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I 1. ABSTRACI' 

The investigation of a diagnostic method for detecting and locating the source of structural degradation in 
mechanical systems is described in this paper. The diagnostic method uses a mathematical model of the 
mechanical system to defme relationships between system parameters, such as spring rates and damping 
rates, and measurable spectral features, such as natural fiequencies and mode shapes. These model-defined 
relationships are incorporated into a neural network, which is used to relate measured spectral features to 
system parameters. The diagnosis of the system's condition is performed by presenting the neural network 
with measured spectral features and comparing the system parameters estimated by the neural network to 
previously estimated values. Changes in the estimated system parameters indicate the location and severity of 
degradation in the mechanical system. 

The investigation applied the method by using computer-simulated data and data collected from a bench-top 
mechanical system. The effects of neural network training set size and composition on the accuracy of the 
model parameter estimates were investigated by using computer simulated data. The measured data were 
used to demonstrate that the method can be applied to estimate the parameters of a "real" mechanical system. 

The results show that diagnostic method can be applied to successfully locate and estimate the magnitude of 
structural changes in a mechanical system. The average error in the estimated spring rate values of the 
bench-top mechanical system was less than 10%. This degree of accuracy is sufficient to permit the use of 
this method for detecting and locating structural degradation in mechanical systems. It was also shown that 
the neural network training sets required for this level of estimate accuracy are not impractically large and can 
consist of natural frequency and mode shape information. 

2. INTRODUCIION 

Traditional monitoring methods can detect when mechanical degradation has occurred but provide little 
indication of the location and severity of the degradation. The main advantages of the investigated method 
are that signature interpretation is based on mathematical model results, allowing a direct association between 
spectral changes and structural degradation, and that both the location and the magnitude of structural 
changes can be estimated. This approach removes much of the subjectiveness commonly associated with 
signature interpretation. 

2.1 Overview of the Diagnostic Method 

The diagnostic method combines a mathematical model of the monitored system to relate system parameters 
to measurable spectral phenomena, a technique to extract the significant features from the frequency spectra, 
and a neural network to match the extracted spectral features to corresponding system parameters. The steps 
comprising the technique are: 



1) Develop a mathematical model describing the vibrations and dynamics of the monitored mechanical 
system. 

2) Use the mathematical model to form a training set for the neural network. The training set will 
consist of calculated model responses (i.e., spectral features) as a known input and the corresponding 
spring and damping constants (i.e., system or model parameters) as a known output. Thus, if the 
relationship between the spectral features and the system parameters is single-valued, the neural 
network will perform the mathematical inverse of the model. 

3) Design a neural network which will be trained to simulate the model. 

4) Train the neural network by iteratively adjusting the-neural network connection weights to obtain 
optimum agreement between the neural network and the mathematical model. 

5 )  Use the trained neural network to estimate the system parameters corresponding to a measured set of 
spectral features. 

The modeling technique is independent of the monitoring method. Thus, for some applications relatively 
coarse lumped-parameter approximations may be suitable, while for others, detailed models employing 
sophisticated modeling techniques, such as finite element methods, may be needed. The only requirement 
placed on the mathematical model is that the significant and measurable effects caused by the changing of 
system parameters must be simulated. The parameters most likely to change in mechanical systems are 
stiffness or damping and the significant and measurable effects of these changes will be the characteristics of 
the natural frequencies and mode shapes. 

The supervised learning mode of neural network training used in this investigation involves adjusting internal 
neural network parameters until satisfactory agreement is obtained between the sets of known input and 
output parameters in the training set. For the neural network to relate spectral features to system parameters, 
the training set will use spectral features calculated by the mathematical model as neural network input and 
will use the corresponding model input parameters as neural network output. After training, the neural 
network will effectively contain all of the significant mformation available from the model and will, in effect, 
perform the mathematical inverse of the model. 

. 

The implementation of the trained neural network for interpreting vibration signatures is summarized in 
Figure 1. Sensor signals are conditioned and then transformed into frequency spectra by an FFT algorithm. 
The spectral data are decomposed, yielding frequency peaks and mode shape components. These spectral 
features are used as input to the neural network. The neural network output are estimates of the original 
system parameters. Comparison of the latest estimated system parameters with previously estimated values 
indicates if degradation has occurred and can also indicate the severity of the degradation. The specific model 
parameter that experiences a change indicates the location of the degradation because each model parameter 
represents a specific system component. 



Figure 1. Diagram showing the implementation of the diagnostic method. 

3. APPLYING THE DIAGNOSTIC METHOD TO COMPUTER-SIMULATED DATA 

The computer simulation was intended to address the following questions: 

1) What effect does the training set composition and size have on the accuracy of the model parameter 
estimates made by the neural network. 

2) Is the formation of the training set or the neural network training so computationally intensive that 
the diagnostic method is impractical. 

3) Are eigenvalues and eigenvector components a practical choice for forming the neural network 
training set and is the information contained in these values sufficient for the diagnostic method to 
accurately predict model parameters. 

4) Can the trained neural network solve the "inverse problem", that is, can the neural network be used to 
accurately estimate the model parameters that correspond to a given set of eigenvalues and 
eigenvector components (natural frequencies and mode shape components). 

When using computer-simulated data, a direct comparison of the estimated and known model parameters can 
be used to evaluate the accuracy of the neural network interpolation. 

3.1 Mechanical Model Description 

A simple lumped-parameter model representing a uniform beam supported by springs was used in this 
investigation. The beam model is shown in Figure 2. Mass points 2 and 3 each contain one third of the 
beam's mass and mass points 1 and 4 each contain one sixth of the beam's mass. Linear springs K,,,,,, and KmP 



Figure 2. The simple mechanical system model. 

attach the beam ends to ground. This model was used to calculate the first two rigid body modes of the beam, 
both of which are greatly affected by the mounting springs K,. and Kmp . 

The beam model was used to calculate mode shapes and natural frequencies for various combinations of K,. 
and KmT The calculation results were used to form a neural network training set. 

3.2 Formation of the Training Sets, the Neural Network, and Network Training 

The training sets were selected so the effects of the spacing between the training set members and the effects 
of the number and type of model output values on neural network prediction accuracy could be examined. 
The number of model output values determines the number of nodes in the neural network input and hidden 
layers. The spacing between the model input values affects the neural network prediction accuracy because 
closer input value spacings result in neural network interpolation over a narrower range during the recall 
phase. 

Training set input parameters were selected after examining the effect of changing the spring rates on the 
calculated natural frequencies and mode shapes. Nine different training sets were created and used in 
network training. Each training set used a different combination of input parameters and input parameter 
spacing. 

The Neuralworks Professional IVPLUS code, distributed by Neuralware, Inc. of Pittsburgh, PA., was used in 
this investigation.' Back propagation networks with a single hidden layer were used. Each network had two 
outputs corresponding to the spring rates K,,,,,, and KmT The number of inputs included the natural frequency 
values and the mode shape components for each natural frequency. Nine different training sets were used. 
Training sets 1,2, and 3 had four inputs, sets 4,5,  and 6 had 20 inputs, and sets 7,8,  and 9 had 45 inputs. 
Training sets 1,4, and 7 had 27 members, sets 2, 5 ,  and 8 had 125 members, and sets 3,6, and 9 had 343 
members. 

It was found that a suitable number of hidden layer nodes was approximately one-half of the input dimension 
brovided that number remained greater than the number of output nodes). A larger number complicated the 
network and did not improve either the convergence rate or the final accuracy; a smaller number in some 
cases degraded the fFal results. Additional factors that must be considered in the development of a 
backpropagation network are the nonlinear transfer function used and the variation of the learning rule 
incorporated. For our work the hyperbolic tangent function gave better results than the sigmoid function and 



was used as the nonlinear transfer function in all cases. Network learning was achieved by using the 
cumulative delta rule, a version of the gradient descent rule. 

3.3 Results Obtained from Applying the Diagnostic Method to Computer-Simulated Data 

The ability of the neural network to reproduce the training set output, given the training set input, is shown in 
Figures 3 and 4. These figures show the most accurate results obtained; the average absolute error and 
standard deviation of the estimated spring rates are 3.6% and 3.1%. 

The ability of the neural network to generalize over the training set (Le., to interpolate between the spring rate 
values used in the training set) is shown in Figures 5, and 6. A test set was formed by using calculated results 
for spring rates between those used in the training set. The overall absolute error is 3.2% and the standard 
deviation is 2.7%. 

The effect of the training set size on the accuracy of the neural network estimate of spring rates not included 
in the training set is shown in Figure 7. These results show that for each of the training set types, the 
accuracy of the neural network spring rate estimate improves as the number of training set entries increases. 
This improvement occurs because the greater number of training set members reduces the range over which 
the neural network must interpolate to estimate the spring rate values. The improvement decreases as the 
number of training set members increases. 

4. APPLYING THE DIAGNOSTIC METHOD TO MEASURED DATA 

The bench-top test unit and the data acquisition system are described in this section. This equipment was 
used to demonstrate the use of the diagnostic method on a relatively simple mechanical system. 

4.1 Description of the bench-top test unit 

The bench-top test unit consists of three main structural members, the frame base, the top beam, and the test 
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Figure 3. A comparison of the known and estimated spring 
rates for the values of K ,  used in the training set. 

beam (Figure 8). The structural 
members were designed to allow 
deflection primarily in the vertical plane. 
This constraint is imposed to force 
consistency between the deflections of 
the bench-top test unit and the 
calculated deflections of the 
mathematical model. The fiame base is 
constructed of 4" x 5.4 steel channel, 72 
inches in length. At each end of the base 
are two horizontal stabilizing members 
and an 18 inch vertical upright, each 
constructed of 4" x 5.4 steel channel and 
welded to the horizontal base. The top 
beam is constructed of 4" x 5.4 steel 
channel and is bolted to the uprights at 
each end. The test beam is constructed 
of 7" x 9.80 steel channel and is 
constrained to move only in the vertical 
plane by four rollers, two on each end of 
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Figure 4 comparison of the known and estimated spring rates 
for the values of K, used in the training set. 

the beam. These rollers contact the 
faced outside surface of each upright 
and also act to prevent twisting of the 
test beam. 

The test beam is mounted to the base 
and to the top beam by four Firestone 
model lMlA air springs that 
correspond to the mounting springs K,. 
and KmF The dependence of the spring 
rate on air pressure of the 1 M 1A air 
springs at the design height of 2.5 
inches shown in Figure 9.2 The nearly 
linearly relationship between the spring 
rate and the gauge pressure of the 
Firestone lMlA airspring shown in 
Figure 9 can be approximated by using 

K =  6.9Pg +50 . 

The pressure in each air spring is controlled with an Norgren model R46-200-RNLA in-line pressure 
regulator. Individual pressure gauges are used to monitor the pressure in each air spring. 

Three Endevco model 2233E accelerometers are used to measure the vibration of the bench-top test unit. The 
signal from each accelerometer is amplified by an Endevco model 272 1A charge amplifier before being 
supplied to the data acquisition system. Each end of the test beam has one accelerometer stud-mounted on 
the center line next to the air spring to measure the absolute movement of each end of the test beam. 
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Figure 5. A comparison of the known and estimated spring 
rates for values of K,,,,,, between those used in the training set. 

The data acquisition system consisted of 
an IBM-compatible 486 PC computer 
equipped with a 16-bit, multiple channel 
digital data acquisition board (AT-MIO- 
16X from National Instruments 
Corporation). The LabVIEW data 
acquisition package, also from National 
Instruments Corporation, was used as 
the software d r i ~ e r . ~  All data was low 
pass filtered by using a Rockland 852 
active filter prior to digitization. 

The mechanical system model described 
in Section 3.1 was used to predict the 
dynamics of the bench-top test unit. 
The initial value of the beam bending 
stiffiesses was calculated by taking the 
product of the modulus of elasticity and 
the area moment of inertia of each beam. 
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Figure 6. A comparison of the known and estimated spring 
rates for values of K ,  between those used in the training set. 

The nominal model parameter values 
had to be adjusted to obtain satisfactory 
agreement between the caiculated and 
measured natural frequencies and 
modes. The mass point values and their 
locations were held fixed during model 
tuning because these values are easily 
and accurately calculated. The beam 
bending stifhesses EI was adjusted by 
trial and error during model tuning. 
Neglecting to include the rotational 
inertia at the mass points and the 
trunnion spring rate of the bearings 
results in a model that under predicts the 
s t iaess  of the bench-top test unit. 
Thus, the calculated natural frequencies 
of the flexural modes of the test beam 
will be lower than the measured natural 
frequencies. The value of EI was 
adjusted from it’s initial value to a tuned 
value in which good agreement between 

the natural frequencies of the flexural modes was obtained. Table 1 lists the measured natural frequencies as 
well as the natural frequencies calculated by using both the initial and tuned values of EI, K-, and Kmr 

27-member set 

1 2 3 4 5 6 7 8 9 
t ra in ing  set number 

Figure 7. Effect of number of training set entries on neurai network 
estimation accuracy for the three training set types . 
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Figure 8. The bench-top test unit. 

4.2 Measured data 

The data was collected for 36 combinations of air spring pressures ranging from 20 psig to 70 psig in 10 psig 
increments. For each combination, nine data sets were taken by using a sampling rate of 1000 samples/s and 
a 1024 sample blocksize. Vibrational modes were excited by impacting the beam on the lei? and right sides 
(3 sets each)). Each data set was then Fourier transformed and the auto-power spectral density calculated. 
The resulting spectrum for each pressure combination is the average of the nine sets of spectra obtained. 
Natural frequencies corresponding to the first and second rigid body modes were used for diagnostic analysis. 

4.3 Formation of the Training Sets and Training of the Neural Netyork 
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Figure 9. Effect of internal pressure on the spring rate of the 
Firestone lMlA airspring. 

The values of K,, and Kmp, contained in 
the training set were selected so the 
calculated natural frequencies spanned 
the range of measured values. Both K,,,,,, 
and Kmp ranged from 350 lbdin to 1200 
lbdin in 50 lbdin increments. Figure 10 
shows a comparison of the measured and 
calculated fiequencies of the first two 
rigid body modes, calculated by using 
the values of K,, and Kmp in the training 
set. These results show good, but not 
perfect, agreement between the measured 
and calculated natural frequencies. The 
combination of spring rates used to form 
the training set resulted in a 972-member 
training set. The neural network input 
consisted of the natural frequency and 
the normalized mode shape components 
of each end of the test beam for the first 
two rigid body modes. The neural 
network output was the values of K,,,,,, 
and Kmr 



Table 1 
Natural frequencies of the bench-top test unit model 

11 Secondrigidbody I 25.6 I 26.0 11 
First test beam flexural 110.4 110.0 

Second test beam flexural 25 1.7 267.0 

The neural network for this case required six inputs (two frequencies and two mode shape components per 
mode). Therefore, for consistency with the previous networks, a single hidden layer of approximately one- 
half the number of input nodes (Le. three) was used. Also, as before, the hyperbolic tangent transfer hc t ion  
was used and the cumulative delta learning rule was employed. Best results were obtained for a training total 
of 70,000 iterations. Figure 1 1 shows results for the trained network tested with the training set for the two 
spring rates K,. and Kmr Average errors in this case were 2.04% for K,. and 2.34% for Kmp with standard 
deviations of 1 AI% and 1.7 1% respectively. These results are approximately the same as those obtained 
during the analysis using computer-simulated data. Note that results obtained for the middle of the output 
range are somewhat better than those for the high and low extremes. 

4.4 Results Obtained from Applying the Diagnostic Method to Measured Data 

The 36 sets of experimental resuits discussed in Section 4.2 were tested by using the network trained from the 
tuned model of the experimental bench-top unit. Figure 12 shows results for the spring rates K,. and Kmr 
Average errors are 5.91% for K,. and 10.7% for Kmp with standard deviations of 5.30% and 10.1% 
respectively. It is noted that the Kmp values are well grouped but fall beneath the unit line shown in Figure 12; 
that is, the actual value of the spring rate tends to be larger than the estimated value. It is this difference 
that accounts for the larger error in Kmp. Otherwise, results for the two cases are considered similar. The 
effects of several sources of uncertainty appear in Figure 12. These include the uncertainties in the 
mathematical model, uncertainties in the neural network interpolation as discussed previously, and in the data 
acquisition. Data acquisition errors include difficulty in obtaining a precise pressure reading and some 
question as to the accuracy of the pressure-to-spring rate conversion equation. This latter concern may 
explain the increased error in Kmp. With these considerations in mind, results in the 5% - 10% range are 
acceptable. 

Figure 13 shows a parametric display of the variation in K,, with Kmp held approximately constant. Figure 
14 shows a similar display for Kmp with K,. approximately constant. In both figures, three plots are shown 
with the constant parameter at 376,752, or 1066. These values correspond to pressure values of 20,40, and 
70 psig. These plots show that trends in one of the spring rates can easily be detected. That is, for example, 
a 10% change in one of the parameters would result in about a 10% change in the estimated value regardless 
of the initial agreement between the estimated and actual values. 
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5. SUMMARY AND 
CONCLUSIONS 

Computer simulation results and a 
demonstration using a bench-top test 
unit were used to determine that the 
diagnostic method using frequency 
spectra to estimate structural parameters 
can be successfully applied to detect and 
locate structural changes in a mechanical 
system. In particular, it was shown that 
a neural network, trained by using 
eigenvalues and eigenvector components 
calculated by a mathematical model, can 
be used to estimate the structural 
condition of the mechanical system using 
measurements of natural frequencies and 
mode shape components extracted from 
vibration spectra. It is concluded that 
the diagnostic method should be able to 
be successfully applied to monitor the 

structural condition of a mechanical system with the following characteristics: 

1) The relationship between the measured parameters (neural network input) and the monitored parameters 
(neural network output) must be single-valued if the neural network is to train properly. 

2) Changes in the monitored parameters must have a significant effect on the values of the measurable 
parameters. 

Figure 13. Estimated value of K, calculated while holding 
the value of K, fned. 
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The simulation results show that the 
accuracy of the neural network parameter 
estimation depend heavily on the 
composition and the "spacing" of the 
members in the training set. If the 
training set composition is such that the 
relationship between the neural network 
input and output is not single-valued, the 
resulting model parameter estimation is 
poor. An example of this behavior is the 
relatively high error associated with 
training sets 1,2, and 3 (Figure 7). 
Because these training sets contained 
only natural frequencies as input, in 
some cases more than one combination 
of spring rates resulted in nearly 
identical natural frequency values. 
Including mode shape components in 
training sets 4 through 9 avoids this 
problem, producing better parameter 
estimates, as shown by the lower error 



values obtained by using these training 
sets. 

Figure 7 also shows that the spacing 
between members in the training set 
affects the accuracy of the estimated 
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Figure 14. Estimated value of K,. calculated while holding 
the value of K ,  fmed. The amount of computation required to 

form the training set and train the neural 
network was not prohibitively large in the applications of the diagnostic method used in this work. Although 
the applicability of this statement is obviously limited by the relatively simple models and the small number 
of parameters adjusted in this work, there appears to be no reason to expect prohibitively large calculations 
for significantly larger models. Thus, this question remains open at this time but does not appear to pose a 
great threat to the practical application of the diagnostic method. 

Finally, the results fiom the computer simulation, taken together, show that the trained neural network can 
accurately (to within 3%) solve the inverse problem of determining model parameters &om the natural 
fiequencies and mode shape components. The results of the computer simulation indicate that the diagnostic 
method should be applicable to a real mechanical systems that have a single-valued relationship between the 
neural network input and output and if the monitored parameters have a significant effect on the measurable 
quantities. 

The application of the diagnostic method to the bench-top test unit was intended primarily as a demonstration 
of the method on a simple mechanical system. In addition to demonstrating the method, an indication of the 
effect of modeling and measurement errors on the method's accuracy was obtained. 

The demonstration clearly shows the ability of the diagnostic method to estimate (to within 10%) values of 
the mounting spring rates. Thus, it is concluded fiom the demonstration that the diagnostic method can be 
used to detect, locate, and estimate the magnitude of structural changes in mechanical systems that have a 
single-valued relationship between neural network input and output and that have monitored parameters that 
significantly affect the measured parameters. 

The effect of modeling and measurement errors on the method's accuracy, although not specifically 
investigated, are indicated by the results. The three main error sources are modeling errors, neural network 
errors, and measurement errors. From the results shown in Section 3 and in Figure 11, the neural network 
errors are known to be on the order of 2%. The model error, indicated by the comparison of calculated and 
measured values shown in Figure 10, is estimated to be on the order of 5%. The measurement errors, 
although not quantified, are believed to be relatively large, on the order of 5%. This error was due to 
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difficulty with the pressure regulators (which continuously bled air, changing the air spring pressure), 
stickiness in one of the pressure gauges, and the unavoidable unit-to-unit variability that would introduce 
errors into the pressure-to-spring rate equation. Both of modeling and measurement errors will cause a 
mismatch between the measurements and the neural network input values contained in the training set, 
resulting in poor system parameter estimates. Thus, it appears that both the system modeling and the 
measurements must be performed with a considerable level of care if the method is to provide accurate 
parameter estimates. 

Note that this sensitivity to modeling error does not necessarily mean that complicated mathematical models 
are always needed. The required model complexity will depend on the dynamic characteristics that need to be 
measured in order to detect changes in the monitored system parameters. If parameters such as the mounting 
spring rates need to be monitored, as was done in this work, the rigid body modes supply all the information 
needed to detect and locate changes in these spring rates. These modes can be accurately modeled by using a 
relatively simple model, as shown by the results in Section 4. If, on the other hand, system ppameters that 
affect higher modes, such as shaft flexural modes, need to be monitored, a more complex model would be 
needed. 

Finally, it should be pointed out that, although the diagnostic method has been presented only in connection 
with vibration signature interpretation, this is really a specific application of a more general methodology. 
The general methodology can be summarized in three steps as follows: 1) form a training set from 
mathematical simulation results, 2) Train a neural network to estimate model input parameters from model 
output values, and 3) Use the neural network to monitor the system (simulation model) parameters over time, 
thus detecting and identifjmg the source of changes in measured values. This methodology has a range of 
application beyond vibration signature analysis. This technique should be applicable to monitor parameters 
in any system or process that satisfies the requirements that the relationship between the measured output and 
the monitored parameters be single-valued, that shows sufficient sensitivity to the parameters being 
monitored, and that can be accurately modeled. Thus, the results presented in this report, in addition to 
showing that the diagnostic method can be applied to detect and locate the source of changes in vibration 
signatures, also serves as a successful demonstration of the more general methodology. 
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