
LBNL-39873 
UC-404 

ERNEST ORLANDO LAWRENCE 
B ERKELEY N ATI o NAL LABO RATO RY 

4 A Study of Non-Equilibrium 
Phonons in Ga.As/AMs 
Quantum Wells 

Zhenpeng Su 
Materials Sciences Division 

November 1996 
Ph.D. Thesis 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. While this document is believed to contain 
correct information, neither the United States Government nor any 
agency thereof, nor The Regents of the University of California, nor any 
of their employees, makes any warranty, express or implied, or assumes 
any legal responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or 
service by its trade name, trademark, manufacturer, or otherwise, does 
not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof, or 
The Regents of the University of California. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof, or The Regents of the 
University of California. 

Ernest Orlando Lawrence Berkeley National Laboratory 
is an equal opportunity employer. 



LBNL-39873 
uc-404 

A Study of Non-Equilibrium Phonons in 
GaAs/AIAs Quantum Wells 

Zhenpeng Su 
Ph.D. Thesis 

Department of Physics 
University of California, Berkeley 

and 

Materials Sciences Division 
Ernest Orlando Lawrence Berkeley National Laboratory 

University of California 
Berkeley, CA 94720 

November 1996 

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, 
Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 



A Study of Non-Equilibrium Phonons in 
GaAs/AlAs Quantum Wells 

Zhenpeng Su 

B.S. (University of Science and Technology of China) 1988 

M.A. (University of California at Berkeley) 1992 

A dissertation submitted in partial satisfaction of 

the requirements for the degree of 

Doctor of Philosophy 

in 

Physics 

in the 

GRADUATE DIVI SION 

of the 

UNIVERSITY of CALIFORNIA at BERKELEY 

Committee in charge: 

Professor Peter Y. Yu, Chair 

Professor Steven G. Louie 

Professor T. Kenneth Gustafson 

1996 



A Study of Non-Equilibrium Phonons in 
GaAs/AlAs Quantum Wells 

Copyright 0 1996 

Zhenpeng Su 

The U.S. Department of Energy has the right to use this document 
for any purpose whatsoever including the right to reproduce 

all or any part thereof 



Portions of this document may be illegible 
in electronic image produck Images are 
produced from the best avaiiable original 
document. 



Abstract 

A Study of Non-Equilibrium Phonons in 
Ga As/AlAs Quantum Wells 

by 
Zhenpeng Su 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Peter Y. Yu, Chair 

In this thesis we have studied the non-equilibrium phonons in GaAs/AIAs 

quantum wells via Raman scattering. We have demonstrated experimentally that by 

taking into account the time-reversal symmetry relation between the Stokes and anti- 

Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon 

occupancy in quantum wells. Using this technique, we have studied the subject of 

resonant intersubband scattering of optical phonons. We find that interface roughness 

plays an important role in resonant Raman scattering in quantum wells. The lateral size of 

the smooth regions in such interface is estimated to be of the order of 100 A. Through a 

study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser 

excitation, we have found that band nonparabolicity has very little effect on the electron 

subband energies even for subbands as high as a few hundred meV above the lowest one. 

This finding may require additional theoretical study to understand its origin. We have 

also studied phonon confinement and propagation in quantum wells. We show that 

Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive 

measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the 

coherence length of LO phonons in GaAs/Al,Ga,-,As quantum wells as a function of the 

A1 concentration x. 
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Chapter I: Introduction 

When we talk about hot phonons or non-equilibrium phonons, we usually refer to 

phonons created during the relaxation of energetic carriers in solids. For example., when 

a voltage is applied to a semiconductor device, electrons in the device will be accelerated 

and therefore gain a large amount of kinetic energy. These electrons are often referred to 

as hot electrons because if we assume that they reach a quasi-thermal equilibrium among 

themselves, then the characteristic temperature of these electrons will be much higher 

than that of the surrounding crystal lattice. The imbalance in temperature between the 

electrons and the lattice necessarily results in the electrons losing some of their energy to 

the lattice, thereby creating phonons. Phonons created in this way will have certain 

distribution in momentum space because of the requirement of conservation of energy 

and quasi-momentum during the hot electron relaxation process. Therefore phonons of 

different wave vectors may have different occupancies. These phonons are clearly not in 

thermal equilibrium, so they are often called hot phonons or non-equilibrium phonons. 

The relaxation of hot electrons to create hot phonons is achieved through electron-phonon 

interaction, a process which also determines some of the important properties of many 

devices, like carrier mobility. Because of their relevance to practical device applications, 

hot electron relaxation and electron-phonon interaction have attracted a lot of research 

interests from both theoreticians and experimentalists [ 11. 

With the availability of picosecond and femtosecond lasers, ultrafast optical 

spectroscopy has come to play an important role in the study of electron-phonon 
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interactions. Hot electrons can be easily generated via photoexcitation using laser pulses 

to mimic the excitation of hot electrons by the electric field in real devices. It has been 

known that immediately after they are created, hot electrons can thermalize to reach an 

quasi-equilibrium distribution on a time scale of 0.1 picosecond or less. Then the hot 

electron gas starts to cool down by emitting hot phonons on a time scale of 0.1 

picosecond. These phonons have typical lifetimes of a few picoseconds as a result of 

decaying into acoustic phonons. Picosecond and sub-picosecond Raman spectroscopy 

using ultrafast lasers has proven to be a very powerful tool in studying hot phonons in 

bulk GaAs [2,3]. With the ever increasing use of devices based on semiconductor 

quantum wells and superlattices, it is natural to extend the technique of Raman scattering 

to study non-equilibrium phonons in these microstructures. However, when compared to 

bulk Gas,  quantum wells introduce many new complications and challenges. 

The formation of quantum wells modifies both the electron and phonon structure, 

it also modifies the electron-phonon interaction. There are three prevailing theoretical 

models about the confined longitudinal optical (LO) phonons in quantum wells in the 

literature, namely the “slab model” [4], the “guided-mode model” [5] and the “Huang- 

Zhu model” [6] .  It was found that the electron LO phonon scattering rates depend 

strongly on the model used [7]. Therefore it is essential to experimentally test the validity 

of these models. In a recent paper, Tsen et ul. [SI have suggested that the Huang-Zhu 

model is the only one that can successfully explain their experimental result. However, 

further experimental tests of this result are desirable. 

We note that part of the reason that time-resolved Raman scattering has been quite 

successful in studying non-equilibrium phonons in bulk GaAs is that it probes phonons 
2 



whose wave vectors lie very close to the peak of non-equilibrium phonon distribution in 

momentum space [2]. In semiconductor quantum wells, however, only the component of 

wave vector parallel to the layer plane is conserved. This change in the Raman-active 

wave vector in quantum wells has a significant impact on Raman scattering. As we will 

show later in this thesis, in most cases the Raman-active wave vector lies outside of the 

range of those of non-equilibrium phonons. In principle, this means that Raman 

scattering is not capable of directly determining the occupancy of non-equilibrium 

phonons in quantum wells. However, we will show that intersubband scattering in 

quantum wells where the subband separation is close to the one LO phonon energy offers 

a unique opportunity to observe non-equilibrium phonons via Raman scattering. We will 

investigate this possibility theoretically and experimentally in this thesis. 

Another challenge in studying non-equilibrium phonon lies in the resonant Raman 

effect. Resonant Raman scattering in quantum wells can greatly enhance the otherwise 

weak Raman signal, on the other hand, it was found that because of the resonant effect, 

the conventional way used to determine phonon occupancy in bulk GaAs failed in the 

case of quantum wells. This has led some researcher to question the ability of Raman 

scattering in probing non-equilibrium phonon in quantum wells [9]. 

Our interest in studying non-equilibrium phonons via Raman scattering is further 

stimulated by some interesting work reported recently by Kim et al. [ 101 on the subject of 

propagation and confinement of LO phonons in GaAs quantum wells. These authors 

have studied the non-equilibrium occupancy in a series of GaAs/AI,Ga,-,As superlattices 

as a function of either the A1 concentration or the thickness of the Al,Ga,-,As barrier. 

They found a sudden drop in the measured phonon occupancy when the A1 concentration 
I)  
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or the barrier thickness reaches some critical value. They have interpreted their results as 

being due to a transition of the LO phonon from a propagating state to a confined one in 

the well. However there is no theoretical underpinning of the assertion that Raman 

scattering is capable of determining whether a phonon is confined or propagating. In this 

thesis we have attempted to develop a theory which qualitatively explained the 

experimental results. 

This thesis is organized as follows: Chapter I contains the introduction. In Chapter 

11, we will discuss the basic theory about electron-phonon interaction in quantum wells. 

Using the Huang-Zhu model of confined phonon modes, we perform a model calculation 

of the occupancy of non-equilibrium phonons generated by intersubband and 

intrasubband scattering in quantum wells. In Chapter I11 we present ow experimental 

investigation of resonant intersubband scattering of optical phonons. We discuss and 

compare our experimental results with the theoretical predictions from Chapter 11. In 

Chapter IV, we present our experimental investigation of highly excited GaAdAlAs 

quantum wells via photoluminescence. In Chapter V, we present our investigation of the 

propagation and confinement of LO phonons in quantum wells. We summarize the 

research work in this thesis in Chapter VI. 
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Chapter 11: Resonant Intersubband Scattering of Optical 
Phonons in GaAs/AlAs Quantum Wells - Model Calculations 

In this chapter we will study the issue of resonant generation of non-equilibrium 

phonons (NOP) via intersubband scattering in quantum wells (QWs) and superlattices 

(SLs) from a theoretical point of view. We will perform a model calculation of the 

electron-phonon interactions in GaAs/AlAs Q Ws based on the theoretical model 

proposed by Huang and Zhu [l] to obtain the NOP distribution in QWs and to establish a 

relationship between the NOP occupancy and the width of the QWs. It was suggested by 

Briggs and Leburton [2] that when the separation between two subbands is close to the 

energy of the longitudinal optical (LO) phonons, intersubband scattering will become 

important to the relaxation of hot electrons. This is referred to as RISOP (resonant 

intersubband scattering of optical phonons). Pictorially this can be visualized as electrons 

in an upper subband dropping almost vertically in momentum space to a lower subband, 

thereby creating a large number of small wave vector phonons. This problem is 

interesting in that here we have a unique situation where the wave vectors of the NOP are 

in a range that can be probed directly by Raman scattering. This is very different from 

most other NOP experiment in the literature. In this chapter we will quantify the 

suggestion of Briggs and Leburton. This chapter is organized as follows: we start out by 

looking at the effects of quantum confinement on electrons and phonons in QWs; then we 

will examine the three prevailing theoretical models in the literature for the confined 

phonon modes in QWs; following our discussion on the electron-phonon interactions and 
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the conservation of wave vector in a quasi-two dimensional system and its consequence 

on Raman scattering in QWs, we will perform numerical calculations to obtain the NOP 

distribution in momentum space due to intrasubband scattering as well as intersubband 

scattering in QWs. Through our model calculation, we separate the effect of intersubband 

and intrasubband scattering on NOP, and establish a relationship between the NOP 

occupancy due to intersubband scattering and the width of the QWs. This provides a test 

ground for our experimental investigation of RISOP which will be presented in Chapter 

111. 

2.1 Electrons in GaAs/AIAs quantum wells 

In order to carry out the model calculation, it is necessary for us to know the 

electron and phonon wave functions, and the electron-phonon interaction. In addition we 

also need to know how the momentum conservation result and Raman scattering are 

modified in QWs. So we begin our discussion by first examining electrons in QWs. 

Semiconductor QWs and SLs are artificial microstructures fabricated by growing 

alternating layers of two different materials using molecular beam epitaxy (MBE) or 

metal-organic chemical vapor deposition (MOCVD) method. Fig. 2- 1 shows 

schematically a GaAs/AlAs QW band structure. GaAs has a bandgap of around 1.43 eV 

at room temperature while AlAs has a bandgap of around 3 eV. When these two materials 

are brought into contact with each other, their conduction and valence bands will aligned 

in such a way that the AlAs conduction band is about 1 eV above that of GaAs, and the 

AlAs valence band is about 500 meV below that of GaAs (this is often referred to as a 
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type-I band alignment with a 60-40 band offset in the literature). The AlAs layers serve as 

barriers for both electron and hole motions along the growth direction in GaAs. 

Motions of electrons in QWs and SLs along the growth direction are usually 

described with the envelope function model [3]. In this model the electrons are treated as 

particles with an effective mass m* and an envelope wave hnction Y,, (z) . The energy 

levels E,, of the electrons due to quantum confinement can then be calculated by solving 

the Schrodinger equation, 

(2-1) 

where Vh is the confinement potential whose height is determined by the band offset. 

When the potential well is deep, like in the case of GaAs/AlAs QWs, we can approximate 

it by an infinitely deep well. Within this approximation the energy levels E,, and the 

wave functions Y,, ( z )  are readily found to be: 

A‘k,,’ -- E,, - zm* k ,  = n z l  L ,  n = 1,2,3;-- (2-2) 

and 

n = 1,3,5, ... 

n = 2,4,6,. . . 
(2-3) 

where k,, is the wave vector of the electron along the growth direction, L is the width of 

QW, and the center of the QW is taken to be z = 0 .  Although this infinite well 

approximation gives slightly higher energy levels, we do not expect k,, and Y,,(z) to be 
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far from their actual values for GaAs/AlAs QWs, and the simplicity of their analytic 

forms makes them very useful in our model calculations. In order to calculate the electron 

energy levels, we use the Ben Daniel-Duke model [3, 41. In this model, the envelope 

functions are chosen to be either sine or cosine functions (depending on the parity) in the 

QWs, and they decay exponentially inside the barrier. By requiring Y, , ( z )  and 

(the effective mass m* is different in the well and the barrier) to be 1 N , , ( z )  
m*(z)  dz 

continuous at the interface, we have the following equations: 

sin($ k, L A )  = 0 for even states, cos($k, L A ) - - -  m, k ,  
mA k ,  

M A  k,3 
m, k.4 

COS($ k, L A ) +  --sin($ k, L A )  = 0 for odd states, 

(2-4) 

(2-5) 

where A and B stand for GaAs and AlAs layers respectively. After solving for the 

electron wave vector k , we can use Eq. (2-2) to calculate the electron energy, replacing 

k,, with k. The energy levels are found to depend almost exactly on the square of the 

subband index n, as in the infinite well case due to the fact that we have a deep QW. 

Another popular approach for calculating the electron energy levels in QWs is the one 

developed by Bastard based on the Kane model [3, 5,  6].We have also used this model to 

calculate the energy levels and found that for the first subband the difference in energy 

between these two models is less than 1%, and is therefore completely negligible. For 

higher subbands. Bastard's model gives lower energy levels than those of the Ben Daniel- 
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Duke model. A detailed discussion of the Bastard’s four band model can be found in 

reference [ 31. 

One should remember that despite the confinement along the growth direction, 

electrons are able to move freely in the plane perpendicular to the growth direction, and 

therefore have a free particle-like energy spectrum in the QW plane. 

2.2 Phonons in quantum wells and superlattices 

The formation of QWs and SLs not only changes the electronic band structure, but 

also dramatically modifies the phonon modes in these microstructures. Since the acoustic 

phonon branch of GaAs and of AlAs overlap with each other, acoustic phonons can freely 

propagate from one material to the other as they do in bulk materials. However, the new 

periodicity in the microstructure along the growth direction gives rise to a folding of the 

Brillouin zone, leading to a folding of the acoustic phonon dispersion curve. Acoustic 

phonons whose wavevector q satisfies the following condition 

2mn 
L 

q = -  , m =  1,2,..-,n, 

where L is the period of QWs or SL, will be folded back to the zone center (Fig 2-2). This 

effect has been amply demonstrated by Raman scattering in QWs and SLs. [7] 

Optical phonons in QWs or SLs, on the other hand, behave quite differently from 

acoustic phonons. In fact, they behave in a way much similar to confined particles in a 

well. We know that confinement of electrons is caused by the bandgap mismatch of the 

two materials forming the microstructure, creating potential wells for electrons. Similarly 

for optical phonons, if there is no overlap in the phonon dispersion curves of two 
10 



materials, optical phonons cannot freely propagate from one material to the other. This 

results in the confinement of optical phonons within the two materials. For the 

GaAdAlAs QWs we have studied, the zone center longitudinal optical (LO) phonon of 

GaAs has an energy of 36.5 meV while the LO phonon energy in AlAs is 44 meV. 

Furthermore, the optical phonon dispersion curves of GaAs and AlAs do not overlap (Fig. 

2-2). Therefore it can be envisioned that in GaAs/AlAs QWs the wave function of optical 

phonons in one material will be heavily damped in the other, leading to confinement of 

optical phonons within each individual layer [SI. In the ideal case of a perfect 

confinement. each phonon mode can be assigned a wavevector q,,, given by 

inn 
q,,, = - , nd 

m = 1,2 ,..., n, (2-7) 

where d is the monGldyer thickness, and n is the number of monolayers .,i the individua 

layer. 

In addition to the confined phonon modes, the presence of interfaces between 

GaAs and AlAs layers introduces new vibrational modes known as the interface modes. 

Since these modes decay exponentially away from the interfaces, they have been found 

to play a very important role in electron-phonon interaction in thin GaAs/AlAs QWs 

(well width I Snm). However for the samples used in our experiment, the typical well 

width is larger than 15 nm, therefore, contribution from interface modes can be neglected, 

and we shall focus on the confined phonon modes only in the rest of this thesis. Interested 

readers are referred to reference [9] for a discussion of interface phonons. 
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2.3 Macroscopic models of confined phonon modes 

Although microscopic lattice dynamics calculation of the motion of atoms in QWs 

is possible [lo], it is not very convenient to use this method to calculate the physically 

measurable quantities like the electron-phonon scattering rates. During the past few 

years, much research effort has been made to find analytical formula for the wave 

functions of the confined LO phonon modes. The three most popular macroscopic models 

proposed in the literature so far are the slab model [l 11, the guided mode model [12], and 

the Huang-Zhu model [l]. They differ mainly in their way of handling boundary 

conditions. In a recent paper, Knipp and Reinecke have put forward a generalized 

method to handle the boundary conditions [13]. Here, however, we will only limit 

ourselves to the discussion of the three macroscopic models mentioned above. 

2.3.1 The slab model 

The slab model is also known as the dielectric continuum model. In this model, 

the SL is treated as a stack of dielectric slabs, and at the boundary of each slab. the 

Maxwell’s boundary conditions are imposed. Phonon modes derived from this model are 

divided into strictly into bulk-like confined modes and extended interface modes. It has 

been shown that this is true in the limit of zero phonon dispersion [l]. When phonon 

dispersion is taken into account, interface modes are partially mixed with the confined 

I 
modes. The slab model was proposed by Fuchs and Kliewer in the 60’s [ I  13, much 

earlier than the advent of the SLs, and lately used by a number of researchers. Despite the 

discontinuous atomic displacement at the boundary, the slab model embodies most of the 



shall actually use to do the model calculation, is just an improved dielectric continuum 

model. In the following paragraphs, we will give a brief description of the dielectric 

continuum approach. 

We consider a SL structure consisting of two polar semiconductors labeled as 1 

and 2. It is well known that the long-wavelength optical vibrations in an ionic crystal can 

be described by the phenomenological coupled equations proposed by Born and Huang 

[14]. Assuming that each layer is characterized by its respective dielectric function 

E; (w) , and that the dielectric function is dependent upon frequency, but independent of 

wave vector k, then for each layer we have the dielectric function: 

i = 1,2 

where w,,() and w,, are the longitudinal and transverse optical phonon frequencies. Since 

there is no net charge in the QW, we have 

where E = -V@ is the electric field and Q(r) is the scalar potential and can be written as 

O(r,, , z )  = exp(ik,,r,,)On1(z). The solutions to Eq. (2-9) can be divided into the bulk-like 

confined modes and the interface modes. Interface modes are obtained by requiring 

V - E  = 0 and applying the electrostatic boundary conditions. Here we will only be 

interested in the bulk-like confined modes which satisfy E, (w) = 0 ,  and therefore have a 

frequency of the bulk LO phonon a,,(). For the confined modes in one layer, Eq. (2-9) 

also need to be satisfied in the other layer, therefore we have V E = 0 in the other layer. 
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Using the boundary conditions that D,and E,, are continuous across the interface, one 

can show that E vanishes in the other layer. and 

therefore can be chosen to vanish by a gauge transformation. We see immediately that 

other than the requirement that it vanishes at the interface, the choice of a functional form 

for <D (2)  is infinite. Historically a simple form for cD,ll (2)  is chosen to be: 

a i s  a constant at the interface, 

cos(mnz/ L) ,  
sin(mnz/ L) ,  

m = 1,3,5,. . . 
m = 2,4,6,. . . (2-10) 

where the center of the well is taken to be z = 0. Using the above equation, the atomic 

displacement u can be evaluated from the fact that it is proportional to the polarization P, 

which in turn is proportional to the electric field E. Therefore from the relationship 

u cc E = -V<D,,, , we can see that u_ will have a maximum value instead of vanishing at 

the interface, and therefore it is discontinuous at the interface. This is the main drawback 

of the slab model. 

2.3.2 The guided mode model 

To remedy the problem associated with a discontinuity in the atomic 

displacements in the slab model, the guided mode model arbitrarily chooses to impose a 

mechanical boundary condition by requiring the ionic displacement at the interface to be 

zero. This implies that the electric field and potential vanish in the barrier. The confined 

phonons are described by the following potential, 

sin(m7a / L),  
cos(mm / L) ,  

m= 1,3,5, ... 
rn = 2,4,6,. . 

14 
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This approach has been used by Ridley [12]. The assumption of vanishing 

displacement at the interface automatically rules out the possibility of any interface 

modes. Another major problem of the guided mode model is that it does not satisfy the 

electromagnetic boundary conditions. 

2.3.3 The Huang-Zhu model 

To solve the dilemma of the discontinuity of the ionic displacement and of the 

electric potential. Huang and Zhu proposed an improved macroscopic dielectric 

continuum model 13. Through a comparison with the results of their microscopic lattice 

dynamics calculations, Huang and Zhu devised a set of analytical equations to 

approximate their numerical results. These equations not only satisfy the electromagnetic 

boundary conditions, but also the continuity of the atomic displacements at the interface. 

The electric potentials for the asymmetric modes are given by, 

(Dn,+(z) = sin(pn1nz/ L)+C,,,z/ L. m = 3,5,7 ,... 

and for the symmetric modes, 

a,,,- (2)' = cos(m7a / L )  - m = 2,4,6,. . . 

where pl,, and C,,l are constants determined by the following two equations: 

tan(P"Jl2) = P,,,Z/2, 

C ,  = -2 sin(p,,,x / 2). 

Eq. (2-14) and (2-1 5) can be easily solved numerically, and one finds, 
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(2- 15) 



p3 =2.8606, p5 =4.918, p,  =6.95, 

p9 = 8.9548, pll = 10.963, ... 

and the corresponding C values are given by, 

C, = 1.9523, C, = -1 -983, C, = 1.992, 

C, = -1.995, C,, = 1.9964, . . . 

A comparison of the phonon modes derived from the above three models with the exact 

microscopic model is shown in Fig. 2-3. As we can see, the Huang-Zhu model is the 

closest one to the microscopic model. Furthermore, recent experiments indicate that the 

scattering rate and NOP occupancy calculated using the Huang-Zhu model provide the 

best fit to the experimental results [15]. In the next section, we shall use this model to 

calculate the electron-phonon interaction and NOP distribution in QWs.. 

2.4 Electron-phonon interaction in GaAs/AIAs quantum wells 

It is well established that in polar semiconductors the relaxation of energetic 

electrons is achieved predominantly via the Frohlich interaction, a coupling of the 

electrons with the macroscopic electric field created by the motion of ions of opposite 

charges. The Frohlich interaction Hamiltonian is given by (1,161: 

annihilation operators, t ,  (4) = (21/fl)-1’2 with I ,  being 
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where Y is the volume of the QW, u,,,(q) and a,l,(q) are phonon creation and 

annihilation operators, t ,  (4) = (21/fl)-1’2 with I ,  being 
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where Y is the volume of the QW, u,,,(q) and a,l,(q) are phonon creation and 



(2- 1 7 )  

A is given by 

(2- 1 8) 

E, and r0 are the high-frequency and static dielectric constants for GaAs, io,, is the 

GaAs LO phonon frequency. 

If we let In,k) denotes an electron residing in subband n and having a 

wavevector k , then the relevant matrix element in our calculation that corresponds to the 

evolution of the combined electron and phonon state from 1 n, k, N ,  ) to 1 n' , k' , N ,  f 1) 

is 

(2-1 9) 

where H , ( m )  is the Hamiltonian for phonon mode m, G F  = (n'lO,,In), and In) is the 

electron wave function given by Eq. (2-3). The explicit form of G,? for the lowest three 

subbands can be found in the Appendix. 

The rate for the creation and annihilation of NOP with mode number m as a result 

of hot electrons relaxation from subband n to subband n ' can be calculated using Fermi's 

golden rule, and is given by the following equation 
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(2-20) 

where f, is the electron distribution function, z is the phonon lifetime and is on the 

order of lops. The total rate of change in N ,  is calculated by summing the above 

expression over ai1 phonon modes and over all subbands. If we assume that the electrons 

are at quasi-equilibrium obeying a Boltmann distribution and that f, is much smaller 

than unity (which can be justified by the typical electron density we excite in our 

experiments), then by combining Eq. (2-17), (2-19) and (2-20), we arrive at the following 

equation: 

P 

( E  ' - E, + Eq + E,J 
x ( N ,  + 1)exp - [ [ " 4E,k,T 

(2-21) 

In the above equation, the quasi-equilibrium temperature T of the hot electrons is 

assumed to change with time as the hot electron gas cools down. Using the Boltvnann 
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distribution for a two dimensional electron gas, we can relate T and the average energy 

( E ( t ) )  of an electron in the following way, 

(2-22) 

Since electrons gain or lose energy to the phonon pool, any change of the electron energy 

will result in the creation or annihilation of phonons. Therefore, the energy loss rate of 

the electrons can be related to the rate of change of the NOP occupancy by the following 

equation, 

(2-23) 

where N ( t )  is the total number of electrons at time t ,  the summation is over all the 

phonon modes, and pq is two dimensional phonon density of states. The last term in Eq. 

(2-23) is the rate of energy input from the pulsed laser, E,, is the initial excess energy of 

the electrons. By assuming a standard sech' type of intensity profile for the laser. 

I ( t )= I,, sech2(1.76t I T ! , )  (2-24) 

where ria is the laser pulse width, Eq. (2-23) can then be rewritten as: 

where the electron density n, of the two-dimensional electron gas is related to the laser 

intensity by the following equation: 
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(2-26) 

By solving Eq. (2-21), (2-22) and (2-25) numerically, we can get information about NOP 

distribution in time and momentum space. 

In carrying out the model calculation, we have chosen the laser pulse width to be 

5ps, phonon lifetime to be lops, typical electron density to be 2x10'' cm-'. Due to their 

smaller effective mass, most of the excess energy from the excitation photon goes to the 

electrons rather than the holes, so we have neglected the contributions from hole 

relaxation to the NOP. The initial excess energy of the electrons is set to be 500 meV to 

simulate our experimental condition. NOP occupancy is measured 5ps after the passage 

of the laser pulse. The material parameters used in the calculation are given in Table I. 

2.5 Wavevector conservation for Raman scattering and electron relaxation in bulk 

materials and quantum wells 

Before we proceed with our calculation, let us first examine the difference in 

wavevector conservation for bulk GaAs and QWs, and see how it will affect Raman 

scattering and NOP generated by hot electron relaxation. For Raman scattering, we need 

to define a scattering geometry because it determines the wave vectors of phonons probed 

by Raman scattering. As in most NOP experiments, we choose the quasi-backscattering 

geometry which is shown schematically in Fig. 2-4. Although the photon is incident on 

the sample at the angle of about 4 5 O ,  due to the large index of refraction of GaAs (n - 
3-59, the wave vector inside the sample is almost perpendicular to the sample surface (so 

named quasi-backscattering). This geometry is preferred due to the fact that in order to 
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excite hot electrons, photons with energy much higher than the band gap of GaAs are 

used, and that these photons are strongly absorbed by GaAs within an absorption depth of 

about 200 nm. During the Raman scattering process, energy and quasi-momentum (or 

equivalently wave vector) need to be conserved. Hence for a given scattering geometry, 

the wave vector of the phonons that participate in Raman scattering can be easily 

calculated from the following equations: 

(2-27) 

(2-28) a, -0, = a,/, 

where Qph is the phonon wave vector. Ki’ and K,’ are, respectively, the wave vectors of 

the incident and scattered photons inside GaAs, and can be related to the corresponding 

wave vectors Ki and K, of photons in air via the Snell law. uph. a, and a, are the 

corresponding frequencies. We use 2 eV photons (h  = 600 nm) in our experiments, so the 

magnitude of the wave vector Ki of the incident photon is 27dh - 1 x 1 Os cm-l. For bulk 

GaAs as schematically shown in Fig. 2-4 (a), the magnitude of the wave vector Qph of the 

phonon is about 2nKi - 7x 1 Os cm-I. This value happens to be very close to the peak of the 

NOP distribution as calculated by Collins and Yu (Fig. 2-5) [ 171. This is the main reason 

why Raman scattering has been a powerful tool in studying NOP in bulk GaAs. For GaAs 

QWs and SLs (Fig.2-4(b)), the translational symmetry of the crystal lattice is only 

preserved in the plane parallel to the QW layers. Therefore only the component of the 

wave vector parallel to the QW plane is conserved. Eq. (2-27) should be modified 

accordingly to reflected such a change. For our experimental geometry, we find that Q,,,,,, 

is &sine - 7x 1 O4 crn-l. This value is one order of magnitude smaller than the bulk value, 
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and we should expect the large difference in the wave vector of phonons probed by 

Raman backscattering to have a dramatic impact on Raman scattering efficiency. 

Another quantity that is affected by the change of wavevector conservation is the 

wave vector of NOP generated by hot electron relaxation. For bulk semiconductors, one 

mainly needs to consider intrasubband relaxation of the hot electrons, and it has been 

investigated in great details by Collins and Yu [17]. The formation of subbands in QWs 

introduces new relaxation channels for the hot electrons, i.e. intersubband scattering. 

NOP generated via these two channels have very different wavevector distributions. 

Intuitively, one can image that intrasubband relaxation of the hot electrons will produce a 

hot phonon distribution similar to that in bulk materials because it is determined mostly 

by the band curvature. On the other hand. intersubband relaxation produces a phonon 

distribution that depends strongly on the separation between the two subbands. To better 

support the above argument, we apply energy and wave vector conservation to the hot 

electron relaxation shown schematically in Fig. 2-6, and we obtain the following results 

for intrasubband scattering: 

(2-29) 

(2-30) 

where E,  is the kinetic energy of the hot electrons, E,,, and &, are the energy and 

and for intersubband scattering: 

wavevector of the LO phonon respectively, and A is the separation between two 
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subbands. Assuming that E, - 500 meV, we find that QPh// is between 3.5~10’  and 

and 

1.8~10’ cm-’ during intersubband scattering. It can be clearly seen that when A is close to 

E,, , the wave vector of the NOP can be very arbitrarily small. When we combine the 

above result with our previous discussion that Raman scattering in quantum wells is only 

sensitive to small wave vector phonons, we conclude that for perfect two dimensional 

I OWs, Raman backscattering is not capable of probing NOP generated by intrasubband 

scattering, and that it can probe NOP generated by intersubband scattering only when 

the subband separation is close to the LOphonon energy. 

2.6 Results of model calculations -- NOP distribution due to intersubband and 

intrasubband scattering 

In this section we present results of our model calculations. As we pointed out 

earlier, all phonon modes and electron subbands should. in principle, be included in the 

calculation. However, this is apparently impossible to do numerically. Therefore we need 

to make some reasonable approximations. Since we have assumed that the electrons obey 

the Boltzmann distribution which decays exponentially with the electron energy, we 

expect that electrons in a small number of the lowest lying subbands will contribute most 

to the creation of NOP. In addition, we have shown in the previous section that only 

those subbands whose separation is close to the LO phonon energy will contribute 

significantly to the creation of phonons with small wavevector via intersubband 
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scattering. Hence we will include only the first three subbands in our calculations. As for 

the phonon modes, we have tried including the first five ( m  = 2,3 ... 6 )  confined modes, 

and the results (Fig. 2-7) show that as the order of the phonon mode increases, their 

contribution decreases rapidly. Hence we have only included the first five phonon modes 

in our calculations. 

The total NOP is a sum of phonons created during intersubband and intrasubband 

scattering. The selection rule for phonon modes that can participate in the scattering of 

electrons is embodied in Eq. (2-19), specifically, it is determined by G,:". Because both 

the electron and phonon wave functions have definite parity, it is straightforward to show 

that intrasubband scattering of electrons is mediated only by the creation and annihilation 

of even parity phonons (m = 2,4,6,. . .) while intersubband scattering between adjacent 

subbands is mediated by odd parity phonons (m = 3,5,7,. . .). This analysis enables us to 

examine the effect of intersubband and intrasubband scattering separately. 

Fig.2-8 shows the NOP distribution due to intrasubband scattering calculated for a 

190 A QW. QWs with other widths show very similar NOP distribution and will not be 

shown here. As we can see from Fig. 2-8, despite the quasi-two dimension nature of 

QWs, the distribution of NOP from intrasubband scattering bears a lot of similarity to the 

one obtained by Collins and Yu for bulk GaAs (Fig. 2-5). There are two distinct features 

in this plot, namely a sharp cut-off in the NOP at phonon wavevector of around 2x10' cm- 

and a peak in the NOP at around 10' cm-I. This can be understood from our earlier 

discussion about the range of NOP wave vector. Since this range is mostly determined by 

the excess energy of the electrons and by the electron dispersion (determined by the 
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effective mass of the electron which has the same value of 0.067m, for bulk GaAs and 

GaAs QWs), we expect to see similar results. This verifies our argument that 

intrasubband scattering does not contribute to the creation of small wave vector phonons. 

On the other hand intersubband scattering can produce a significant number of 

small wave vector phonons as evidenced in Fig. 2-9. The amount of phonons produced 

and their wave vectors depend strongly on the subband separation, or equivalently on the 

width of the QWs. Fig. 2-10 shows the NOP distribution due to intersubband scattering 

for a number of QWs. When the well width increases from 150 8, to 240 A, the 

separation between the first two subbands changes from 54.2 meV to 22.4 meV. For 

width equal to 180 8, the subband separation of 39.5 meV is close to the LO phonon 

energy of 36.5 meV. Accordingly the amount of small wave vector phonons in Fig. 2-10 

varies with the well width by first increasing, reaching a maximum around 180 8, and 

then decreasing. To better view the dependence of the NOP occupancy with the width of 

the well, we plot the occupancy of NOP with wave vector equal to 7x 1 O4 cm-', which is 

the wavevector probed by our Raman scattering geometry, versus the well width. As 

shown in Fig. 2-1 1, the NOP occupancy has a peak around 185 8, where the separation of 

the first two subbands is resonant with the LO phonon energy, and the width of this peak 

is about 20 A. 

In summary, we have performed a model calculation of the NOP distribution 

generated by hot electron relaxation in GaAs/AIAs QWs using the theoretical model of 

confined phonons proposed by Huang and Zhu. We show that while intrasubband 

scattering produces a NOP distribution similar to that of bulk GaAs, intersubband 
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scattering produces NOP whose distribution depends strongly on the separation of the 

subbands (or the width of the QW). When the separation is close to the LO phonon 

energy, a large number of small wave vector NOP are generated by the intersubband 

scattering. This phenomenon is known as RISOP. These phonons are readily accessible 

by Raman scattering because wave vector conservation in QWs and SLs limits Rarnan 

scattering to probing small in-plane wave vector phonons. The experimental 

investigation of RTSOP will be presented in chapter 111. 
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Appendix of Chapter I1 

Using the phonon wave function 0, given in Eq. (2-12): (2-13) and the electron wave 

function I n) given in Eq. (2-3), we can evaluate GL." used in Eq. (2- 19). 

2 L I Z  
GY = (1 Iml1) = t I,,, ~ Z C O S '  ( n ~  / L )  x Q,, 

0 m=3,5,7, ... 

m = 2,4,6,. . . o.56,,j,2 - (- 

m = 3,5,7,. . . 

m = 2,4,6,. . . 

=-I - 0.5S,,,, - (- 1)"12 

0 m = 3,5,7, 

m = 2,4,6,. . 

2 1.12 

L 1'12 
G:: = G:' = (3 Im( 1) = - I dz cos(3m / L)COS(Z / L) x Q I f l  

0 m = 3,5,7,. . . 

m = 2,4,6,. . . 
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2 L12 
Gi*3 = G:' = (3lml2) = - L I L12 dzcos(3nzI L)sin(2m/ L)x at,] 

0 

m =  3,5,7, ... 

m = 2,4,6,. . . 

Gi: =(31m13)=yf1:72 2 dzcos2(3m/ L)xcDnl 

0 m =  3,5,7, ... 

056,t1,, - (- m = 2,4,6,. . . 

We can also evaluate I,, given by Eq. (2-17). 

I L 

1.5q ' + 05(mz  / I m = 2,4,6, -. . 
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Effective m 

Table I 

GaAs 

0.067 m, 

0.377 m, 

10.9 

13.3 

ss of the electron 

Effective mass of the heavy hole 

High frequency dielectric constant E, 

Low frequency dielectric constant E ,  

Band Gap at 300 K 1.425 eV 3.04 eV 

Band Gap at 77 K 1.51 eV 3.1 eV 

LO phonon energy 36.5 meV 50 meV 

31 
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0.15 m, 
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Figure Captions for Chapter I1 

Fig. 2-1 A schematic diagram for the band alignment of GaAs/AlAs quantum wells. 

Fig. 2-2 Phonon dispersion curves for the longitudinal phonons in bulk GaAs (solid 

lines) and AIAs (dashed lines). Folded acoustic phonon and confined optical phonon 

dispersions in a superlattice are also shown. 

Fig. 2-3 The z component of the atomic displacements ( u - )  and the corresponding 

potentials ( @(z) ) for the first few GaAs-like optical phonon modes in GaAs/AIAs 

quantum wells. (a), (b) and (c) are from the macroscopic models and (d) is from the 

microscopic calculations. Reproduced from reference [2- 1 01. 

Fig. 2-4 A schematic diagram for the quasi-back scattering geometry used in Raman 

scattering experiments in the case of (a) bulk GaAs, (b) GaAs/AlAs quantum wells. K, 

and K, are the wave vectors of incident and scattered photons, q is the wave vector of 

phonons. The incident angle 6 is about 45". GaAs has an index of refraction n of about 

3.5. 

Fig. 2-5 Non-equilibrium phonon distribution generated by hot electrons in bulk GaAs. 

Shaded region indicates the wave vectors probed by Raman back scattering. Reproduced 

from reference [2-171. 
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Fig. 2-6 A schematic band diagram showing (a) intrasubband and (b) intersubband 

scattering of hot electrons. qmax and qmin denote the maximum and minimum wave vector 

of phonons created by hot electrons with energy Ek. E, is the energy of the LO phonon. 

Fig. 2-7 Non-equilibrium phonon distribution due to intrasubband and intersubband 

scattering for different phonon modes calculated for a 190 A GaAs/AlAs quantum well 

using the Huang-Zhu model. 

Fig. 2-8 Non-equilibrium phonon distribution due to intrasubband scattering calculated 

for a 190 A GaAs/AlAs quantum well using the Huang-Zhu model. The vertical dashed 

line indicates the wave vector probed by Raman back scattering. 

Fig. 2-9 Non-equilibrium phonon distribution due to intersubband scattering calculated 

for a 190 A GaAs/AlAs quantum well using the Huang-Zhu model. The vertical dashed 

line indicates the wave vector probed by Raman back scattering. 

Fig. 2- 10 Non-equilibrium phonon distribution due to intersubband scattering calculated 

for GaAs/AlAs quantum wells of various well widths. The vertical dashed line indicated 

the wave vector probed by Raman back scattering. 

Fig. 2-1 1 The occupation number of non-equilibrium phonon at way 2 vector 7x104 cm-’ 

generated by intersubband scattering of hot electrons as a function of the quantum well 

width. The “resonant” effect is clearly shown to occur around well width 185 A. 
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Chapter 111: R onant Intersubband Scattering f Optical 
Phonons in GaAdAlAs Quantum Wells - Experiments 

In this chapter we present our experimental investigation of the phenomenon of 

resonant intersubband scattering of optical phonons (RISOP) in GaAs/AlAs quantum 

wells (Q Ws). This study involves a time-resolved Raman scattering of non-equilibrium 

optical phonons (NOP) generated by electron relaxation in QWs. As we have shown in 

our model calculations in Chapter 11, RISOP will generate a significant amount of small 

wavevector NOP which, in principle, should be easily accessible by Raman scattering. 

However, there exists the long standing problem of finding the correct way to measure 

NOP occupancy. As noted by other researchers [l], resonant Raman effects in QWs and 

superlattices (SLs) make it virtually impossible to determine NOP occupancy using the 

conventional technique that has enjoyed great success in studying NOP in bulk materials 

[2, 3, 41. Here we will address this critical issue of how to determine NOP occupancy in 

QWs and SLs. This chapter is organized as follows. We first describe our experimental 

setup for performing picosecond time-resolved Raman scattering. We then move on to 

discuss the relation between Stokes and anti-Stokes cross section, an essential part of this 

experiment, and establish the correct method for measuring NOP in QWs. After testing 

the validity of our technique, we apply it to determine the occupancy of NOP generated 

by RISOP in QWs. Finally we compare and discuss the experimental results and 

theoretical prediction. 
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3.1 Experimental setup 

Since LO phonons in GaAs/AlAs QWs typically have a lifetime of the order of a 

few picoseconds, in order to study any dynamic phenomenon related to phonons, 

picosecond or sub-picosecond time resolution is desirable. Fig. 3- 1 shows the 

experimental setup. An actively modelocked Ar' ion laser fiom Spectra Physics produces 

514.5 nm photon pulses with a pulse width of 200 picoseconds and a repetition rate of 

about 80 MHz. We use it to pump synchronously a home-build dye laser by matching the 

cavity lengths of the Ar" laser and the dye laser. Typical output from the dye laser is of 

the order of 100 mW (or 1 nJ per pulse) and pulse width is about 5 picosecond. 

Rhodamine 6G is used as the active lasing media, and this enables us to tune the laser 

wavelength from about 550 nm to 630 nm to study the resonant Raman effect. A beam 

splitter is used to send a small fraction of the dye laser output into an autocorrelator to 

monitor the laser operation and to measure the pulse width. The remaining output is sent 

through a series of Brewster-angle prisms to filter out the spontaneously emitted dye 

fluorescence which would otherwise overwhelm the weak Raman signal. It is then 

directed to the sample at an angle of about 45". Due to the large index of refraction of 

GaAs (n - 3 . 9 ,  the beam direction inside the sample is about 80°, this gives us a 

scattering geometry very close to backscattering. Both emission and scattered light are 

collected by a camera lens and dispersed with a SPEX 1877D Triplemate spectrometer. 

Photoluminescence signal is detected with a cooled GaAs photomultiplier tube using 

standard photon counting electronics. Raman signal on the other hand is detected with a 

ITT Mepsicron, a multichannel detector, coupled to a position computer. 
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We have performed measurements on several GaAs/AlAs multiple QW samples 

grown by molecular beam epitaxy (MBE) on [loo] substrates. Each sample consists of 

about 30 QWs with identical well and barrier width. Fig. 3-2 shows schematically the 

QW structure. Samples were attached to the cold finger of a liquid nitrogen dewar. 

Experiments were carried out either at room temperature or at liquid nitrogen 

temperature. The excitation density was estimated both from the absorption coefficient 

and the laser spot size on the sample, and from analyzing the photoluminescence 

lineshape as described in Chapter IV. QW widths are important parameters in this 

experiment, they are obtained by analyzing the photoluminescence spectra also described 

in Chapter IV. 

3.2 Relation between Stoke and anti-Stokes Raman cross sections 

The conventional way to determine the phonon occupancy N ,  is to measure the 

Stokes and anti-Stokes intensities at the same laser photon frequency. The intensity I ( @ )  

of the Raman peak can be related to phonon occupancy N ,  and the scattering cross 

section a(@) in the following way: 

where S and AS denote Stokes and anti-Stokes respectively. If one assumes that the 

scattering cross section does not change dramatically with different photon frequencies, 
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which is found to be true for bulk GaAs away from the critical points, then N ,  can 

easily be obtained fiom Eq. (3-1) and (3-2): 

1 
N ,  = (3-3) I ,  / I A S  - 1 

The above equation has been used successful in determining phonon occupation number 

in bulk semiconductors [2,4]. However in semiconductor QWs, there are many subbands. 

Whenever the incident or the scattered photon energy is close to one of the subbands, one 

expects to see strong resonant Raman effect [ 5 ] ,  the former one is referred to as the 

incoming resonance while the latter is called the outgoing resonance. Although the 

resonant Raman effect greatly enhances the signal, it also creates problems in 

determining N,.  Since the Stokes and the anti-Stokes resonances happen at different 

photon energies, o,s and cAS cannot be assumed to be equal, therefore Eq. (3-3) will 

give different values of N ,  for different incident photon energies. The value of N ,  

obtained in this way is not physically meaningful. 

However, Loudon pointed out many years ago that in a system with time reversal 

symmetry, the Stokes cross section o.\. ( w )  and the anti-Stokes cross section oAS (0) 

satisfies the following equation [6]: 

where o, is the phonon frequency. The rigorous proof of the above relation using 

quantum mechanics can be found in reference [6]. Here we would like to present a more 

intuitive picture. Fig. 3-3(a) show the Stokes scattering process in which a incident 
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photon with frequency w loses part of its energy to create a phonon with frequency w, , 

and is scattered off with frequency w - w, . The time reversal process of this scattering 

event is shown in Fig. 3-3(b) in which an incident photon with frequency w - w,  gains 

some energy by annihilating a phonon of frequency w, , and comes out of this scattering 

with frequency w . Note that this process is exactly the anti-Stokes process for an incident 

photon with frequency w - w, . When time reversal symmetry holds, we should have the 

relation given by Eq. (3-4). 

After we take into account the relationship between Stokes and anti-Stokes cross 

sections, Eq. (3-3), is modified to become 

1 
N ,  = 

I ,  (0) / IAS (w - 0, ) - 1 (3-5) 

In the following section, we will test this relationship in GaAs/AlAs quantum 

wells. 

3.3 Experimental verification of the relationship between Stokes and anti-Stokes 

cross sections 

Although this important relationship has been in the literature for a long time, 

there has been few tests of it. In a recent paper [7], Ruf et al. measured the resonant 

Raman profile of a GaAs/AlAs QW sample at room temperature. They found that only by 

taking into account Eq. (3-4), could they get the right value for the thermal phonon 

occupancy. Here we will show that Eq. (3-4) can be used not only to determine the 
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thermal phonon occupancy, but also be used to determine NOP occupancy in quantum 

wells. 

A typical Raman spectrum we obtained with the multi-channel detector system is 

shown in Fig. 3-4. We have combined two spectra of the Stokes and the anti-Stokes 

scattering. Laser photon is supposed to be at zero Raman shift. Confined GaAs LO 

phonon peak has a Raman shift of about 290 cm-' and a width about 6 cm-'. The AlAs 

phonon peak is also visible around 400 cm-' on the Stokes side. By varying the laser 

photon energy, we obtained a serious of spectra similar to the one shown in Fig. 3-4, and 

by plotting the phonon peak intensity versus the incident laser photon energy, we 

obtained the resonant Raman profile of the sample. 

Fig. 3-5 shows the room temperature resonant Raman profile of a 165 A 

GaAdAlAs QW sample. It can be seen that when the laser photon energy is tuned from 

1.95 eV to 2.20 eV, both the Stokes and the anti-Stokes intensities change dramatically, 

showing strong resonant effect. The prominent resonant Raman peak corresponds to the 

transition between the sixth electron and heavy subbands, while the transition between 

the seventh subbands is responsible for the maximum in the anti-Stokes intensity around 

2.17 eV. Clearly if we were to calculate phonon occupancy simply by Eq. (3-3), we 

would get a thermal phonon occupancy that depends strongly on the laser photon energy. 

However, taking a closer look we find that the resonant profile of the Stokes and anti- 

Stokes scattering have very similar line shapes, with the Stokes profile shifted to the high 

energy side by exactly one LO phonon energy of 36.5 meV relative the anti-Stokes 

profile. This verifies Eq. (3-4). If we shift the two profiles relative to each other by 36.5 

meV and multiply the anti-Stokes intensity by a factor of 3.7, we find that we can lay the 
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two resonant profiles right on top of each other (Fig. 3-6). Using Eq. (3-5), we obtain a 

phonon occupancy of 0.37. This is quite close to the thermal phonon occupancy of 0.3 

calculated from the room temperature. In order to make a more straightforward 

comparison, we convert the phonon occupancy into the corresponding phonon 

temperature. Since phonons are bosons, they follow Bose-Einstein statistics. Therefore by 

using the following equation, 

where E, ,  is the GaAs LO phonon energy and K ,  is the Boltzmann constant and T is 

the temperature, we find a phonon temperature of 335 K. This is very close to the room 

temperature of 300K. The slight increase in phonon temperature may be attributed to 

laser heating of the sample. 

Having successfully obtained thermal phonon occupancy by taking into account 

the resonant Raman effect, we want to apply this technique to study NOP in QWs. In this 

study, we cooled our sample to liquid nitrogen temperature (T=77K). Since at 77K, 

thermal phonon occupancy calculated from Eq. (3-6) is only 0.003, which may be 

neglected when compared to the NOP occupancy excited by picosecond laser pulses as 

we will show in the following paragraphs. In the actual experiments, we also need to 

consider possible contribution to NOP due to laser heating and non-ideal thermai contact 

between sample and liquid nitrogen in our simple cryogenic system. These factors can 

cause the sample surface temperature to be higher than 77K. Thus the thermally excited 

phonon occupancy needs to be subtracted from our measured phonon occupancy. 
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Fig. 3-7 shows the resonant Raman profile of a 195 A QW sample at liquid 

nitrogen temperature. Prominent peaks in the resonant profiles corresponds to the 

transitions from the sixth and the seventh heavy hole subbands to the corresponding 

electron subbands. Again we find that the Stokes and anti-Stokes profiles of the NOP are 

shifted from each other by the LO phonon energy in a way similar to that of the thermal 

phonons. Using Eq. (3-5), we find a phonon occupancy of 0.08. 

To determine the contribution from thermal phonons to the measured phonon 

occupancy, we performed a measurement of the density dependence of the phonon 

occupancy. Fig. 3-8 shows the measured phonon occupancy N,, as a function of electron 

density excited by laser pulses. As can be seen, N,increases monotonically with hot 

electron density. This is consistent with the prediction of Eq. (2-21) in Chapter 11, and we 

expect that as hot electron density goes to zero, NOP occupancy should go to zero. 

However, when we extrapolate the curve in Fig. 3-8 to zero electron density, we get a 

non-zero N , .  This suggests that N,, as-determined is not the true value of NOP 

occupancy, it contains contribution from thermal phonons. The extrapolated value of N,, 

to zero electron density, N o ,  should correspond to the thermal phonon occupancy with no 

laser photon hitting the sample. From N o  =0.038, we obtained a sample surface 

temperature of 130 K. To determine the effect of laser heating, we performed a 

measurement with the laser running in continuous mode but with the same amount of 

power as in the pulsed mode. We measured a phonon occupancy of about 0.033. This 

shows that laser heating is negligible in experiments done at low temperature. In the 
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measurement of RISOP to be described in the next section, we will subtract the value 

N o  from N ,  determined directly &om Eq. (3-5) .  

3.4 Resonant intersubband scattering of optical phonons -- experiment and 

discussions 

In the above sections, we have shown how resonant Raman effect can greatly 

affect the determination of the occupancy of NOP in QWs. We also demonstrated that by 

taking into account the critical relationship between the Stokes and anti-Stokes cross 

sections, one can successfully measure the NOP occupancy. In this section, we will use 

this technique to investigate RISOP. We have measured the NOP occupancy for a series 

of QW samples at liquid nitrogen temperature. The QW widths are determined from PL 

measurement to be described in Chapter IV, and are so chosen that they span across the 

predicted resonance peak at well width of about 185 A. 

Fig. 3-9 shows our experimentally measured NOP occupancy as a function of the 

QW width. Also shown on the same plot is the theoretical prediction from our model 

calculation. Surprisingly as one can see the value of NOP occupancy measured 

experimentally is much lower than that of the prediction. Furthermore, there seems to be 

only a slight increase in NOP occupancy as the width of the QW increases, and no 

noticeable enhancement due to RISOP can be found. 

The unexpectedly large discrepancy between the prediction from our model 

calculation and our experimental results needs to be explained. When we look back at 

our model calculation in Chapter 11, we see that it is based on the assumption that quasi- 
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momentum parallel to the QW plane is conserved during hot electron relaxation process 

and during light scattering. If this assumption is relaxed, we would expect deviations 

from the theoretical prediction. Here we will examine the possibility that resonant Raman 

scattering can be mediated by interface roughness in our QW samples. 

In a recent paper [8] Tatham et. al. showed that when Raman measurement was 

done in narrow quantum wells at an energy far away from the resonance, no anti-Stokes 

scattering could be observed. This shows the important of resonant Raman effect in 

detecting the NOP. Now let us consider an outgoing resonant Raman scattering at some 

electron and hole subband edge shown schematically in Fig. 3-10. It can be shown that as 

a result of the conservation of energy and quasi-momentum, phonons involved in this 

scattering process will have a wave vector q,, about 4 ~ 1 0 ~  cm-I. On the other hand the 

change of photon wave vector parallel to the QW plane in quasi-back scattering is about 

7 ~ 1 0 ~  cm". The large mismatch of the wave vector (or momentum transfer) means that 

this scattering process would, in principle, be forbidden by quasi-momentum 

conservation. However, the experimental observation of the resonant Raman effect 

suggests that it does take place. Therefore wave vector conservation has to be somehow 

relaxed in this case. And the most likely candidates that cause the relaxation of wave 

vector conservation are defects or impurities. 

The idea of defect mediating resonant Raman scattering has been invoked by a 

number of researchers to explained their experimental results [9, lo]. For example, to 

explain the NOP observed in their Raman experiment on narrow GaAs/AlAs quantum 

wells, Tsen et. al. have suggested that defects may play a role in the resonant Raman 
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scattering, thereby shifting the wave vector probed by Raman scattering from < lo5 cm-’ 

to about 4x lo5 cm”. However, if we were to choose this wave vector to be the one probed 

in our experiment, we should measure a NOP occupancy about 3 to 4 times larger than 

what we have observed. This can be deduced from the NOP occupancy curves in Fig. 2-8, 

2-9,2-10. So this is not likely to be the explanation for our experiment. We believe that a 

more likely explanation for the relaxation of wave vector conservation in our resonant 

Raman experiment is the interface roughness in GaAdAlAs quantum wells. 

Recent experimental work with scanning electron microscopy (SEM) have 

revealed the existence of islands at the interface of GaAs and AlAs layers. Resonant 

acoustic phonon scattering [l 11 has also found interface roughness to be important. These 

authors have found the lateral size of the roughness to be around a few hundred A. Due to 

interface roughness, q,, may not need to be conserved exactly in Raman scattering. 

Instead of probing phonons with a single value of q,,, we are in fact measuring phonons 

within a range of q,,. This range is approximately related to the average size d of the 

atomically smooth regions as 2zld. Since NOP with large wavenumber (> lo6 cm-I) 

have a rather small occupancy as can be seen from Fig. 3-1 l(a), the inclusion of these 

phonon in Raman scattering will significantly reduce the measured NOP occupancy N ,  . 

In Fig. 3-12, we show our calculations for several different values of d. As d gets smaller, 

more large wave vector NOP are probed by Raman scattering, and consequently we find a 

smaller N ,  . Qualitative agreement between experiment and calculation is found for d of 

the order of 100 A. Our calculation suggests that interface roughness may be responsible 

for the absence of NSOP effects in the NOP measured by Raman scattering experiment. 
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In summary, we have shown that by taking into account the relationship between 

the Stokes and anti-Stokes scattering cross sections, we can successfully determine the 

phonon occupancy in QW and SL from their Resonant Raman profiles. We have used this 

technique to investigate the issue of resonant intersubband scattering of optical phonons 

by measuring the NOP occupancy. Our experimental results differ significantly from the 

theoretical prediction based on model calculations. We discussed this discrepancy in 

terms of the breakdown of quasi-momentum conservation caused by interface roughness. 

Our results suggest that interface roughness play a very import role in the measurement 

the NOP occupancy in quantum well samples. 
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Figure Captions for Chapter I11 

Fig. 3-1 

measurement. 

A schematic diagram of the experimental setup for the time-resolved Raman 

Fig. 3-2 A schematic diagram of GaAs/AlAs multiple quantum well structure. 

Fig. 3-3 

Note that (b) is a time reversal process of (a). 

A schematic diagram for (a) Stokes and (b) anti-Stokes Raman scattering. 

Fig. 3-4 A typical Raman spectrum of GaAs/AlAs quantum wells obtained with our 

experimental setup. The GaAs and AlAs confined phonons peaks are at 290 cm-' and 400 

cm-', respectively. 

Fig. 3-5 Resonant Raman profiles of the Stokes (solid squares) and anti-Stokes (solid 

circles) Raman scattering for a 165 A GaAs/AlAs quantum well sample measured at 

room temperature. Dashed lines are guides to the eyes. Note that the two profiles have 

similar lines shapes, and that the separation between the Stokes and anti-Stokes peaks is 

exactly one LO phonon energy. 

Fig. 3-6 Resonant Raman profiles of the same sample as in Fig.3-5. However the anti- 

Stokes peak has been purposely shifted towards higher energy by one LO phonon energy, 

and then multiplied by a factor of 3.7. Using Eq. (3-5) and (3-6), we obtained a thermal 

phonon temperature of 335 K, consistent with our expectation. 
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Fig. 3-7 Resonant Raman profiles of (a) Stokes and (b) anti-Stokes Raman scattering 

of a 195 8, GaAs/AIAs quantum well sample measured at liquid nitrogen temperature. 

Noting again that the two profiles are quite similar with the Stokes peak position being 

one LO phonon energy higher than that of the anti-Stokes peaks. 

Fig. 3-8 Phonon occupancy as a function of the hot electron density for a 195 A 

GaAs/AIAs quantum well sample at liquid nitrogen temperature. The extrapolation to the 

zero electron density reveals a thermal phonon occupancy which should be subtracted off. 

Fig. 3-9 Non-equilibrium phonon occupancy as a function of the width of GaAslAIAs 

quantum well. Solid squares are experimental results, open circles are from model 

calculations in Chapter 11. Lines are meant to be guides to the eyes. 

Fig. 3- 10 A schematic diagram for the outgoing resonant Raman process at an electron 

subband edge. 

Fig. 3-1 1 (a) Non-equilibrium phonon distribution calculated for a 190 A GaAs/AlAs 

quantum well sample. The sharp peak is due to intersubband scattering, while the broad 

peak is due to intrasubband scattering. (b) An expanded view of the sharp peak in (a). 

Vertical dashed line indicates the wave vector probed by Raman scattering experiment. 
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Fig. 3-12 Non-equilibrium phonon occupancy as a function of the width of GaAs/AlAs 

quantum well calculated for various interface roughness, d is the size of the island. Also 

shown are the experimental data (solid squares). 
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Chapter IV: Photoluminescence of Highly Excited 
GaAslAlAs Quantum WeHs 

In this chapter we will examine the emission spectra from GaAslAlAs quantum 

wells under intense picosecond laser excitation. Photoluminescence (PL) is a process 

where electrons are excited by photons into the conduction (sub)bands, after relaxing 

down to the bottom of the (sub)band, these electrons recombine with the photoexcited 

holes to produce photons. Under high intensity excitation, excitons (electron-hole pairs) 

will be ionized when the density is on the order of 10" cm-', resulting in the formation of 

a dense two-dimensional electron-hole plasma (EHP). At these high electron densities the 

interaction among electrons becomes very important. Many-body interactions among 

electrons lead to many interesting phenomena like band gap renormalization (BGR) [ 13 

which have been extensively studied with the PL technique. Also as electron density 

increases, the electron Fermi level rises and may cross higher subband levels, this is 

known as band filling. As high index subbands get populated, emission from these 

subbands appears in the PL spectra. In the following sections we will make use of the 

band filling features in the PL spectra from highly excited GaAs/AIAs quantum wells to 

deduce the width of the wells. In addition, through a lineshape fitting of the PL spectra, 

we can deduce the average electron density. Both the quantum well width and the 

electron density are important parameters for the experiment described in Chapter 111. 

Another important thing to note is that in our experiment we have observed emission 

from subbands a few hundred meV above the bottom of the band. At this energy level, 
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band non-parabolicity is expected to be important. Therefore we are able to examine the 

effect of band nonparabolicity on the confined electron energy levels. 

4.1 Time-integrated photoluminescence from GaAs/AlAs quantum wells under 

high intensity excitation 

Experiments described in this section were carried out using the setup shown in 

Fig. 1 of Chapter 111. GaAs/AlAs multiple quantum well samples were held either at room 

temperature or liquid nitrogen temperature in an optical cryostat. The output of a 

picosecond dye laser was tightly focused onto the sample. Excitation intensity was 

changed by a variable neutral density filter. A photomultiplier tube together with the 

conventional photon counting electronics is used to acquire the time-integrated emission 

spectra. 

Fig. 4- 1 shows the room temperature PL spectra of a 21 0 GaAs/AlAs quantum 

well for several electron densities. The determination of the electron densities from 

analysis of the PL line shapes will be described in the next section. As we can see that at 

electron density 4x10" cm-' only two peaks are present, with the first peak dominating 

over the second one. When the density is increased, the relative strength of these two 

peaks changes, and the second one eventually becomes the dominant one. This is mostly 

due to the staircase type of density of state of the two-dimensional electrons in quantum 

wells. Upon further increasing the electron density, a third higher energy peak gradually 

gains strength, and when n = 6 . 1 ~ 1 0 ' ~  cm", we observe as many as five peaks in the PL 

spectrum. This is an indication of strong band filling effects as higher subbands become 
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populated. The width of the spectra is mainly determined by the Fermi energy of the 

electrons, which in turn is determined by the electron density. 

Another prominent feature in Fig. 4-1 is that with increasing electron density, the 

low energy edge of the spectnun moves toward lower energy by about 20 meV, showing 

the effect of BGR. However one notices that the positions of the PL peaks for different 

electron densities remain essentially unchanged. This is consistent with earlier PL studies 

of different highly excited quantum well structures reported in the literature [2,3]. Due to 

BGR, one would expect to see a PL peak at the reduced band gap. However Cingolani et. 

al. have shown in a spatially resolved PL experiment that this phenomenon is due to the 

spectral superposition of different radiative recombination processes originating from 

different lateral regions of the sample where actual carrier densities differ strongly [4]. So 

even though many body interaction greatly affects the high intensity PL spectra, we can 

still safely regard the PL peak position as the exciton transition energy. 

Fig. 4-2 shows the time-integrated PL spectra of a 165 8, GaAs/AlAs quantum 

well. One can see that the effects of BGR and band filling are quite similar to those in the 

210 8, quantum well sample although the PL peak positions are quite different. The 

maximum width of the spectrum, determined by the electron density and limited by our 

laser power, are also similar (about 250 meV) in these two cases. PL spectra measured at 

low temperature also display pronounced band filling and BGR effects. A typical PL 

spectrum under high intensity excitation at liquid nitrogen temperature is shown in Fig. 4- 

3 for (a) a 210 A, (b) a 165 8, GaAs/AlAs quantum well. Compared with the room 

temperature PL spectra, peak intensity increases by several order of magnitude, and peak 
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width also becomes much smaller. This is likely due to enhancement of exciton formation 

at low temperature [ 5 ] .  

4.2 Determination of the electron density in quantum well from its PL spectrum 

In this section we will deduce the average electron density through a lineshape 

fitting of the PL spectra. Considering the recombination of electrons and holes from a 

pair of subbands, the PL spectrum from this recombination is given by [5 1: 

where k, and k,,, E, and E,, fe and fv are the wave vectors, energies and the Fermi 

distribution functions for the electrons and holes respectively. Eq. (4-1) assumes k- 

conservation during the recombination process, and it has been shown to be valid for 

recombination at room temperature by Christen et al. [5] through a comparison of 

experimental and theoretical line shapes of the PL spectra of GaAs QWs. At low 

temperature they found evidence of non-k-conservation recombination and attributed it to 

the lateral localization of excitons in potential fluctuations caused by interface roughness. 

Therefore Eq. (4-1) should be applicable to our room temperature PL spectra. After 

integrating over k, Eq. (4-1) can be reduced to: 

where $(E)  is a step function describing the two-dimensional electron density of states, 

E, is the band gap, E,~,., is the reduced electron and hole energy, and it is given by: 
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where me and rnh are the effective masses of the electrons and holes respectively. The 

total PL spectrum is then a sum of all the possible transitions weighted by the respective 

oscillator strength M, associated with each transition: 

(4-4) 

In carrying the lineshape fitting using Eq. (4-4), we have made the following 

approximations. First, since the photoexcited holes are known to thermalize rather 

quickly with the lattice [6], we have assumed a Boltzmann distribution for the holes. This 

can be used to explain the sharp fall off in the intensity of the high energy tail of the PL 

spectra at low temperature as shown in Fig. 4-3. Secondly, we only consider 

recombination of electrons with heavy holes, since this is the most dominant process [2, 

31. Thirdly, to better fit the low energy edge of the PL spectra, we have broadened density 

of states for each level from a simple step function by a Lorentzian as schematically 

shown in Fig. 4-4. A discussion of the broadening of PL peaks can be found in 

references [5, 71. We note that choosing a broadened density of states does not affect the 

width of the PL spectra appreciably as the width is mostly determined by the electron 

density. Finally the oscillator strength M ,  are treated as adjustable parameters. This is 

because the PL spectra we measured are time-integrated. They can be viewed as a 

superposition of many spectra taken at different time delay after the laser pulse. Use of 

pulsed laser excitation means that the electron density is time dependent. In addition, as 

Cingolani et ai. have shown, the high electron density at small time delay will create a 
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large Fermi pressure for the EHP to expand, which in turn reduces the electron density 

[4]. Since the PL spectra are highly dependent upon the electron density, spectra taken at 

different time delay will have different line shapes. This has been confirmed by time- 

resolved PL measurement with a steak camera [SI. The high-energy tail mainly comes 

from emission at early time while the low energy part contains more emission at long 

delay time. Therefore it is almost impossible to deduce the exact oscillator strength 

associated with each transition from the time-integrated spectral. So we use instead the 

relative strength M ,  of the transition as adjustable parameters in our fitting. 

The dashed line in Fig. 4-5 show a fit to a PL spectra of the 165 A quantum wells 

using Eq. 4-4. There are four subband levels involved, the calculated curve fits the 

experimental data quite well. The electron density obtained fiom this curve-fitting is 

5 . 8 ~ 1 0 ' ~  cm -2. We notice that the above fitting method generally works well for spectra 

obtained at high electron densities. For spectra obtained at low electron density (<lo1' 

cm-') or at low temperature, the quality of the fit actually deteriorates. This is likely to be 

due to the fact that at low electron density or at low temperature, exciton effects on the 

emission spectra have to be included, and the aforementioned theory breaks down. 

4.3 Determination of the width of the quantum well from its PL spectrum 

Our discussions in section 4.1 have shown that the PL peak positions correspond 

to the transition energy between electron and hole subbands. These peak positions can be 

used to calculate the confined energy levels. Through comparison with model 

calculations of the electron energy levels described in Section 2.1 of Chapter 11, we can 
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deduce the width of the quantum well. Fig. 4-6 shows the plot of the PL peak positions 

versus the subband index for three different quantum well samples measured at room 

temperature or liquid nitrogen temperature. We found that fits of the peak positions to a 

quadratic dependence on the subband index n yielded the best result. PL peak positions 

are well described by the following equation: 

E,, = E ,  + A x n2 (4-5) 

We note that E ,  here is not the true band gap of GaAs. Miller et. al. have shown via PL 

excitation spectroscopy that the PL peaks of highly excited quantum wells correspond to 

transitions from the electron subbands to the first heavy hole subband [9]. In this context 

E ,  is the bulk band gap plus the confinement energy of the first heavy hole level (for 

quantum well width around 180 A, the confinement energy of the heavy hole is about 2 

meV), and A is the confinement energy of the first electron level. 

We have also noticed that the quadratic dependence of the subband levels on the 

subband index also worked extremely well on the peak positions taken from the PL 

spectra for the highly excited GaAs/Al,Ga,,As and IqGa,-,As/InP quantum wells in 

references [2, 31. Typical error is less than 1%. As a result of this curve-fitting, we 

obtained two important parameters, namely the bulk GaAs band gap E, (after subtracting 

off 2 meV from E , )  and the first electron subband energy level A. One can see that the 

value of A obtained for the three samples from fitting the room temperature data are quite 

consistent with those obtained from fitting the liquid nitrogen temperature data. As we 

have mentioned in Chapter 11, the first subband level calculated using the Ben-Daniel 

Duke model (parabolic approximation) or the Bastard model (non-parabolic 
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approximation) yields essential the same value. By using the Ben-Daniel Duke model we 

found that the widths of the three quantum well samples are 165, 195 and 210 A 

respectively. The band gap energy E,= 1.430 eV at room temperature and E,= 1.509 eV 

at liquid nitrogen temperature are in very good agreement with the values of 1.425 eV 

and 1.5 10 eV quoted in the literature. 

The quadratic dependence of the subband levels on the subband index is 

consistent with the fact that we have a deep quantum well. However, when the electron 

energy is a few hundred meV above the bottom of the band, one may expect to see the 

effect of band non-parabolicity. A plot showing the comparison between calculations 

using parabolic band approximation and the Bastard model [lo] is shown in Fig. 4-7. 

Clearly, the parabolic band approximation agrees very well with our experimental results 

while the Bastard model gives a much lower energy level for high index subbands (the 

difference can be as large as 50 meV). There are some studies in the literature about the 

effect of band non-parabolicity on the subband levels [IO, 11 3, and an energy dependent 

effective mass associated with the band non-parabolicity is often used in the calculation 

which results in lower subband levels than those obtained with parabolic band 

approximation. These studies often focused on low index subbands of quantum wells 

with small well widths where the separation between subbands are relatively large and 

non-parabolicity is expected to have a more pronounced effect, however there is 

considerable spread among the results [12]. Our finding that band non-parabolicity has 

little effect on the subband levels requires further theoretical investigation into this 

subject. 
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In summary we have studied the PL spectra under high intensity excitation in 

GaAs/AlAs quantum wells. These spectra reveal strong band filling and band gap 

renormalization. Despite the many body interactions, PL peak positions still correspond 

to the transitions between electron and hole subbands. The position of the PL peaks can 

be well described by a quadratic dependence on the subband index. even for electron 

energy as high as about 250 meV above the bottom of the first subband. Band non- 

parabolicity seems to play a minimum role in determining the confined electron energy 

levels. Through curve-fitting, we have determined the average electron areal density and 

the width of the quantum wells both of which are important parameters for our 

experimental investigation of the non-equilibrium phonons in quantum wells described in 

Chapter 111. 
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Figure Captions for Chapter IV 

Fig. 4-1 Time-integrated photoluminescence spectra of a 210 A GaAs/AlAs quantum 

well measured at room temperature for various electron densities. The electron densities 

are obtained from curve-fitting described in the text. PL peaks correspond to exciton 

transitions in the quantum well. 

Fig. 4-2 

well measured at room temperature for various electron densities. 

Time-integrated photoluminescence spectra of a 165 8, GaAs/AlAs quantum 

Fig. 4-3 Time-integrated photoluminescence spectra under high intensity excitation of 

(a) a 210 8, GaAs/AlAs quantum well; (b) a 165 8, GaAdAlAs quantum well measured at 

liquid nitrogen temperature. 

Fig. 4-4 A schematic diagram of the broadened density of states (solid line) used in the 

lineshape fitting. This is similar to an energy level broaden by a Lorentzian function. The 

step-function like density of state for an ideal two-dimensional electron gas is shown in 

dash line. 

Fig. 4-5 A time-integrated photoluminescence spectrum of a 165 I$ GaAs/AlAs 

quantum well measured at room temperature. The dashed line is the result of a theoretical 

curve-fitting based on Eq. (4-4). The average areal electron density obtained from the 

fitting is 5 . 8 ~ 1 0 ’ ~  cm”. 
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Fig. 4-6 A plot of the photoluminescence peak positions versus the subband index for 

three different GaAs/AlAs quantum wells. (a) Measurement done at liquid nitrogen 

temperature, (b) measurement done at room temperature. Symbols are experimental data, 

solid lines are quadratic fits to the data. The gap energy E, and the confinement energy 

A for the first subband obtained from fitting are also shown in the plot. Data measured at 

different temperature show good consistency. Quantum well widths are obtained by 

comparing the value of A with the results of model calculation described in section 2.1 of 

Chapter 11. 

Fig. 4-7 A comparison between the energy levels calculated using different models for 

(a) a 195 8, GaAs/AlAs quantum; (b) a 165 8, GaAs/AlAs quantum well. Symbols are 

experimental data, solid lines are from a parabolic band approximation, dashed lines are 

from the Bastard’s four band model. 
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Chapter V: Probing Optical Phonon Propagation in 
GaAs/AI,Ga,_,As Quantum Wells via 

Non-Equilibrium Phonon Populations 

In this chapter we will examine the issue of confinement and propagation of 

optical phonons in GaAs/Al,Ga,,As quantum wells. Recently? Kim et al. [l-31 have 

studied NOP occupancy in a series of GaAs/A1,Ga,-xAs quantum wells as a function of 

either the AI fraction x or the thickness of the barrier (LJ, and they found a sudden 

increase in NOP population when x < 0.3 or when the barrier is thinner than 10 A. Kim 

and co-workers have interpreted these results as due to a sudden transition of the optical 

phonons in the well from a confined state to a propagating state. These experimental 

results have stimulated much theoretical interest in the issue of phonon confinement and 

propagation in quantum wells [4-71. However, there appear to be no theoretical 

underpinning of the NOP technique in determining whether a phonon is confined or 

propagating. Here, we perform a model calculation of the NOP distribution, and examine 

quantitatively the consequences of phonon confinement and propagation on the NOP 

population observed by Raman backscattering experiments. We argue that the relaxation 

rates of energetic hot electrons in quantum wells and superlattices are essentially the 

same as in bulk samples. We can then perform analytical calculations to relate the 

coherence length of LO phonons in the growth direction to the observed NOP population. 

We then analyze the NOP experiments by Kim et al.. Using this model, we show that the 

coherence length of the LO phonons is a sensitive function of x. Therefore? whether LO 
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phonons are localized within a quantum well or can penetrate into adjacent wells depends 

very much on the structural parameters of the samples. 

5.1 Wave vector of confined and propagating LO phonons probed by Raman 

scattering 

Let us begin our discussion by defining the back-scattering geometry in most 

NOP experiment, which is schematically shown in Fig. 5-1 along with a schematic 

picture of the wave function for the Raman-active LO phonon. We have shown in 

Chapter I1 that in such a scattering geometry, Raman scattering probes only phonons with 

Qz - 7x 1 O5 cm-' in bulk GaAs due to quasi-momentum conservation. Since this happens 

to be very close to the peak of the NOP distribution for bulk GaAs, one usually measures 

a relatively large NOP occupation number as predicted by theory. On the other hand, 

quasi-momentum conservation along the quantum well plane direction dictates that 

Raman back-scattering will be able to probes only phonons with e,, < lo5 cm-' in 

GaAs/AlAs quantum wells. And from our modei calculations in Chapter 11, we know that 

there is no NOP in this wave vector range except in the case when the separation of two 

subbands is close to the LO phonon energy, and resonant intersubband scattering of 

optical phonons (RISOP) becomes possible. So in principle one does not expect to 

measure any NOP in quantum wells via Raman back-scattering. However, as we have 

discussed in Chapter 111, the breakdown of quasi-momentum conservation caused by 

defect or impurity may allow resonant Raman scattering to probe a much wider range of 

in-plane phonon wave vectors, allowing one to measure a small NOP occupancy. 
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Following this argument, we can see that when the observed NOP occupancy drops 

precipitously, it may be suggestive of a transition from a three dimensionally propagating 

phonon mode to a confined phonon mode of two dimensional nature. The above 

discussion only applies to the two extreme cases of pure 3-D and 2-D, and there is no 

theory that can accurately describe the transition region. In order to bridge the transition 

fiom a propagating mode to a confined mode, what we will do here is to start out from 

the 3-D extreme and assume that the propagating phonon modes have an infinite spatial 

extent. Then we introduce a coherence length 5 to describe a phonon wave packet of 

finite size. By changing the coherence length or the size of the wave packet, we try to 

simulate the transition from a propagating to a confined mode. We will examine how the 

NOP occupancy is affected by the phonon coherence length 6 .  

We first consider the wave function of a propagating optical phonon mode (also 

referred to as a folded optical phonon mode in the literature) which would be valid for 

superlattices with ultrathin barriers or G%Al,_,As barriers with low A1 concentration. The 

Bloch function of the phonon mode is given by: 

Yq = exp(iqz)u, (2) (5-1) 

where u, is a periodic function with periods equal to L: + L, . -  L- and L, being, 

respectively, the well and barrier widths. The wave vector Q of the Raman-active modes 

in this case is determined by both the bulk property and the period of the superlattice: 

Qz = Qo +2rnnl(L, + L,,) (5-2) 
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where rn = 0, 1, 2..., and Qo is the wave vector of the Raman-active phonons in bulk 

GaAs as defined by the scattering geometry. The strongest Raman peak will have Qz 

corresponding to m = 0 and hence Q is essentially the same as in bulk GaAs. In other 

words when optical phonons can propagate in a superlattice, the wave vector of the 

strongest mode probed by Raman scattering is essentially the same as in bulk GaAs. This 

is shown more clearly in Fig. 5-2 where the solid curve is zi schematic wave function of a 

Raman-active propagating optical phonon mode in a superlattice. Notice that the 

dominant Fourier component for this wave function occurs at Qo = 27r/i10. When 

compared with the corresponding phonon wave function in the bulk in Fig. 5-1 one sees 

that phonons of essentially similar wave vectors are probed by Raman scattering in 

superlattices and in the bulk. 

When the phonon starts to change from a propagating mode to a localized mode 

(Fig. 5-3), phonon wave function will no longer be infinitely extended, instead it will 

form a wave packet of finite size. The spatial confinement of the phonon wave function 

results in a spread of wave vector around Qo. The more the phonon is localized, the 

smaller the wave packet, then larger is the spread in its wave vectors. Therefore Raman 

scattering will not just be probing one single phonon wave vector, but a range of wave 

vectors around Qo in this case. As we shall see in the following sections, this will have an 

important consequence on the NOP occupancy measured by Raman scattering, and hence 

the ability of NOP as a probe of the spatial extent of LO phonons. 

5.2 Model calculations of non-equilibrium phonon distributions in bulk GaAs 
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To decide whether the NOP can be a sensitive tool to determine the spatial extent 

of the LO phonons, we need to know first the distribution of NOP generated by hot 

electron relaxation. We know that in quantum wells with large well width, phonons will 

only be weakly confined, and as the well width increases, the constraint on the phonon 

propagation will gradually disappear, and we should be gradually approaching the bulk 

limit. In principle, we can use the models in Chapter I1 to calculation the NOP. However, 

for well width approaching infinity, the subbands are closely spaced. To include all of 

them in the calculation is computationally impossible. On the other hand, we know that in 

this extreme quantum wells should behavior like a bulk material. Therefore, we will start 

out by assuming a bulk GaAs NOP distribution for the propagating phonons considered 

here. We can calculate the NOP distribution N ,  generated by hot electron relaxation in 

bulk GaAs in a similar fashion as we did in Chapter I1 using the following rate equation: 

where IM,12 is the bulk GaAs electron-LO phonon (Frohlich) interaction matrix 

element squared, K E ,  andf(l[<,t) are, respectively, the electron wave vector, energy and 

distribution function, E,,, and z4 are, respectively, the LO phonon energy and lifetime. 

Although both electrons and holes are excited by the pump laser, most of the excess 

energy of the photon is imparted to the electrons due to their much lighter effective mass 
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and hence we have neglected the hole contribution to N ,  in Eq. (5-3). In experiments 

where the NOP population in GaAs is probed at low temperatures within a few ps after 

excitation by a pump pulse, the phonon decay term in Eq. (5-3) can be neglected since 

zq is about 10 ps long. 

In bulk GaAs the Frohlich interaction matrix element I M ,  l2 is given by the 

familiar expression: 

where e is the electron charge, V is the volume of the crystal, E, and are, 

respectively, the high frequency and low frequency dielectric constants. We assume that 

the excited electron-hole density is <IO’’ ~ r n - ~  so that screening of the Frohlich 

interaction by the photoexcited electrons is negligible. On the other hand the density is 

>lo” cm‘3 so that the electron thermalization time is much less than the laser pulse 

duration of about 1 ps. By assuming that the electron distribution function can be 

approximated by a Boltzmann distribution with temperature c ,  and that there is only 

one spherical conduction band, Eq. (5-3) can be integrated to yield: 

In Eq. (5-5) N ,  is the electron density, k ,  is the Boltzmann constant, m* is the electron 

effective mass, E,, and E ,  are defined as: 
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(5--6) 

and 

li2q2 -- E, - zm* (5-7) 

and N ,  is the LO phonon population when the electrons and the LO phonons are in 

thermal equilibrium : 

The generation of NOP via the relaxation of hot electrons cools the electron gas 

so that < is a function of time, and hence N,,  also depends on time. The rate equation 

for the average energy of an electron ( E )  = (3 / 2)k ,  T, is given by: 

(5-9) 

where D4 represents the LO phonon density of states. 

Fig. 5-4 shows the NOP distribution obtained by solving simultaneously Eqs. (5- 

6 )  and (5-9) for a bulk GaAs under the assumption that the electrons are excited by a 

delta-function pulse in time with initial average electron energy of 0.5 eV. The NOP 

distribution is measured at 1 ps after the passage of the excitation pulse. The material 

parameters of GaAs going into this calculation can be found in Table I in Chapter 11. 

There are two important features in Fig. 5-4 that worth noting. First, there is a peak in 
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N ,  occurring at the value of q - 4 x  1 O5 cm-* which is very close to the value of Qo in 

Raman scattering in bulk GaAs. Secondly, N ,  drops very rapidly to zero as the value 

of q decreases. This sharp cut-off in N ,  occurs at 9,in-2x105 cm-’. The existence of 

this cut-off in N ,  has already been mentioned in Chapter I1 and it results from the 

conservation of energy and momentum during the electron-LO phonon scattering 

process. The value of qmin is determined by the LO phonon energy and the electron 

effective mass m*. We should point out that the NOP distribution in bulk G a s  generated 

by the relaxation of a nonequilibrium distribution of electrons has been calculated 

previously by Collins and Yu [8]. These authors have assumed a lower electron density 

(<loi6 cm”) so that the electron-electron interaction can be neglected. As a result, their 

nonequilibrium electron distribution was represented by a series of delta functions (as 

opposed to the Boltzmann distribution assumed in the present calculation) separated from 

each other in energy by the LO phonon energy. In spite of this difference their results are 

qualitatively similar to ours because the peak in N ,  and the cut-off at qmrn are both 

determined by the band curvature and the LO phonon energy and therefore are not very 

sensitive to the electron distribution. Calculations similar to ours but including screening 

and other effects have recently been presented by other groups [9, IO]. 

5.3 Effects of phonon localization on non-equilibrium phonon occupancy observed 

in Raman scattering 

As we have discussed in Section 5.1, the wave vector probed by Raman 

scattering for propagating phonons with infinite spatial extent is the same as that in the 
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case of bulk GaAs, therefore we have the largest NOP value as Qo is close to the NOP 

peak position. For propagating phonons with a finite spatial extent 6, Raman scattering 

will probe a range of phonon wave vectors around e,,, and since NOP has certain 

distribution in momentum space, probing a range of wave vectors will result in a decrease 

in the measured NOP occupancy when NOP of smaller occupancy are included. When 

the phonons are localized in quantum wells, the coherence length is equal to well width 

L,, so the wave vectors of phonons sampled by Raman scattering is determined mainly by 

the well width L, and can be much larger than Qo if L, is small (say on the order of 100 

A). When QR is much larger than lo6 cm-' (the position of the peak in the hot phonon 

distribution fbction), the measured NOP population is expected to be significantly 

smaller than that of bulk GaAs. 

To quantitatively examine the effect of a finite coherence length on the measured 

NOP, we utilize the following relation: 

(5-10) 

where 6(x) is the Dirac delta function. Using Eq. (5-lo), we can write the NOP observed 

by Raman scattering in bulk GaAs as: 

(5-1 1) 

Then, to introduce a coherence length 5 for the phonon, we can use the Gaussian function 

in Eq. (5-10) to approximate the delta function in Eq. (5-1 1) and arrive at the result: 
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(5-12) 

Let us examine the implications of Eq. (5-12). When the coherence length 5 goes 

to infinity, we recover the bulk limit where only N,, is measured . On the other hand, 

when the coherence length is determined by the well width L,, the region of wave vectors 

probed is a Gaussian centered around eo, with its full width at half maximum given by 

-(l0ge2)'/LZ, as schematically shown in Fig. 5-5. As a result of this averaging over those 

contributions from the relatively large q phonons with small nonequilibrium population, 

the measured NOP population would be smaller than that of buik GaAs. As pointed out 

before only the peak of the NOP distribution is probed in the latter case. 

The expression in Eq. (5-12) allows the coherence length of the LO phonons to be 

related to the NOP population observed by Raman scattering. In real space, Eq. (5-12) 

corresponds to making the following approximation for the Raman-active phonon wave 

function (YR), which is the Fourier transform of expC-6' (4 - Q0)' J : 

(5-13) 

The wave function in Eq. (5-13) has the advantage that it can be applied to both the bulk 

propagating phonons and to the confined ones in describing their spatial extent. In 

principle, one can further generalize the wave function in Eq. (5-13) to describe a Bloch 

wave of a finite spatial extent, as schematically shown in Fig. 5-6, with the following 

expression: 
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(5- 14) 

Where uQo (2) is a periodic function with the periodicity of the superlattice. In the 

schematic picture of the phonon wave function shown in Fig. 5-6, we purposely omit the 

phase factor exp(iQoz). However, as far as NOP is concerned it is difficult to determine 

the periodic part of the wave function. In any case we do not expect that using Eq. (5-14) 

instead of Eq. (5-13) would change the results appreciably. In particular if Qoc is <<I 

then the periodic part is completely negligible. Therefore, from now on we shall 

concentrate on the relationship between the NOP population measured and the phonon 

coherence length 5 using Eq. (5-12). This approximation is equivalent to using the 

Gaussian wave function in Eq. (5-1 3) instead of the Bloch wave function in Eq. (5-1 4). 

With the above approximation we can calculate, from the theoretical hot phonon 

distribution of Fig. 5-5, the normalized NOP population measured in Raman scattering as 

a function of . It is assumed that the NOP population is normalized to the value for bulk 

GaAs which corresponds to 5 approaching infinity. The results are shown in Fig. 5-7. We 

note that the NOP population increases monotonically with 5. It goes to zero as E, 

approaches zero because Raman scattering starts to probe more large wave vector LO 

phonons with small occupation numbers. One may say that Fig. 5-7 is the basis for 

using the experimental normalized NOP population as a probe of the coherence length or 

the spatial extent of the Raman-active LO phonon modes. It should be kept in mind that 

the various approximations used in arriving at Fig. 5-7 make it difficult to determine 

quantitatively the coherence length. However, if the wave function of the phonon 
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involved changes suddenly from that of a propagating wave to a localized one as in an 

Anderson localization, we expect a large sudden .decrease in 6 accompanied by a 

corresponding decrease in the NOP population. With this in mind, we shall analyze in 

the next section some Raman measurements of the NOP population performed on 

GaAs/Al,Ga,_,As quantum wells in which the phonon coherence length is varied by 

changing the structural parameters, such as the AI concentration in the AI,Ga,,As barrier 

layers. 

5.4 Discussion of non-equilibrium phonon population in GaAs/AI,Ga,-,As quantum 

wells 

Recently, Kim et al. have studied over 30 GaAs/A1xGa,_xAs quantum well samples 

with a constant well width L, = 100 8, and barrier width L b  > 20 A but with different 

amounts of AI fraction x in the barrier. The NOP population was determined from the 

ratio of Stokes to anti-Stokes intensities after correcting the resonant Raman effect and 

subtracting the thermal background phonon population. The experimental details have 

been described in references [l-31. Fig. 5-8 shows the NOP populations normalized to the 

bulk value (solid circles) as a function of the aluminum fraction x.measured by Kim et 

ai.. For L b  > 20 A the NOP population depends only weakly on L b ,  but more strongly on 

x [l]. And each data point in Fig. 5-8 represents the averaged result of many samples 

with different Lis  but with the same nominal x. The striking feature in Fig. 5-8 is that the 

normalized NOP population drops quickly to only 0.1 for x between 0.2 to 0.4. This 

result was found to be essentially independent of temperature. 
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We interpret the sudden decrease in the NOP population in terms of a 

corresponding decrease in the coherence length of the LO phonons along the growth 

direction. By combining Figs. 5-7 and 5-8 we can obtain a plot of the LO phonon 

coherence length 6 as a function of x. To obtain such a plot we first draw a smooth curve 

through the data points in Fig. 5-8 (solid curve) and the resultant 5 versus x plot is shown 

in Fig. 5-9. The main feature to note in Fig. 5-9 is that, for x between 0.2 to 0.4, 5 drops 

to a small constant value of around 60 A. If the G a s  LO phonons become localized 

completely within the quantum well as x exceeds some critical value then we expect the 

coherence length to reduce to the well width of 100 I$. Considering the simplifications we 

have made, the difference of a factor of -2 between the value of coherence length 

deduced and the well width is not unreasonable. The important point is that Fig. 5-9 does 

show the spatial extent of the LO phonon wave function, as deduced @om the NOP 

experiment, approaches a constant value of the order of magnitude of the well width for 

x exceeding a certain critical value. This is exactly what is expected from a simple 

physical picture in which the GaAs phonon wave function can penetrate through the 

Al,Ga,-,As barrier when x is small. But as the AI concentration increases the phonon will 

be scattered by the A1 atoms with smaller masses than the Ga atoms. For x larger than a 

certain value the GaAs phonons will be localized inside the well and the coherence length 

reduces to the well width. Thus we contend that, even given our many simplifications, 

the NOP technique is at least capable of distinguishing between an extended phonon 

mode and a localized one. In the case of the LO phonons in GaAs/Al,Ga,_,As quantum 

wells this transition from an extended to a localized mode occurs when x is somewhere 
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between 0.2 and 0.4. 

paragraphs. 

We shall discuss the implications of this result in the following 

We first consider whether the above conclusion regarding the spatial property of 

LO phonons in GaAs/Al,Ga,-,As is consistent with existing theories and experimental 

results. Multiple LO phonon peaks in the Raman spectra of GaAs/AlAs quantum wells 

have been reported by many authors [ 1 I]. It is now generally agreed that these peaks 

result from the confinement of the LO phonons, either in the GaAs well or in AlAs 

barrier. Both kinds of phonons are strongly confined in their respective layers because of 

the large separation in energies between the GaAs and AlAs optical phonon branches. All 

the observed GaAs Raman peaks have been explained quantitatively by this confinement 

model using the phonon dispersion curves of bulk GaAs. The situation in GaAs/Al,Ga,- 

,As quantum wells has been complicated by the so-called “two-mode” behavior of optical 

phonons in Al,Ga,-,As. The reason is that the energy of the GaAs-like LO phonons in 

Al,Ga,,As lies very close to that of the GaAs LO phonons. It is, therefore, possible that 

GaAs LO phonons can propagate through the Al,Ga,,As barriers provided the A1 fraction 

x in the barrier is small. However, the important issue of whether the GaAs LO phonons 

can propagate through Al,Ga,-,As at a critical value of x has been investigated only by 

theoreticians and not yet extensively by experimentalists [4-71. We note that Kash and 

coworkers have investigated the localization of phonons in Al,Ga,-,As alloys using the 

NOP technique [12]. They also predicted a decrease in the NOP population if the 

phonons become localized. They investigated a series of AlXGa,-,As samples with the A1 

fraction x=0.07, 0.11 and 0.24. They found that the NOP population could be observed 

even for x=0.24. Hence they concluded that, if there is a transition from propagating 
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phonons to localized phonons in Al,Ga,-,As, this transition occurs at x>0.24. In a 

quantum well sample with well width L=500 A. They found that wave vector 

conservation is relaxed to the point that forward and backward scattering give identical 

results. This is consistent with our expectation. Because bulk GaAs LO phonon probed by 

Raman back scattering has a wavelength about 900 A (Fig. 5-I), a 500 8, quantum well 

will put some geometrical constraint on the phonon propagation, causing a spread in 

phonon wave vector in magnitude comparable to Q,. In this case the scattering geometry 

becomes relatively unimportant in determine the NOP occupancy. The strong dependence 

of the localization properties of the GaAs LO phonons on the AI fraction in the Al,Ga,- 

,As barrier we deduced from our experiments is also in good qualitative agreement with 

some recent theoretical work. 

The fact that the onset of the propagating-to-localized transition of the LO 

phonons coincides roughly with the direct-to-indirect band gap transition in Al,Ga,,As as 

a function of x also raises the question whether the sudden decrease in the NOP 

population with increasing x may be explained by the lowering of the X conduction band 

valleys relative to the conduction band minimum at the zone center. If this direct-to- 

indirect cross-over of the Al,Ga,,As band gap is included in our model calculation then 

its contribution to the decrease of the NOP population is expected to be less than 50% 

rather than by a factor of ten. The effect of intervalley scattering on the efficiency of NOP 

generation has been studied in bulk GaAs by Collins and Yu [8]. They found that this 

effect reduced the NOP population by only about 30%. Since most of the high energy 

electrons excited by the laser pulses which undergo intervalley scattering will eventually 

return to the r valley, most of them will still lose their energies in the r valley by 
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emitting NOP, intervalley scattering is not expected to be important to our model. On the 

other hand, the direct-to-indirect bandgap cross over may be related to a second order 

phase transition, as has been suggested recently [ 131. In this case, one cannot rule out the 

possibility that the confined-to-propagating transition of optical phonons in Al,Ga,,As 

and the direct-to-indirect transition of the bandgap may have the same physical origin. 

Finally, we can ask what is the accuracy of the value of x we deduced for the 

transition from a propagating to a localized state for phonons in GaAs/Al,Ga,-,As 

quantum wells. By assuming a bulk-like hot electron relaxation, we tend to overestimate 

the NOP, for in quantum wells confinement of electrons can greatly suppress the 

generation of small q hot phonons [14, 151. Therefore, the experimental NOP is expected 

to be smaller than the calculated value based on the bulk-like hot electron relaxation 

approximation. Hence we probably underestimate the coherence length of the LO 

phonons, especially for large values of x. In other words, it is possible that the 

propagating to localized transition occurs closer to x=0.4 rather than x=0.2. This result 

would be in better agreement with the theoretical results of Fertig and Reinecke [4] who 

conclude that optical phonons can be propagating for x as large as 0.4. 

In summary, we have studied the confinement and propagation of LO phonons in 

GaAs/Al,Ga,-,As quantum wells, and developed a simple model to correlate the NOP 

population to the coherence length of the GaAs LO phonons. We argue that the NOP 

population can be a sensitive measure of the spatial extent of the LO phonons. Using our 

model, we deduced the coherence length of the GaAs LO phonons in GaAs/AI,Ga,,As 

quantum wells as a function of the A1 fraction x from the experimental NOP population 

measured by Kim et al.. 
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Figure Captions for Chapter V 

Fig. 5-1 A schematic diagram of Raman backscattering geometry. k,, and Is, are, 

respectively, the incident and scattered photon wave vectors outside the sample. 

Similarly, 4’ and Is’ are incident and scattered wave vectors inside bulk G a s .  The 

Raman active LO phonon has a wave vector roughly equal to Q0=2k’=2nk, (n is the index 

of refraction), since k,=k, and k,’=&’. The wave length of the Raman active LO phonon is 

then h0=2x/Q0x900 A for the excitation photon energy of 2 eV. 

Fig. 5-2 A schematic diagram of Raman backscattering in GaAs/Al,Ga,-,As with 

folded or propagating optical phonons (thus corresponding to small x). The Raman active 

GaAs LO phonon wave function, which is in the form of exp(iQoz)u(z) (u: periodic 

function with period L,+L,), is schematically represented by solid lines. The dominant 

Fourier component of this wave function occurs at q=Q,,. 

Fig. 5-3 A schematic diagram of Raman backscattering in GAs/Al,Ga,-,As with 

confined or localized optical phonons (thus corresponding to large x). The localized 

GaAs LO phonon wave function is schematically represented by solid lines. In this case, 

the wave vectors probed by Raman scattering is determined not by GaAs bulk property 

and photon energy, but by the well width. 

Fig. 5-4 Nonequilibrium LO phonon population at t=l ps as a function of wave vector 

q, assuming delta function excitation at t=O with 2 eV incident photons. The region of 
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wave vectors probed by Raman scattering is denoted as a vertical solid line. Inset: same 

NOP distribution plotted on a semi-logarithmic scale. 

Fig. 5-5 Nonequilibrium LO phonon population at t=l ps as a function of q, assuming 

delta function excitation at t=O with 2 eV incident photons (solid lines). The Fourier 

transform of a Gaussian wave function, F(q) with q=lOQ I$, is represented by dotted 

lines. In this case, the region of wave vectors probed is much more extended, so that 

contributions from small N ,  's are significant. 

Fig. 5-6 A schematic diagram of the Bloch wave function with a Gaussian envelope 

function (Eq. (5-14)). The size of the wave packet is 6 .  For convenience, Qo is set to zero. 

Fig. 5-7 

calculated from the results of Fig. 5-4 and Eq. (5-14). 

Non-equilibrium phonon occupancy as a function of the coherence length 5 

Fig. 5-8 Experimental non-equilibrium phonon occupancy (solid squares) probed by 

picosecond Raman scattering in GaAs/Al,Ga,-,As quantum wells as a function of alloy 

concentration x. Smooth fit to the data points is represented by the solid line. 

Fig. 5-9 Coherence length 5 deduced from the results of Fig. 5-7 and the analytical fit 

of Fig. 5-8, as a function of alloy concentration x in GaAs/Al,Ga,,As. 

112 



Air 

/ 
K 

I 

S 
K 

Figure 5 - 1 

113 



Air W A Q  As x l-x 

4 I 

I I 1 I I I 

:w! :-: :- : 
I I I I I I 
I I I I I 

I . . . (  I I I 

I I I I I I 

I . . .  

I I I I I I 
I I I I I I 

I I I I I 
I I I - 1  I I - 

‘ 3 b  

Figure 5 - 2 

114 



Air W A G 3  As x I-x 

K 
S 

\ 
K 

I 

I I 

:cj3@6: 
I I . . .  I I 
I I 
I I 
I I 

~ I I I I 

I I 
I I 
I I 

I I 
I I 
I I 
I I 

I 

:-I 

I L  : 2 ;  
I I 

I 

I 
I 
I 
I 

~ I I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I 
I 
I . . .  
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

confined or locdized phonorrj 

Figure 5 - 3 

115 



BcllkaPs 
I I 

I i 1 i 
1 

1 -  , T 

7 

Figure 5 - 4 

116 



L a = d i i p u u r j  
I I I I I I 

Figure 5 - 5 

117 



Air W A G a  A5 x l-x 

4 I 

I 
I 
I 
I . . .  I 
I 
I 
I 
I 
I 

I I I I 
1 I 1- c; 
I 
I 

I 
I 

I 

1 
I 
1 
I 
I 
I 
I 
I 
I 
I 

. . .  

1 I 
I I 
I I 
I I 
I I 
I I 

:- : 

I 
I 
I 
I 
I 

:- 

I I I 
I 
I 
I 
I 

+#k 
I 
I 
I 
I 

Figure 5 - 6 

118 



Figure 5 - 7 
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Chapter VI: Conclusions 

In this thesis we have studied non-equilibrium phonons in GaAs/Al,Ga,-,As 

quantum wells through model calculations and picosecond time-resolved Raman 

scattering and photoluminescence experiments. We have investigated three subjects, the 

resonant intersubband scattering of optical phonon (RISOP); photoluminescence of 

quantum wells under high intensity excitations; and propagation and confinement of 

optical phonons in quantum wells. In studying RISOP, we have addressed the issue of 

whether one can measure the phonon occupancy in quantum wells and superlattices using 

the technique of Raman scattering. We have shown experimentally that by taking into 

account the time-reversal symmetry relationship between the Stokes and anti-Stokes 

Raman cross sections, one can correct the spurious effect caused by resonant Raman 

scattering and successfully determine the phonon occupancy in quantum wells. We 

applied our technique to study RISOP in GaAs/AlAs quantum wells. Our results suggest 

that interface roughness in quantum wells and superlattices play an important role in the 

resonant Raman scattering. The breakdown of quasi-momentum conservation due to 

interface roughness enables resonant Raman scattering to probe a wide range of in-plane 

phonon wave vectors. The consequence of this change in the Raman-active phonon wave 

vectors is that one will be able to observe non-equilibrium phonon in Raman scattering 

which, in the general cases, would not be possible if quasi-momentum is strictly 

conserved in Raman scattering. This also means that the chance that one will measure the 

enhancement in non-equilibrium phonon occupancy predicted by RISOP when the 
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intersubband separation is equal to the LO phonon energy is greatly reduced. Our 

experimental results agree with our model calculations based on the Huang-Zhu model 

when we choose the size of the smooth regions at the interface to be of the order of 100 

A. This size deduced from our experiment is consistent with the result of recent 

experimental work on acoustic phonon scattering in the literature. In our experiments on 

the photoluminescence from highly excited GaAs/AlAs quantum wells, we have shown 

that band non-parabolicity has little effect on the electron energy levels in quantum wells 

with width of about 200 A. The electror subbands are found to be well described by the 

parabolic band approximation even for enzrgy as much as 250 meV above the bottom of 

the subband. This surprising finding may require additional theoretical investigation. In 

studying the confinement and propagation of optical phonons, we have combined our 

model calculation with the experimental results of Kim et al., and shown that Raman 

scattering of non-equilibrium phonons can be a sensitive measure of the spatial extent of 

the LO phonons, and can be used to detect the transition of phonon mode from a 

propagating state to a confined state. We have correlated the measured non-equilibrium 

phonon occupancy to the coherence length 5 of the LO phonons, and deduced 4 of the 

GaAs LO phonons in GaAs/Al,Ga,-,As quantum wells as a function of the aluminum 

concentration x. 
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