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ABSTRACT 

An efficient, scalable, parallel algorithm for treating contacts in solid mechanics has been applied 
to interactions between particles in smooth particle hydrodynamics (SPH). The algorithm uses a dynamic 
processor load balancing scheme for the contact and SPH portion of the calculation.' 

INTRODUCTION 

Combining finite elements and smooth particle hydrodynamics is attractive for simulations where 
part of the problem is undergoing deformations that are larger than the finite element method can accom- 
modate, Swegle and Attaway( 1999, and Tieszen, Attaway, Swegle and Slavin (1996). Implementing a 
hybrid mesWparticle model on a massively parallel computer poses several challenges. First is to simulta- 
neously parallelize and load-balance the mesh and particle portions of the computation. Secondly chal- 
lenge is to efficiently detect contacts that occur withinthe deforming mesh and between mesh elements 
and particles as the simulation proceeds. In our approach, we use three different parallel decompositions, 
a static one for the finite element analysis, and two different dynamic decompositions for SPH particles 
and contact detection. 

The contact-detection problem poses interesting challenges for efficient implementation of a solid 
dynamics simulation on a parallel computer. The finite element mesh is typically partitioned to allow 
each processor ownership of a localized region in the finite element mesh. This mesh partitioning is opti- 
mal for the finite element portion of the calculation, since each processor must communicate only with 
the few connected neighboring processors that share boundaries with the decomposed mesh. However, 
contacts can occur between surfaces that may be owned by any two arbitrary processors. Hence, a global 
search across all processors is required at every time step to search for these contacts. Load-imbalance 
can become a problem, since the finite element decomposition divides the volumetric mesh evenly across 
processors, but typically leaves the surface elements unevenly distributed. 
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Smoothed particle hydrodynamics (SPH), Gingold and Monaghan (1982), Swegle, et al(1994), is 
a gridless method that computes spatial gradients of various quantities as a sum of pairwise interactions 
between a particle and its neighbors. The advantage of gridless methods like SPH is that they can handle 
large deformations that are typical of fluid like motion. During each time step, a search is performed to 
determine the neighboring SPH particles that will be included in the spatial gradient calculation. SPH ele- 
ments can be added to finite element programs by treating the SPH interpolation points as special element 
types. Coupling of the SPH particles to the finite element mesh is achieved using a contact algorithm, Att- 
away, Heinstein, and Swegle (1994). 

Developing an efficient parallel algorithm for SPH is difficult, because the search for neighboring 
SPH particles can be global in nature. Load-imbalance can also be a problem for the SPH, since the 
geometry can change a great deal during the problem simulation. We use a different decomposition 
scheme for assigning surface elements to processors than is used for the volumetric finite element mesh. 
The algorithm uses a static decomposition for the finite element mesh, a dynamic decomposition for 
determining the contacting surfaces, and an adaptive decomposition scheme for the SPH portion of the 
calculation. We found, in practice, that the contact algorithm is scalable to hundreds of processors. In the 
rest of this short paper, we will describe the basics for the dynamic decomposition scheme and outline the 
steps required to parallelize the finite element, contacts, and SPH portions of the algorithm. 

TIMESTEP FOR TRANSIENT DYNAMICS 

The basic steps for a single timestep for a combined finite element/ SPH calculation with contacts 
are outlined below: 

1. Compute internal FE forces assuming no contacts 
2. Compute internal SPH forces assuming on contacts 
3. Predict motion by integrating equation of motion 
4. Detect mesh/mesh and particle/mesh contacts 
5. Correct motion using penalty force between contacts 
6. Update the position of mesh and particles 

In step (l), the FE portion of the timestep is performed. Within a single timestep in a explicit 
timestepping scheme, each mesh element interacts with only the neighboring elements it is connected to 
with the topology of the FE mesh. These kinds of FE calculations can be parallelized straighforwardly. 
The key is to assign each processor a small cluster of elements such that only a handful1 of neighboring 
processors are involved in interprocessor communications through exchange of information on the cluster 
boundary. A static decomposition of the elements to the processors is sufficient, since the mesh connec- 
tivity does not change during the simulation. We use a software package called Chaco, Hendrickson and 
Leland (1999, as a pre-processor to partition the FE mesh. With this method, the interprocesor commu- 
nications is minimized and each processor has an equal number of elements. In practice, the resulting FE 
computations are well load-balanced and scale efficiently (over 90%) when large meshes are mapped to 
thousands of processors. 



In step (2), the SPH portion of the timestep is performed. The details of how SPH generates the 
velocity gradient and the stress divergence are outlined in Attaway, Heinstein and Swegle, (1994). For 
parallel considerations, the key concept is that two SPH particles interact if their spheres of local support 
overlap, An efficient parallel implementation of SPH has two requirements: (1) the number of SPH parti- 
cles per processor must be balanced, and (2) the spatial region owned by a processor must be geometri- 
cally compact, enabling neighbors to be found quickly with a minimum of communication. A dynamic 
decomposition is required, since the spatial density of SPH particles can change quite dramatically over 
time. 

We use recursive coordinate bisectioning (RCB) as a dynamic decomposition technique for the 
SPH elements. The RCB technique assigns a simple rectangular sub-domain to each processor which 
contains an equal number of particles. The technique has the advantage that it is efficient to implement on 
a parallel computer. It also has the property that a small change in the positions of the points being bal- 
anced induces only a small change in the partitions. 

RECURSIVE COORDINAm BISECTIONING 

The recursive coordinate bisectioning (RCB) algorithm we used was first proposed as a static 
technique for partitioning unstructured meshes (Berger and Bokhari, 1987). Figure 1 shows a graphical 
picture of how a RCB decomposition progresses. The goal of the RCB algorithm is to divide equally 
among P processors the combined set of N points. The first step in the RCB is to choose one of the coor- 
dinate directions, x, y, or z. for bisectioning. For this first cut, we chose the direction that results in the 
sub-domains being as cubic as possible. The next task is to position the cut, shown as the dotted line in 
the figure, at a location which puts half the points on one side of the cut, and half on the other. This step is 
equivalent to finding the median of a distributed set of values in parallel. 
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Figure 1. Left: First Cut of RCB operation. Right: Final Partitioning for eight processors. 

To find the median, we use an iterative algorithm. First, we select the geometric midpoint of the 
box. Each processor counts the number of points it owns that are on one side of the cut. Summing this 
result across processors determines which direction the cut should be moved to improve the median 
guess. In practice, we find a suitable cut that partitions the points exactly within a few iterations. Then, 
we divide the processors into two groups, one group on each side of the cut. Each processor sends its 
points that fall on the far side of the cut to a partner processor in the other group. Likewise, each proces- 
sor receives a set of points that lie on its side of the cut. 
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Thus, we can recurse on these steps until we have assigned N P  points to each processor. The final 
geometric sub-domain owned by each processor is a regular parallelepiped. Note that it is simple to gen- 
eralize the RCB procedure for any Nand non-power-of-two P by adjusting our desired “median” criterion 
at each stage to insure the correct number of points end up on each side of the cut. 

PAFWLLEL CONTACTS 

The contact detection in Step 4 requires determining if a node on a FE mesh or a SPH particle 
crosses an exterior surface on the FE mesh. This step is performed in two parts. First, a global search is 
performed to locate all surfaces that are near a given node or particle. A detailed check is then performed 
to determine the best contact surface. See Heinstein, M.W., Attaway, S.W., Mello, E J., and Swegle, 
J.W.,(1993) for a more detailed description. 

Parallelizing the contact detection is difficult. If we use the FE decomposition to perform the con- 
tact search, load-balance can become a serious problem. Some processor in the FE decomposition may 
own sections of the mesh that are completely interior. In addition, communication can overload the calcu- 
lation, since a global search is required. We use the same RCB approach described above to dynamically 
balance the collection of contact nodes, SPH particles and contact surfaces. See Attaway, Hendrickson, et 
al(1996) for a more detailed description of the parallel contact algorithm. 

RESULTS 

Figure 2 shows the performance of the parallel contact algorithm on a scalable version of a can 
crush simulation. Here, the container and surface are meshed more finely as more processors are used. On 
one processor a 1875-element model was run. Each time the processor count was doubled, the number of 
finite elements was also doubled by halving the mesh spacing in a particular dimension. Thus, all the data 
points are for simulations with 1875 elements per processor; the largest problem was 480,000 elements 
on 256 processors. 

As a point of reference, the grind time for a 60,000 element problem on the Cray Y-MP was 
Tgrind = 41.25 ps/element/cycle. The grind time on a 32 processor problem was 40.75 pdelementl 
cycle on an Intel Paragon. The maximum grind time for the 256 processor problem was - Sps/element/ 



cycle. The speed-up of the algorithm is almost linear with the number of processors. 
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Figure 2. Grind time and parallel scaled efficiency for the scaled can crush problem. 
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Figure 3. Decomposition generated by a) Chaco and b) at time t= 0.0, c) and d) RCB mapping for 
times t=1.6 ms and e) and f) t= 3.2ms. Deformed and undeformed mesh. 

Figure 3 shows the Chaco and the RCB decompositions at time zero. Figure 3a shows a plot 
coded according to the processor that owns the element. Figure 3b shows a color coded plot where the 
colors correspond to which processor owns the surface. Note that the CHACO and RCB decompositions 
are not the same even at time zero. In fact, the top of the mesh is assigned to processor zero in the 



CHACO mesh, while in the RCB decomposition, the contact surfaces in this same region are assigned to 
processor 3 1. 

In Figure 3 d and e, the RCB decomposition at time t=1.6 ms and t = 3.2 ms is shown mapped 
onto the deformed and undeformed shapes. The plots show how the surfaces are locally mapped to a 
given processor. Some of the surfaces that start on processor 0 at the start of the problem, remain on that 
processor for the duration of the calculation. While other surfaces (i.e. the top of the block) are mapped 
onto processor zero as the calculation progresses. 

In summary, we have outlined a parallelization strategy for transient dynamics simulations that 
uses three different decompositions within a single timestep: 1) a static FE-decomposition of mesh ele- 
ments; 2) a dynamic SPH-decomposition of SPH particles; 3) and a dynamic contact-decomposition of 
contact nodes and SPH particles. The overhead cost of such a scheme is the cost of moving mesh and par- 
ticle data between the decompositions. This cost turns out to be small in practice, leading to a highly 
load-balanced decomposition in which to perform each of the three major computational stages within a 
times tep. 
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