a heavy-ion fusion accelerator 

generating unneutralized beams of uranium at 10 GeV (p=.3), and an intermediate-mass 

accelerator that utilizes beam neutralization to accelerate potassium ions (A=39) to 400 

MeV (b.15). The target proposed for heavy ions is optimized for the rather long range of 

heavy ion accelerators and requires a focal spot of 1-3 mm. The significantly shorter range 

of light ions has the allowed the development of a spherically irradiated target that 

requires a focal spot of approximately 1 cm. Our medium mass ion would have a range 

comparable to light ions (-220 mg/cm2) and could drive a light ion target. The acceptable 

angular divergence at the final focussing lens of the accelerator depends on the focal spot 

and the focal length through the simple formula 

where L is the focal length, and rf is the focal spot size. Heavy ion studies assuming ballis- 

tic transport from the final focussing lens to the target require L to be as large as 10 m. 

Light ion studies with neutralized ballistic transport have assume L-2 m. If self-pinch 

propagation works the focal length could be made much smaller, less than a meter for light 

ions. The maximal transverse energy spread (temperature) at the final lens is given by 

6T = (AO)2To, (5) 

where To is the final ion kinetic energy. For the ballistically focussing heavy ion case, the 

allowed transverse temperature is 100-900 eV (depending on the focal size). For the 
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medium mass ion the m e a l  transverse temperature is approximately 10-40 KeV 

(depending on the range of L1-2m). Clearly transverse temperature can be much larger 

for the medium mass case, because of the larger focal size and shorter focal length. 

Next, consider possible sources of transverse beam energy. A low value of 6T implies 

that there is a close balance on average between applied focusing forces and the force of 

beam generated electric field. The standard heavy ion approach is based on the transport of 

bare beams. The space charge potential of the beam is given by the expression 

The pulse length on the target must be less than 10 ns, but the pulse length could be as 

long as 100 ns at the final focussing lens if beam bunching is used. Assuming 20 beams 

the current inkach beam must be 250 A to put 500 TW on target. Thus the beam potential 

is approximately 25 KeV, which is much larger than the maximum transverse temperature. 

The maintenance of the low beam transverse temperature requires linear focusing focus- 

sing forces and an almost perfectly uniform beam. Consider the contrasting approach of 

neutralized beam transport. Since collective neutralization is not an easily controllable 

process, there is little hope of obtaining a partially neutralized beam where the residual 

field is linear. Therefore the goal is to keep the residual fields low as possible. Assuming 

20 beams and a bunching factor of 3 due to the shorter focal length, the medium mass 

driver must have approximately 20 kA/beam. The beam potential is thus about 4 MV. This 

potential must be reduced by a combination of charge-neutralization and focussing forces. 

Assuming the charge-neutralization reduces the beam space-charge potential by the factor, 

a, the focussing force must produce a negative potential greater than a@, to contain the 

beam. Let's assume that this containment factor is 1 + p , then ap@, must be less than 

maximum allowed transverse temperature or ap < 0.01. In the next section we shall 

present simulations of the charge-neutralization process, which indicate that a 0.04 . 



This implies that p < 0.25 will be required. Designing a focussing system with this degree 

of accuracy does not seem impossible, but may prove to be difficult due to the nonlinearity 

of the net space-charge forces. In the next section we shall show that a preformed plasma 

could produce very high degrees of neutralization so that a < 0.01. Another possibility is 

that the accelerator is short enough so that ions do not have sufficient time to obtain a 

transverse temperature equal to the beam potential. Consider the distance ions travel. as 

they perform one transverse oscillation 

which is about 125 m for our medium mass example. The degree of nonlinearity deter- 

mines how many of these oscillations are necessary before the ion transverse energy is 

randomized. This will depend on the specific accelerator scheme, but in general it should 

be easier to obtain a high quality beam if the accelerator is not very long. Thus light to 

medium mass accelerators are probably the most promising. 

III. Theory of space-charge neutralization 

A. Vacuum 

i. No magnetic field 

The space-charge neutralization process in a vacuum is conceptually quite simple, but is 

very difficult to treat analytically. As the head of an ion beam passes a region of drift tube 

wall, an electric field is generated by the space-charge of the beam. If this field is large 

enough the drift tube wall undergoes electrical breakdown and becomes a source of elec- 

trons. As an example, eq. (3) gives a maximum current density J=ll A/cm2 for a potas- 

sium beam at p = 0.13, assuming a solenoidal field strength of 5 Tesla and fS.1. 

Without neutralization the electric field at the edge of a 20 cm beam according to eq. (1) 

would be 350 KV/cm, which is more than sufficient to cause electrical breakdown at the 

. 
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drift tube wall. Note that it may be advantageous to provide a source of electrons such as a 

thermionic emitter to avoid any time delay introduced by the breakdown process. Elec- 

trons are then pulled into the beam from the wall. A simple analytic estimate of the neu- 

tralization provided by these electrons was made by Stuhlinger6. He assumed that a 

constant density beam arrived instantaneously and then electrons were allowed to fall into 

the potential well caused by the ion space-charge. His result indicated a neutralization fac- 

tor of approximately 0.5. The low neutralization factor calculated analytically is because 

all of the electrons are forced to have zero total energy. Thus the electrons have a maxi- 

mum velocity at the center of the beam and zero velocity at the drift tube walls. Hence the 

electron density profile does not match the ion density profile. In fact, the electrons wiU 

not all have the same energy, due to the finite risetime of the beam current density. This 

spread in the electron energies results in much better neutralization than the simple ana- 

lytic model predicts. Numerical techniques provide the most straightforward way to find 

solutions for the self consistent motion of the electrons emitted from the drift tube walls in 

response to the electric field generated by the unneutralized portion of the ion space- 

charge. 

We have studied this process numerically using the 3-D particle-in-cell (PIC) code 

QUICKSILWR performs a fully dynamic solution to Maxwell’s 

equations with relativistic three-dimensional particle kinematics and the full Lorentz 

force. To solve Maxwell’s equations, the volume of interest is divided into discrete cells, 

and electric and magnetic fields are associated with each cell. Discrete particles, each rep- 

resenting 109-1012 electrons or ions, are used to simulate the electron and ion flow and 

provide a self-consistent source for the field solutions. The relativistic equations of motion 

are solved for each particle in the electromagnetic field. Electrons and ions are introduced 

into the system by emission from the electrode surfaces. The charge of each particle is 

determined by assuming space-charge-limited emission and enforcing Gauss’ Law for 

cells immediately adjacent to the electrodes. Similarly, parficles encountering metal 
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boundaries are removed from the system. Voltage boundary conditions can be specified 

that introduce electromagnetic energy into the simulation. It should be kept in mind, that 

due to computer storage limitations, the number of simulation particles is less than lo6 and 

consequently the numerical solutions will probably underestimate the degree of charge 
- 

neutralization. 

Consider an unneutralized ion beam propagating between two parallel plates separated 

by a distance 2H. The space-charge limited current density is found by equating the space- 

charge potential at the midplane to the energy of the ions. The result is 

where W is the energy of the ions. 

To study beam neutralization, we set up the simple simulation geometry shown in Fig. 4 

Fig. 4 Simulation geometry to study the basic vacuum neutralization process. The 
boundary conditions are periodic at y=O and y=Ly. Mirror symmetry is assumed at x=O. 
AU other surfaces are conducting. Ions are injected through the surface at z=O. Electrons 
are only emitted from the shaded surface. 

- The edges of the simulation at y=O and y=$ are connected by periodic boundary con- 

ditions, i.e. a particle exiting through one of these surface comes back into the simulation 
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from the other surface. The distance 4 was varied from 1 cm to 5 cm with negligible 

changes in the degree of neutralization. Mirror symmetry is assumed about the plane x=O. 

All surfaces are conducting and electrons are only emitted from the shaded surface. A pro- 

ton beam (1 MeV) is injected through the z=O surface and exits through the opposite sur- 

face. We set J=5A/cm2, which is Jsc/2 and ran simulations with and without electrons for 

comparison. The beam potential at x=O and z=10 cm is defined by E&, where H=5 cm 
H 

0 

is the half 

> z 

height of the box. This potential is shown for both of these simulations in Fig. 5. 
* 

0.40 

0.30 5 

0.20 E 

0.10 5 

0.00 z 
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Fig. 5 The electric potential at the simulation midplane is plotted for three different - 
simulations, a) without neutralizing electrons, b) with electrons and a 1 Tesla magnetic 
field in the x-direction, and c) electrons but no magnetic field. 

The result without electrons is slightly less than 500 KeV due to the spreading of the 

beam and loss to the drift tube walls. Allowing electron emission reduces the potential by 

more than a factor of 10 when no magnetic field is present. Late in time, the degree of neu- 

tralization is approximately 0.96. 
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ii. The effect of magnetic fields. 

The magnetic field in the return flux region of a radially insulated acceleration gap is 

primarily transverse to the direction of ion propagation. Electrons will be free to enter the 

beam from the drift tube walls, but will not be able to follow the beam, thus charge-neu- 

tralization will be possible, but not current neutralization. The results of a simulation with 

a 1 Tesla field in the x-direction are shown in Fig. 5. The neutralization is roughly 80%, 

which is considerably worse than for the B=O case. This behavior explains the poor trans- 

port than was observed on the Pulselac experiments? 

- 

We ran several simulations of ion beams injected across an acceleration gap insulated 

by a cusp magnetic field. Since a cylindrical coordinate system cannot be used in QUICK- 

SILVER for a simulation that includes r=O, we used Cartesian geometry as in the previous 

simulations. The cusp magnetic field was calculated using the magnetic field solving code 

ATHETA'. We found that electrons remained tied to the magnetic field lines, even though 

electromagnetic fluctuations developed in the simulation, see Fig. 6. A proton beam is 

injected at a velocity of c/10 and cunent density, J=Jsr26 A/cm2 as determined by Eq. 

(3) assuming a neutralization factor of 0.9. The periodic length, $ was 10 cm, which was 

sufficient to allow electromagnetic fluctuations to develop through instabilities such as the 

diocotron". The magnetic field lines are also plotted and it is apparent that the electrons 

do not migrate across the magnetic field. This is in distinct contrast, to the behavior of 

simulations of light ion diodes, which exhibit significant electron migration across the 

magnetic field lines". The difference in the behaviors of these two systems can be 

explained by the following argument. In the absence of electromagnetic fluctuations the 

electrons move in electromagnetic fields that are independent of time and the y-coordi- 

nate. Thus from Hamilton's equations, the energy and y-component of the canonical 

momentum are conserved. The electron motion consists of cyclotron orbits superimposed 

on an average drift in the E x B direction. Instabilities generate fluctuations that have vari- 

12 



ations in both time and the y-coordinate and thus the energy and canonical momentum of 

the electrons is not strictly conserved. 
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Fig. 6 Grey scale contours of the electron and ion densities from simulations of a proton 
beam injected into a cusp field aie plotted. The magnetic field lines are shown in the top 
figure. Ions are injected from the z=O surface, while electrons are emitted from the upper 
surfaces at x=3 cm. 

However, from Chaos theory we know that a sufficiently smal l  perturbation of an integra- 

ble system will not produce diffusion over the dynamical phase-space. The magnitude of 

the fluctuations is approximately two orders of magnitude larger in the light ion diode sim- 

ulations than for our present simulations. Apparently the fluctuation amplitude for the 

present simulations is too small to generate chaotic electron motion. Note that electrons 

are not emitted from within the accelerating gap, since they would be able to cross t h ~  gap 

upstream and form a counter-streaming electron beam that would significantly reduce the 

efficiency of the accelerator. Thus the central (near the midplane in our Cartesian simula- 

tion) of the beam is not space-charge neutralized. The ion beam charge density is also 
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shown in Fig. 6 (bottom). We have made a detailed comparison of the ion and electron 

density for r > ri (ri is the inner radius of the electron cloud), which indicates approxi- 

- mately 90% space-charge neutralization. The space-charge induced electric field for r < ri, 

exerts a force larger than the inward solenoidal force; thus, this portion of the beam 

expands. This can be seen in Fig. 7, which is a phase space plot of ions exiting the simula- 

tion. 
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Fig. 7 Plot of the ion exit angle as a function of x. 

A laminar equilibrium could be  set up by injecting two different beam densities deter- 

mined by eq. (3) with f=O for r < q and f-O.9 for r > ri. However, any finite transverse 

beam temperature will cause these two beam regions to mix with a resulting increase in 

transverse temperature or emittance. A model of this process wil l  be presented in section 

VI. 
& 
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B. Preformed plasma for space-charge neutralization 

We will show that a background plasma can provide sufficient space-charge neutral- 

ization of an ion beam to allow propagation for several tens of meters without significant 

stripping of the ions. The plasma density needs to be larger than the beam density, but as 

we will show it does not have to be very much larger. The net chagge of the plasma is zero 

and thus when the beam enters the plasma the plasma-beam ensemble will still have a net 

charge. However, the electrons in the plasma will be displaced inward to cancel the extra 

positive space-charge of the beam. The much less mobile plasma ions will remain approx- 

imately in their original position and a positive sheath will develop at the edge of the 

plasma. The electric field outside of the plasma sheath will be as large as it would have 

been without the plasma, but the beam will be effectively screened €tom its own electric 

field as we shall show with the following analytic models and numerical simulations. 

- 

i. Spatially homogenous finite amplitude model of plasma neutralization 

In this model we assume a cylindrically symmetric beam of infinite radius and axial 

extent. The beam density is given as a function of only time. We ignore the motion of the 

plasma ions and only follow the radial motion of the electrons. Since the problem is spa- 

tially homogeneous the radial position of each electron is given by the product its initial 

radial position and a function of time, thus r = roh(t) . Poisson7s equation and Newton’s 

law then lead to a second order differential equation for h(t) given by 

2 
d h  h 1  -+ dz2 (1 +g(Z)A)z = (9) 

where z=%t, a+, is plasma frequency at the initial density, A is the maximum beam density 

normalized to the plasma density and g(z) is the time dependence of the beam density. The 

ratio of beam potential with and without the plasma is then given by 

(b (h2- 1) 
Ah2 * 

- = g(z)+ 
$0 
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Fig. 8 The time dependent position of the electrons 
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Fig. 9 The normalized beam potential as a function of time. 
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Fig. 10 The normalized.potential is plotted as a function of 
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Fig. 11 The normalized electron velocity is plotted as a function of 
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A convenient choice of g(z) is sin(Qz), where i2 = and $, is the ion pulse length. 
W D  

We have integrated eq. (9) for different values of A and d The displacement of the elec- 

trons from their initial position, 6 = - is shown in Fig. 8. As expected, the plasma 

electrons move less and the neutralization is better as the plasma density is increased. Fig. 

- 9 shows the time dependent potential ratio given by eq (10). The maximum ratio of - is 

plotted as a function of $2 in Fig. 10. The normalized electron velocity is plotted as a func- 

r-ro 
10 

Q> 
Q>O 

tion of SZ in Fig. 11. 

Analytic results can be obtained for small values 6 and A. Eq. (9) then becomes 

which for our choice of f(z) has the solution 

(Qsinz - sinQz). A 6 =  
2( 1 - Q2) 

Substitution of eq (12) into eq (10) yields - 0 = Qsinz. Thus the potential fluctuates at 

. This result agrees well with the plasma frequency with an amplitude given by $2 = - 
the A 4 . 0 5  curve of Fig. 10 and surprisingly well with the A 4 . 5  curve. Clearly the plasma 

has to be only a factor of two denser than the beam to effectively space-charge neutralize 

the beam. 

$0 n 

OP tP 

ii. Spatially inhomogeneous infinitesimal amplitude 

In this model we allow the beam to have a spatial variation in the direction of propaga- 

tion given by the expression 

Pb - - Appsin(QA)O(A), 

where A = z - and the theta function is zero for A<O and unity for AM. Linearizing 

the continuity and momentum equations and substituting into Poisson's equation we 

obtain the differential equation 

vi 
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-+p d2P = AsinSZA@(A), 
dA2 

where p is the variation in the electron density. This can be solved by the method of 

Laplace transforms noting that p (A = 0) = p (A = 0) = 0. The result is 

* (sinQ22-Qsinz) 
1 4 2 2  

PT @ 
P b  $0 

At the peak density of each ion pulse this yields - = - E SZ for small values of LI This 

is the same result that we obtained from the previous model. . 

The plasma density needs to be only several times the beam density. The ion current 

density in a light ion fusion accelerator is approximately 1 Wan2 with a beam velocity of 

(2-4)xlO’ m/s and a pulse length of 10-20 ns. Thus the ion density is- (1.5-3)x1Ol2 cm-3 

and GI is less .than 0.004. The results of these two models of plasma neutralization irnplies 

a degree of neutralization better than 99.6%. The beam density is less in a heavy ion accel- 

erator. Thus a lower density plasma could be used. This has the advantage that the beam 

could propagate further before stripping would be a problem, but the degree of neutraliza- 

tion would not be as high. 

iii. Warm electron Boltzmann distribution 

The previous two models dealt with the electrons as a cold fluid solving only for the 

collective oscillatory motion. However, we expect the electrons to be heated by instabili- 

ties. In particular ions are streaming through the plasma, which will drive the two-stream 

instability. We expect the instability to saturate when the electron thermal velocity iscom- 
mvi  parable to the ion streaming velocity, vb, i.e. kT = - . We have constructed a simple 

2 e@ - 
planar model of the electron density profile by assuming that pe = poekT and the ions 

remain essentially immobile. Assuming Cartesian geometry to simplifj the calculations, 

Poisson’s equation can be put into the dimensionless form 
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ldk 
= 

eo X where densities are normalized to the initial plasma density, Y = - 5 = , and h is an kT ’ 
effective Debye length defined by, 

Equation (16) can be integrated once analytically. We performed the second integral 

numerically. 

We find that at the edge of the plasma the electric field is the same as if the plasma 

were not there, but the field decays exponen~dy within the plasma. The scale length is 
the Debye length as one would expect. There is also an electric field at the edge of the 

beam when the Debye length is comparable to the beam half thickness (radius in cylindri- 

cal geometry, see Fig. 12. 
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Fig. 12 The electric field calculated from equation (16) for three different beam radii 
normalized to the Debye length, r&=1,2, and 3, r@=6. Note the inflection OCCUTS at the 
beam radius. 
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Fig. 13 The normalized electric field as a function of the normalized beam radius for two 
different values of the beam to plasma density. 
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The model predicts good space-charge neutralization as long as the Debye length is small 

compared to the beam radius as seen in Fig. 13. In practice this is not a problem for heavy 

or light ion applications. 

iv. Particle-in-cell simulations 

We performed simulations using the two-dimensional particle-in-cell (PIC) code, 

MAGIC'. The numerical technique used in this code is essentially the same as om previ- 

ous description of QUICKSILVER. As an example, particles representing the protons and 

electrons of a hydrogen plasma, with a density of 6 . 2 5 ~ 1 0 ~ ~  ~ m - ~ ,  were initially l6aded 

into the simulation region, which had conducting boundaries at r=2mm and z=O and 2=2 

cm. A Bismuth beam of radius 1 mm was injected at a velocity of 9.4~37 m/s and a current 

density of 3.25 kA/cm2. According to eq. (17) the Debye length should be approximately 

0.7 mm. However, the electrons did not heat up to a thermal temperature comparable to 

the ion velocity and consequently the neutralization is better than would be indicated by 
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the results of the last section. The resulting radial electric field is shown in Fig. 14. The 

unneutralized electric field would be approximately 20 MV/m 
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Fig. 14 The electric field as a function of radius for a simulation of a Bismuth beam - injected into a hydrogen plasma 

v. Ion stripping 

Typical light ion beam current densities are approximately 1 kA/cm2, which at a beam 

velocity of 3.e7 m/s, corresponds to a particle density of 2x1Ol2 ~ m - ~ .  Therefore a plasma 

density of lx1013 cm-3 should be more than sufficient. We have estimated the electron 

impact ionization of the beam ions using the formulas of Lotz". The results indicate the 

beam should travel more than 100 m before ionization. We have calculated the ionization 

cross section of hydrogen and carbon ions using the plane wave Born approximation12. 

We chose lithium to represent light ion fusion applications. The results are shown in Fig. 

15. We chose gold as an example of a heavy ion, see Fig. 16. The cross section decreases 

with ionization state, due to the loss of electrons. 

22 



Fig. 15 The ionization cross section for Li’ on various ions (beam energy-30 MV). 

Fig. 16 The ionization cross section for Au+ on various ions (beam energy-5GeV). 

23 



Examination of Fig. 15 indicates that the ionization cross section should be less than 

lx10-17 em2 for a carbon plasma and less than l ~ l O - ~ * c m ~  for a hydrogen plasma. 

Therefore, a lithium ion should be able to travel approximately 100 m in a carbon plasma 

and up to a kilometer in a hydrogen plasma. The &oss sections are about the same for a 1 

GeV gold ion and typically the beam particle density is lower, so ihese beams could travel 

even further without significant ionization. 

N. Experimental determination of the degree of space-charge 
neutralization 

A. Experimental facility and diagnostics 
* The space-charge neutralization experiments were performed using the Advanced 

Light Ion Accelerator System (ALIAS). The system consists of a 10 ohm, 1 MV water 

blumlein, which drives two transmission lines feeding power to a magnetically insulated 

ion diode. The configuration of the diode is shown in Fig. 17 
I 

f 

Fig. 17 Alias diode configuration 
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A flashover ion source, felt polishing pad, was used with a flux excluding anode. 

Flashover ion sources yield roughly 50% protons. The rest of the ions are dominated by 

various ionization states of carbon. The peak voltage at the diode was approximately 500 

kV yielding proton current densities of roughly 50 A/cm2. The anode emitting regio: was 

from r=5.2-7.8 cm for an area of about 100 cm2. The mylar gas cell foil was nominally 2 

pm thick. We used an unconventional type of Faraday cup, which we call solid state F- 

cups, which were constructed from coaxial cable. Mylar foil was placed between the end 

of the coaxial cable and an end-cap with a hole, see Fig. 18. The film provided electrical 

insulation so these cups did not requke a vacuum as conventional cups do. The foil is thin 

enough so that protons can penetrate and be collected on the central conductor of the coax- 

ial cable. However, this foil plus the gas cell foil would stop carbon ions or other impurity 

ioas. 

. 

Fig. 18 Schematic of the solid state F-cup 

The heating from the ions will vaporized the film and consequently increase the electrical 

conductivity. We estimate that the shunt resistance provided by the vaporized mylar 

should be about 900 !2 based on formulas for the conductivity of mylar induced by elec- 

tron beams13. We tested this by comparing biased and unbiased cups. The results were 

- 
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. 
consistent with our estimate and indicated that we might be underestimating the ion cur- 

rent by about 15%, which is smaller than the shot to shot variation in the ion current den- 

sity. The F-cup measurements were made at a variety of radial and azimuthal locations, to 

determine the transport of the ion beam 

B. Results and discussion 

We conducted three basic experiments. In the first set of shots we measured to ion cur- 

rent density at a position 25 cm down stream from the anode. These measurements were 

made with gas (500 mTorr) in the gas cell to provide charge-neutralization and without 

gas. 

- We compared the ratio of the current densities obtained to determine the degree of 

space-charge neutralization that was achieved without the gas, by assuming that the ion 

trajectories were essentially ballistic when the gas is present. This is not an unreasonable 

assumption since there is a large body of data indicating nearly perfect space-charge neu- 

tralization in gas. The experimental geometry is cylindrical but the radial thickness of the 

beam is small compared to the mean radius of the beam so we shall use Cartesian geometry 

(x  corresponds to radius and y corresponds to azimuth) to analyze the blow up of the beam 

due to space-charge. The envelope equation for a beam expanding due to its own space- 

charge can be calculated by making the usual paraxial approximation and assuming the 

beam current density is uniform at any axial location. The result is 

2 
d x  
dz2 
-- - r, 

aeJoxo 
E ~ M v ~  

where I? = - , a = 1 - f is the unneutralized fraction of the beam charge, J is the 

beam current density, x is the beam thickness, e/M is the charge to mass ratio of the ion, 

VB is the ion velocity, and the subscript 0 refers to quantities at the anode. Equation (18) 

can be integrated twice to yield 
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In the first series of experiments we did not have a measurement of 'the initial divergence 

of the beam near the anode - so we assumed it was zero. Thus the ion current density 

measured with gas was assumed to be roughly the same as at the anode. This was in rea- 

sonable agreement with Faraday cup measurement taken near the anode. The decrease in 

the current density due to space-charge beam blow up could then be used to infer the 

degree of space-charge neutralization that was achieved in vacuum. We then calculae the 

degree of space-charge neutralization from the equation 

where z=25 cm was the transport distance to the F-cups. Our results were consistent with 

an average neutralization of 98% in vacuum, somewhat better than indicated by the 

numerical simulations of section m. Moving the drift tube walls away from the beam 

resulted in a noticeable reduction in the degree of neutralization 

In the second series of experiments we attempted to measure the space-charge neutral- 

ization in the region of the applied magnetic field. This is the region that has been of the 

most concern to accelerators such as Pulselac. The approach was to aperture the be-am at 

two distances from the anode and detect the expanding beam at three different locations 

for each of the apertures. The basic geometry is shown in Fig. 19. The apertures were 

located at two different azimuthal quadrants at 3 and 6 cm from the anode. The aperture 

was centered radially in the beam with a'width of 1 cm. Radiachromic film was placed at 1 

cm intervals from each of the apertures. Each piece of film was displaced azimuthally 

from the next to avoid shadowing. The radiachromic film turns blue when exposed to ion- 

izing radiation such as a proton beam. We scanned and digitized the film to determine the 

beam width at each film location. 



Fig. 19 Schematic of the experimental configuration to measure the space-charge 
neutralization in the applied field region 

We took a series of seven diode shots with 500 mTorr of air pressure in the gas cell and 

with no air (vacuum). The results are shown in Fig. 20. Clearly the beam transport is better 

with the 500 mTorr of air. It should be noted that the beam was blowing up pretty badly 

before it entered the fist aperture. This was probably due to the felt anode, which is con- 

- venient to field, but does not produce a high quality beam. We used the envelope equation 

(19) to determine the charge-neutralization by performing a least square fit to this experi- 

mental data. The best fit indicated a charge-neutralization of 93% for the gas fill and 83% 

for the vacuum shots. The value of 83% for vacuum transport in the presence of an applied 

field is very close to what we would expect ikom the simulations presented in section JII. 

We were somewhat surprised that the gas transport was not better. The low neutralization 

may be due to the low ion current density (50 A/cm2) as compared to most light ion exper- 

iments where the current density exceed 1 kA/cm2. Thus although the gas density is 

1 . 5 ~ 1 0 ~ ~  ~ m - ~ ,  the plasma density could be much lower. 
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Fig. 20 The measured thickness of the beam as a function of radiachromic film location. 
One cm apertures are located at 3 and 6 cm. The squares are for vacuum transport, the 
circles are for 500 mTorr of air. The error bars are one standard deviation calculated from 
the shot to shot variation. 

We fabricated carbon spark gaps to pre-m the drift region of the diode with plasma. 

The spark gaps were nominally 1 mrn and were coated with a carbon based aerosol. Six 

gaps were driven in series at a spacing of 1 cm along a strip line oriented in the axial direc- 

tion. Twenty four of these strip lines were arranged azimuthally around the diode on the 

inner beam drift tube wall as depicted in Fig. 21. We tested the output of one of the spark 

gaps by using probes with two grids. The first grid was biased negative to stop electrons. 

The voltage on the second grid was varied over positive potentials to stop a portion of the 

ions. From this data we were able to determine that roughly 60% of the ions were C&, 

20% were protons and the rest dominated by various ionization states of carbon. We also 

were able to measure the plasma flux and estimate that a plasma density greater than 

lx1013 cm-3 should be produced at 1-2 cm from the gaps. 
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Fig. 21 Schematic of the plasma injection experiments 

I 

- Fig. 22 Beam image at various radiachromic film locations for shots with and without 
plasma. 
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The gaps were spaced at 1 cm so that the plasma from each spark should overlap wih the 

adjacent spark at the position of the apertured beam. In fact, it was clear fiom the images 

on the radiachromic film that the overlap was barely adequate and most of the time the 

plasma was pretty nonuniform over the transport region of the beam. Despite the crude- 

ness of our set up, the data indicates that the transport was improved by plasma injection. 

Fig. 22 shows the results of 10 shots without plasma and 11 shots with plasma. The beam 

expansion is less with the plasma injection. 

V. Radial magnetic field linac 

A. Introduction 

In the last two sections we presented theory and experiments on the degree of space- 

charge neutralization that can be obtained in vacuum and in plasmas. We found that 96% 

neutralization was obtainable in vacuum as long as no magnetic field is present. However, 

a magnetic field of only 1 Tesla significantly reduced the degree of neutralization even 

when the magnetic field was normal to the surface emitting the electrons. The neutraliza- 

tion is negligible if the magnetic field is tangent to the emitting surface. This result 

explains the poor transport that was observed in the return flux region of the radially insu- 

lated pulselac experiments. Our results on plasma neutralization indicate that this problem 

could be solved by injecting plasma into this region. We will now address another poten- 

tial problem. 

The acceleration of ions in a magnetically insulated gap must be balanced by an equal 

and opposite force on the electrodes. Since the electric field can be nearly zero at both the 

anode and the cathode, due to space-charge-limited emission at these surfaces, most of 

this force is delivered to the electrodes through the magnetic field. In a single-stage ion 

diode the force is primarily delivered to the anode by a local increase in the magnetic field 

on the anode side of the virtual-cathode. This increase in the anode magnetic field is 
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caused by the displacement of the virtual-cathode flux surface toward the anode by the 

JXB force of electrons within the sheath. The virtual-cathode flux surface is squashed up 

against the anode and assumes the approximate shape of the anode. This behavior allows 

one the control the focussing of the diode by shaping the anode surface. However, in a 

multi-stage diode there may be no surface to squash the virtual-cathode flux surface 

against. Consequently’ the magnetic flux surfaces can become significantly bowed and this 

could cause excessive beam focussing. One could place a grid or a foil on the up-stream or 

down-stream side of each acceleration gap to control the shape of the virtual-cathode, but 

- clearly this adds significant complexity to a multi-stage accelerator. Furthermore, both a 

grid and a foil would add divergence to the beam and a foil would strip the ions. We 

present analytic calculations of the distortion of the virtual-cathode flux surface. The 

results indicate that magnitude of the distortion may be acceptable for a two-stage diode 

with beam parameters suitable for driving fusion. Increasing the number of stages will fur- 

ther decrease the bending of the virtual-cathode. 

B. Calculations 

We assume a Cartesian geometry to as shown in Fig. 23 to simplify the calculations. 

This is a reasonable approximation since Ar << r. An initial magnetic field, Bo, is applied 

in the z-direction. The ion beam is incident from the left and is accelerated across the gap 

by a voltage V2 A virtual-cathode is formed along the flux surface attached to the down 

stream electrode. The deformation of this flux surface is shown schematically. The electric 

potential is constant along the virtual-cathode and so the ions are focussed. We shall 

assume that the electron sheath is very thin (the super-insulated model). The problem can 

then be divided into two regions. Upstream fiom the virtual-cathode (region 1) and down- 

stream from the virtual-cathode (region 2). We shall ignore the electric current of the ion 

beam in this calculation and thus Amperes law then reduces to Laplace’s equation in both 

regions. 
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Fig. 23 Schematic of an acceleration gap with a virtual cathode 

Thus we have the separable equation 

2 2 
a ~ ,  a ~ ,  
ax2 a p  V2AY =-  +- = 0, 

where Ay is the vector potential in the y-direction. The vector potential can be divided into 

two components, +=B@+A where the first term is due to the applied magnetic field and 

the second term is due to electron sheath current in the virtual-cathode. We assume that on 

the beam acceleration time scale the drift walls are essentially perfect conductors and thus 

A=O at these surfaces. We have shown foils (or grids) at x=O and x=x1 in Fig. 23 to repre- 

sent the possible location of a foil or a grid. Thus we set A=O for lzl =Q, x=O, and x=xl. 

Note, that there is no wall at lzl=q, within the acceleration gap. We have ignored this, 

which should be a good approximation as long as the gap is small compared to 2%. Thus 

we obtain 



A, = zAlnsinh(anx)cos(anz) 
n 

A, = ~A,ne~xsinh[an(x-xl)]cos(anz) 
n 

where an = (n + k): . Let the position of the virtual cathode be %-6x, where 

6x = ~ x n c o s a n z .  
n 

Keeping first order quantities we obtain 

A1n x, = - sinh (anx,) 
BO 

Since we have assumed that the electron sheath is thin, the magnetic force exerted on the 

virtual-cathode is due to the jump in magnetic pressure across the sheath, that is 

where VI is the effective voltage of the ion entering the acceleration gap. 

where AB AB If we assume B,, = Bo + - and B,, = Bo- - we obtain AB, = - 
B, = -. Using this jump condition we can find the coefficients A,,, A2n, and X,. The 

result is 

2 ’  BO 2 
dA 
dx 

sinhanxosinha,(XO - x,) 
X, = -zOR D, 

P sinh anxl 



n L P  
where Rp = - - ' andDn = (-'In The deflection of the virtual-cathode at the 

Bo2 [(n + t).]z 
midplane of the beam (A) is maximized by letting % and xl-% go to infinity. The result is 

We have run a series of TWOQUICK simulations to test this analytic theory. The results 
are shown in Fig. 24 
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Fig. 24 TWOQUICK simulation points (squares) are compared to theory (line) 

We can define the normalized shape function 

It is instructive to consider the situation where only one foil or grid is present at a distance 

xf from the virtual-cathode. Assuming an upstream foil we set xf=% and let x1 go to infin- 

ity, for a down-stream foil, we set xfxl-% and let % go to infinity. The shape of the vir- 

tual-cathode is the same in either case and is plotted in Fig. 25. - 
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Fig. 25 The virtual-cathode shape curves are labelled with the value of X~/ZO. 

The flattening of the virtual-cathode for small xf is clearly evident. This is due to the 
magnetic field pressure against the foil. It is also clear from the figure that when xf/q-p1.6 
there is no change in the shape of the virtual-cathode. This is because the force imparted on 
the ion beam is distributed onto the wall (z=q). The magnitude of this force decays roughly 
exponentially with distance from the virtual-cathode. The scale length is approximately zo 
and thus placing a surface at a distance greater than zo from the virtual-cathode will have 
little effect. 

C. Summary 

The results can be summarized by the formula 

where %f is the effective focal length of the beam after acceleration through the gap with 
a curved virtual-cathode, 220 is the thickness of the beam in the direction of the applied 
magnetic field, VI is the kinetic energy of the ion corning into the acceleration stage, Vz is 
the voltage across the gap, and Rp is the ratio of the beam induced pressure to the magnetic 
field pressure given by the formula 
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where J is the ion beam current density, Bo is the applied magnetic field, M/Q is the charge- 
to-mass ratio of the ion. 

VI. Multicusp accelerator - 

A. Emittance growth 

The solenoidal focussing force acts as an effective transverse potential well given by 

the expression 

qB%2 
Q,B = m. (35) 

The potential due to the space-charge of the ions can be found fiom Poisson's equation 

v2a?s, = - ( l - f ) ,  P 
EO 

where we shall assume that f=O for r < ri and is fo for r > ri, where ri is the minimum radius 

of the magnetic flux surface that intersects the cathode at the acceleration gap. Since the 

electrons are tied to the magnetic field lines, this is also the minimum radius that electrons 

can space-charge neutralize the beam. In section II we estimated the distance that ions wil l  

travel before they obtain a random transverse energy spread. Once this has occurred the 

beam density can be found from the Boltzmann relation 

I 

- e@ 

p = poe kT, 

.. 
(37) 

where po is the beam density at the center of the beam and Q, = aSc + aB. 

We solved these equations numerically and found that solutions only exist above a mini- 

mum beam temperature, T- The results can be expressed in terms of two dimensionless 

variables I' = 9 and . 
P v  



EoeZB2 
M is the beam density that would be balanced against the inward mag- where pv = 

netic force. The parameter 0 is plotted as a function of F in Fig. 26. The ion divergence 

can be obtained fiom Eq. (38), the magnetic insulation condition-eq. (2), and the relation 

, where VB is the beam final velocity. The result is ‘‘mi, (Ae)2 = - * Mvi 

were V, is the critical insulating voltage of the accelerating gap and rb is the outer radius 

of the ion beam. The beam emittance is obtained by multiplying eq (39) by rb 

1 10 
r 

Fig. 26 The dimensionless parameter 0 is plotted as a function of the dimensionless 
parameter F . 
Low divergence can be obtained by keeping the beam density in the unneutralized region 

as close to p, as possible, Le. F = 1 . In practice, I? will always be somewhat larger than 1, 
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because of aperture focussing at the acceleration gaps. Thus we can expect 0 to be of 

order unity. 

B. Feasibility as a fusion driver 

The beam requirements to drive inertial confinement fusion (ICF) capsules are 

extremely challenging. Numerical design calculation~'~ of ICF capsule performance indi- 

cate optimal beam coupling is obtained for ions with a range of approximately 20mg/cm2 

in gold. This corresponds to a velocity of roughly 0.15~. A total beam power, PT=700 TW 

is needed on a capsule with a radius, rT, of 1 cm. The final focus, LE of the beam must be 

at least 2 m from the capsule to ensure survival of the hardware. Therefore, the beam 

divergence given by Ae = - must be less than 5 mad. This requirement could be 

relaxed if self-pinch transport works, allowing the focal length to be reduced to less than a 

meter. The beam brightness represents an overall figure of merit, which we can use to 

determine the feasibility of the multicusp accelerator approach. The field coils and support 

hardware for the final focussing magnets wil l  reduce the total area that can be occupied by 

the beam. We estimate that the total beam area at the focussing element is given by 

Nbn$ = nL!, where Nb is the number of beams. Therefore, the beam brightness 

required for ICF is 

rT 

LF' 

The maximum beam brightness that can be achieved with the multicusp accelerator 

approach can be determined from the relation 

FBJVF 
BB = 

where FB is the beam bunching factor, and VF is the final voltage of the ions. Usipg eqs (3) 

and (39) we obtain 



FB~oBc4MP3Ns& 
BB = 

(1 -f)qL,O 

where Ns is the number of acceleration stages. Setting BB > BB, we obtain the condition 

3.0~ lo3 ( 1 - f)L,O 

P3AFd3& * 
Ns ' (43) 

The physics behind this result is that increasing the number of acceleration stages 

decreases the voltage on each acceleration stage, thus V, is smaller and so is ri, reducing 

the transverse potential at the center of the annular beam. The number of stages N,=lOO 

for the set of parameters, e.g. A=39, f4.9,  J+=2m, @=1.0, FB=2, B=5, N~=20, and 

P=O.l5. Assuming that the final beam energy is 400 MeV, each stage will have 4 MV 

applied to it. The over all length of the accelerator would be determined by the inductive 

core material'and should be about 200 m, which is considerably shorter than a conven- 

tional heavy ion accelerator. However, in section 11 we showed that a high degree of neu- 

tralization (better than 95%) would be required if the accelerator is longer than about 125 

m. Therefore, the lack of space-charge neutralization at the center of the beam does not 

- 

strictly rule out the potential advantages of this accelerator concept as a driver of ICF, but 

high degrees of charge neutralization will be required. The only approach that seems feasi- 

ble is to use plasma injection. 

There are other important issues, which must be studied to determine the feasibility of 

the multicusp approach. One issue is the aperture focussing at each acceleration stage. 

This focussing can be significantly stronger in the multicusp accelerator than in a conven- 

tional linac, because of the formation of a virtual cathode on the down-stream side of the 

acceleration gap. Another issue is the accuracy that the focussing forces can be balanced 

against the outward space-charge forces, since the net imbalance will create beam emit- 

tance. This has been studied by numerical simulation. An example simulation is described 

in the next section. 



VII. Multicusp accelerator simulations 
We used the code TWOQUICK to study the multicusp accelerator concept. The injec- 

tion stage is critical to the success of any multistage accelerator. A geometry and applied 

magnetic field @=lo Tesla) of a cusp insulated injector is shown in Fig. 27. 

Fig. 27 An injector insulated by a cusp magnetic field 

The main challenge of designing the injector is to determine the correct shape of the anode 

emitting surface. The object is get the beam to enter the virtual-cathode with no radial 

component to the velocity. Since the beam is not space-charge neutralized until it crosses 

the virtual-cathode there will be an outward force. Thus the beam must be given a small 

inward radial velocity component by slanting the anode emitting surface as shown sche- 

matically in Fig. 27. TWOQUICK can only a generate rectangular mesh in the r-z plane, 

but it is capable of emission off of diagonals across this mesh. Still this is not enough free- 

dom to accurately determine the shape of the anode surface so that ions entering the vir- 

tual-cathode will have no radial motion. We were able to get an approximate shape and it 



appears that given a code with boundary fitted coordinates, a suitable injector could be 

designed. The radial ion density profile must also be suitable. The desired current profile is 

roughly a step function at q, J=J,, [eq (3)] with f=O for r < q and f determine by effective- 

ness of the neutralization process for r > ri. We assumed 30 MV of acceleration per stage 

in spite of the results of the last section to get the final energy up closer to that of a fusion 

driver. Assuming singly charged potassium ions and f a ,  Jsx=1.4 Nan2. The ion current 

& 

density will depend on the effective accelerating gap. Some insight into this dependence 

can be gained by considering the Child-Langmuir equation 

which is the one dimensional space-charge-limited current. The gap between the anode 

and the virtual-cathode is a monotonically decreasing function of radius and thus injector 

will generate an ion current density profile that increases with radius. The effective gap for 

r < ri should be approximately 30 cm for our case. I€ we assume that 100 Ncm2 can be 

neutralized for r > ri (98.6% neutralized) the effective gap must be about 3.5 cm. This is a 

rather large variation in the accelerating gap. The low current densities required for r < ri 

could be attained by recessing the central portion or by providing an ion source over only 

a fraction of the available area. 

c 

Beam propagation after the injector depends of the balance of the radial forces aver- 

aged over the ion trajectories. We separated the difficulties of designing the injector from 

subsequent beam propagation by numerically injecting a perfectly laminar beam into the 

simulations, with a spin consistent with the axial magnetic field. The injected beam cur- 

rent density was set by eq. (3) with f=O for r < q. Various current densities were tried for 

- r > ri7 Typically using too large a beam current density resulted in the beam expanding 

into the drift tube walls. The inward forces consist of the solenoidal force already consid- 

ered and electrostatic forces at the acceleration gaps (aperture focussing). Equipotential 

surfaces within the gap can be found from the equation 
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jx2 = [ J E G  - &I [ J K v  + 2&12, . (45) 

were w is the ion energy normalized to the gap voltage, Y is the potential normalized to 

the diode gap, x=d& where do is the gap determine by the Child-Langmuir equation, and 

j = -  16J . Equation (41) can be used to determine the appropriate accelerating gap be 
9JCL 

setting Y = 0. This sets the E=O surface at anode and minimizescurvature of the equipo- 

tential surfaces. Maintaining this condition requires that the acceleration gaps increase 

with distance down the accelerator as seen from the following table 

0 1.0 1 .o 
I 1 I 2.2 I 1.5 I 

Slanting the electrodes that feed power into the gap in a manor analogous to Pierce elec- 

trodes can be used to counter the outward space-charge of a finite beam. The appropriate 

shape can be found from eq. (45) by analytic continuation off the real axis. The resulting 

shapes are shown in Fig. 28. IncreasingJdecreasing the slant of these feeds beyond that cal- 

culated results in a net inward/outward force at each gap. This is one degree of fieedom 

that can be used to balance the radial forces on the beam. 

Previous simulations have indicated that passive neutralization of the ion beam is not 

adequate, because the accelerating electric field pulls more electrons into the beam near ri 

than at larger radii. This effect can be reduced by injecting plasma in the region just down 

stream of each accelerating gap. 
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0.0 0.5 1.0 1.5 2.0 
X 

Fig. 28 Generalized Pierce electrode shapes 

A snap shot of a simulation of five stages of acceleration using all of these consider- 

ation is shown in Fig. 29. The beam in injected from the left side. The injected current 

density is 100 Nan2 for r > Q = 9 cm. The current density is 1.4 Nan2 for r < rp Nearly 

100% of the beam exits the simulation on the right hand side. However, a real accelerator 
- 

would have to be considerably longer than this simulation, due to the requirement that 

each acceleration stage be inductively isolated from the next. A longer accelerator would 

require a more accurate balance between the inward focussing force and the outward force 

due to the net beam space-charge. The radial divergence of the ion beam was approxi- 

mately 30 mrad at the end of the simulation. Clearly low emittance and intense focussing 

will be =cult to achieve with the multicusp accelerator configuration. The generation of 

neutrons may be a promising application for this type of accelerator, since a very high 

quality beam is not required. Furthermore, protons can be used to generate neutrons and 

from eq (3) we see that solenoidal transport is well suited to low mass ions 
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Fig. 29 The magnetic field, electron density, and ion density of a simulation of five stages 
of a multicusp accelerator 

VIII. Conclusions 
We have studied the possibility of using space-charge neutralization to increase the 

current that can be transported in an ion induction linac. We have presented 3-D PIC sim- 

ulations of ion beams neutralized by electrons emitted from the drift tube walls. The neu- 

tralization factor was approximately 96% when no magnetic field was present. However, 

the acceleration gaps must be magnetically insulated due to the presence of electrons. We 

found that a field of only 1 Tesla normal to the surface reduced the neutralization factor to 

approximately 80%. This explains the poor transport that was observed in the return flux 

region of the pulselac experiments that used a radial magnetic field to insulate the acceler- 

ation gaps. We have presented analytic calculations and numerical simulations of the 

space-charge neutralization of an ion beam by a preformed plasma, which indicate that a 

plasma injected into the return flux region could remove this problem. We tested plasma 

injection experimentally using the ALIAS facility and found a significant reduction in the 



beam space-charge. However, the radial field geometry requires field coils inside of the 

beam and support structure for these coils. These supports will be struck by the beam and 

cause out-gassing of material that can cause stripping of the beam ions. Furthermore, the 

support structures will be eroded, which posed some practical difficulties for a reactor sce- 

nario. Perhaps these difficulties can be overcome by some kind of beam divertor to keep 

ions from striking the support structures. Another approach is to only use field coils aut- 

side of the beam. This will set up a cusp magnetic field. We performed 3-D PIC simula- 

tions of a beam injected across acceleration gaps insulated by such a cusp field. We found 

- that electrons leaving the drift tube walls effectively neutralized an annular region of the 

beam, but the electrons were tied to field lines and could not neutralize the central portion 

of the beam. We then developed a simple model of the beam emittance induced by the 

nonneutralized portion of the beam. The model indicates that a large number of stages are 

required for a multicusp accelerator to generate a beam brightness sufficient to drive 

fusion. We performed 2-D PIC simulations of a multicusp accelerator. The beam emit- 

tance is determine by the degree of balance between the focussing forces and the net 

space-charge forces. The divergence of the beam at the end of six stages of acceleration 

(180 MeV potassium) was approximately 30 mad, which is too large to focus on a fusion 

capsule. It is not clear how small the divergence could be made with careful design. We 

believe that the multicusp accelerator is better to suited to applications that do not require 

. low beam divergence such as generating neutrons by accelerating protons, which are 

strongly focussed by the solenoidal field. 

We developed general arguments that suggest that a space-charge neutralized light to 

medium mass ion accelerator using just a few stages and relatively short overall length 

will probably have the best chance of producing the beam quality needed to drive fusion 

targets. The radial field geometry is probably most suited to this type of acceleration 

scheme if the issue of the support structures can be solved. 

46 



- 
References 

a 

1 P. Dreike, C. Eichenberger, S. Humphries, Jr., and R. N. Sudan, J. Appl. Phys. 47,85 

(1976); S. Humphries, Jr., R. N. Sudan, and L. Wdey, J. Appl. Phys. 47,2382 (1976). 

2 S .  Humphries, Jr. J. Appl. Phys. 49,501 (1978)., 

3 D. J. Johnson and T. R. Lockner, J. Appl. Phys. 61,20 (1987). 

4 S. Humphries and J. Poukey, Particle Accelerators, 10, 107 (1980). 

5 0. Batishchev, V. Golota, V. Karas, V. Kiyashko, E. Kornilov, Y. Sigov, I. Silaev, and 

Y. Fainberg, Plasma Phys. Rep. 19,313, (1993). 

6 E. Stuhlinger, Ion Propulsion for Space Flight, (McGraw-Hill, New York, 1964), p. 

232. . 

7 D. B. Seidel, M. L. Kiefer, R. S. Coats, A. L. Siegel, and J. P. Quintenz, “QUICKSIL- 

VER-A 3-D, electromagnetic, PIC code,” in Proc. 12th Conf. Numerical Simulation 

of Plasmas, San Francisco, CA, paper PT-24,1987. 

8 D. B. Seidel, M. L. Kiefer, R. S. Coats, T. D. Pointon, J. P. Quintenz, and W. A. 

Johnson, in Computational Physics, edited by A. Tenner (World Scientific, Singapore, 

1991), pp. 475-482. 

9 J. P. Quintenz and D. B. Seidel, M. L. Kiefer, T. D. Pointon, R. S. Coats, S. E. 

Rosenthal, T. A. Mehlhorn, M. P. Desjarlais, and N. A. Krall, Laser and Particle 

Beams, 283, (1994). 

10 T. D. Pointon, M. P. Desjarlais, D. B. Seidel, S. A. Slutz, R. S. Coats, M. L. aefer, 

Phys. Plasmas, 1,429, (1994). 

11 W. Lotz, Zeitschriftfur Physik, 216,241 (1968). 

12 Eugene J. McGuire, Lasers and Particle Beams, 13,321, (1995). 

13 D. J. Johnson, S. R. Kurtz, andM. A. Sweeney, J. Appl. Phys., 61,5314, (1987). 

47 



14. R. E. Olson, G. 0. Allshouse, D. L. Cook, T. R. Lockner, M. G. Mazarakis, C. L. 

Olson, D. L. Smith, in: 15th IEEE/NPSS Symposium on Fusion Engineering Vol I, p. 
0 

189,1993,(IEEE catalog number 93CH3348-0) 

48 



distribution 
4 

2 

1 

3 

2 

2 

1 

1 

Cornell University 
Laboratory of Plasma Studies 
Attn: RN. Sudan 

D. A. Hammer 
J. B. Greenly 
B. R. Kusse 

369 Upson Hall 
Ithaca, NY 14853 

Gesellschaft fuer Schwerionenforschung 
Attn: Rudolf Bock 

Ingo Hofmann 
P. 0. Box 110552 
D-64220 Darmstadt, Germany 

I.N.R., Forschungzentnunkarlsruhe 
Attn: Hans Bluhm 
Postfasche 3640 
D-76021, Karlsruhe, Germany 

Lawrence Berkeley National Laboratory 
Attn: R. 0. Bangerter 

1 CyclotronRd 
Berkeley, CA 94720 

E. P. Lee 
A. Faltens 

Lawrence Livermore National Laboratory 
Attn: A. Friedman L-440 

B. G. Logan L481 
P.O. Box 551 1 
7000 East Ave 
Livermore, CA 94550 

Naval Research Laboratory code 6771 
Attn: P. F. Ottinger 

F. C. Young 
Washington, DC 20375 

Universitaet Erlangen 
Attn: D. H. H. Hoffmann 
Erwin-Rommel-Str. 1 
91058 Erlangen, Germany 

Stanford Linear Accelerator Center 
Attn: W. B. Hemannsfeldt 
P. 0. Box 4349 
Stanford, CA 94309 

49 



1 

1 

1 
1 
1 
10 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
5 
2 

QM Technologies 
Attn: T.R. Lockner 
3701 Howkins St. NE 
Albuquerque, NM 87109 

S. Humphries, Jr 
13407 Sunset Canyon Dr. NE 
Albuquerque, NM 871 11 

MS-0 188 
MS-0151 
MS-1186 
MS-1186 
MS-1186 
MS-1186 
MS-1186 
MS-1187 
MS-1187 
MS-1187 
MS-1187 
MS-1190 
MS-1193 
MS-1193 
MS-1193 
MS-1193 
MS-1193 
MS-1193 
MS-1195 
MS-1196 
MS-1196 

4523 
9000 
9541 
9541 
9541 
9541 
9541 
9533 
9533 
9571 
9571 
9500 
953 1 
9531 
9531 
953 1 
9531 
9531 
9502 
9577 
9577 

C.E. Meyers 
G. Yonas 
C. Qlson 
S .  A. Slutz 
M. P. Desjarlais 
J. Poukey 
M. Sweeney 
T. A. Mehlhorn 
A. Filuk 
K. Matzen 
E. McGuire 
D. E. Cook 
J. E. Maenchen 
M. Cuneo 
D. J. Johnson 
M. Mazarakis 
P. primm 
T. Renk 
J. P. Quintenz 
R. Leeper 
J. Bailey 

MS-9018 8940-2 Central Technical Files 
MS-0899 4414 Technical Library 
MS-0619 12690 Review and Approval Desk For DQE/QSTI 

50 


	Introduction
	Focussing constraints on ion induction linacs for inertial fusion
	Vacuum
	Preformed plasma for spacecharge neutralization

	Experimental determination of the degree of space-charge'neutralization
	Results and discussion

	Radial magnetic field linac
	Introduction
	Calculations
	Summary

	Multicusp accelerator
	Emittance growth
	Feasibility as a fusion driver

	Multicusp accelerator simulations
	Conclusions
	References
	A schematic of an acceleration gap for a conventional induction linac
	Schematic of an accelerator gap using aradial magnetic field
	A schematic of an acceleration stage of a multicusp accelerator
	Simulation geometry to study vacuum neutralization
	The electric potential at the simulation midplane
	Grey scale contours of the electron and ion densities
	Plot of the ion exit angle as a function of
	The time dependent position of the electrons
	The normalized beam potential as a function of time
	The normalized potential is plotted as a function of Cl
	The normalized electron velocity is plotted as a function of CIk
	The calculated electric field calculated
	The electric field as a function of the beam radius
	The electric field as a function of radius
	The ionization cross section for Li+
	The ionization cross section for Au+
	Alias diode configuration
	Schematic of the solid state F-cup
	Schematic of the experimental configuration
	The thickness of the beam as a function of location
	Schematic of the plasma injection experiments
	Beam image at various radiachromic film locations :
	Schematic of an acceleration gap with a virtual cathode
	TWOQUICK simulation points are compared to theory
	The virtual-cathode shape curves
	Beam temperature is plotted as a function of density
	An injector insulated by a cusp magnetic field
	Generalized Pierce electrode shapes
	Snapshot of a simulation of five stages of a mdticusp accelerator

