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4 This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square 
round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian 
image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh 
order aberrations for square and round pupils are developed to illustrate the theory. 

1.0 Introduction 
A new vector based mathematical structure called geometric algebra and calculus (GAC) is being 
developed by David Hestenes and others to clarify and extend many topics in classical mechanics, special 
relativity, quantum mechanics and mathematics [l-71. Manthey [8] suggests that GAC provides a 
framework for understanding and developing new nanocomputer architectures, and there have even been 
recent applications of GAC to optics [9-lo]. Many have noticed that GAC offers a near ideal mixture of 
algebra and geometric interpretation [7], and some even suggest that GAC should replace vector and tensor 
analysis as the basic tool for physics and engineering because GAC uses vector concepts without notation 
changes; it is more efficient than tensor analysis; it completes the connection between vector analysis and 
complex variable theory; it encourages geometric as well as algebraic thinking, and it often leads from 
analysis to diagrams that aid understanding. We use geometric algebra (GA) to clarify vector aberration 
theory and to provide another example of the application of the new algebra to a traditional optical 
engineering topic. 

Optical aberration theory is an old but still useful and interesting optical engineering topic because it 
provides insight into optical system performance and methodology for optical design. In the early 1980's, 
Roland Shack and others developed a unique vector aberration theory [l l-141 that addressed aberrations of 
all orders in centered optical systems and optical systems with tilted components and displaced pupils. 
Their theory is especially notable for its geometric insight and compact formulation, but although the 
vector algebra they used is straightforward, it does not use standard notation for some vector operations, 
and we thought we could improve their theory by rewriting it in the language of geometric algebra. 

This paper has several sections. Section two is a brief review of the necessary GA basics, section three 
uses GA to calculate spot diagrams on the Gaussian image plane for 3rd, 5", and 7fh order aberrations for 
both round and square pupils. We show the aberration types for square pupils because square beams are 
used in a major current application [15]. Spot diagram shapes of aberrations on surfaces other than the 
Gaussian image plane are analyzed in section four. All the results are summarized in the appendices, which 
include a table of spherical aberration like and coma like spot diagram shapes that are cataloged according 
to a terminology outlined long ago by Cruickshank and Hills [16]. Appendix 6.2 outlines the connection 
between the approach used in this paper and traditional wave aberration theory. 

2.0 Geometric Algebra Introduction 
Many of the basis ideas of GA are contained in a new type of vector product called the geometric product. 
The geometric product of two vectors contains all the geometric and algebraic information about the two 
vectors. It is written as the sum of two different types of objects as: 

a b =  a * b + a A  b 
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The left hand side of (2.1) is called the geometric product of vectors a and b. The first term on the right 
side of (2.1), the scalar dot product of vector algebra, is well known as the basis of an expression for the 
projection of one vector onto another. The second term on the right side of (2.1), is called the outer product 
of vectors a and b, and as we will see, it is the basis of an expression for finding the rejection, i.e., the 
component of one vector perpendicular to the other. 

The outer product of two vectors is also called a bivector, which is related to, but not the same as, the 
vector cross product. In fact, the outer and cross products of two vectors are dual concepts; the vector cross 
product produces a vector perpendicular to the area defined by the outer product. Bivectors are algebraic 
representations of planes, and like vectors, bivectors have direction, magnitude and sign. The outer product 
of vectors a and b represents the direction, magnitude and sign of a segment of a plane defined by a and b. 
All bivectors in a plane are scalar multiples of a unit bivector that defines the direction of that plane, just as 
all vectors on a line are scalar multiples of a unit vector that defines the direction of that line. The bivector 
boldface symbol i is the direction of a unit plane, and the bivector magnitude is the size of the area in the i 
plane. Although the area can take any shape, it is often convenient to think of it as a parallelogram formed 
by two vectors in the i plane; then, if the two vectors are a and b with an angle 0 between them, the 
bivector a A b = ilallblsine = iArea. The bivector sign associates a circulation direction (orientation) for 
areas in the i plane. The circulation direction is defined by attaching the tail of the second vector in a 
bivector product to the head of the first vector and following the direction of circular flow. According to 
convention, counterclockwise circulation defines a positive area, clockwise circulation a negative area. 

Changing the order of vectors in the bivector product changes the circulation direction; consequently, it 
follows that 

aA b =  -b  Aa. 

Because of the sign change in (2.2), vectors in a geometric product like (2.1) do not normally commute. 
Vectors in geometric products commute only if they are collinear, because then a A b = 0, and 
ab = a b = b a = b a. Similarly, vectors in geometric products only anticommute if they are orthogonal, 
because then, a b = 0 and ab = a A b = - b A a = - b a. 

With (2.1) and (2.2) we can express the dot and outer products of two vectors in terms of either the 
geometric product or the angle 8 between the vectors. 

a * b  = 112 (ab+ba)= Iallblcose 

a A b = 1/2 (ab-ba)= ilallblsine 

The geometric and outer products broaden the geometric scope of vector analysis in a fundamental way. 
For example, bivectors represent area by an area concept and an area direction that is represented by the 
algebraic symbol i. Furthermore, GA provides tools to manipulate areas as well as lines. Bivectors also 
provide a unification of vector and complex number concepts, and bivectors add significantly more 
geometric content to traditional vector analysis that is much more than mere cosmetics. In addition, 
bivectors are the simplest example of higher dimensional vector-like objects called multivectors and a 
higher dimensional noncommuting algebra. 

Geometric products with more than two vectors are defined to follow the distributive and associative rules 
of arithmetic and algebra, but since vectors in geometric products do not normally commute, the order of 
vectors in the products must be preserved, e.g., 

(ab)c = a@c) 

a@ + c) = a b  + ac 

(b + c)a = ba + ca 

Other geometric algebra rules evolve from (2.5) to (2.7) and definitions (2.1) to (2.4), and as in 
conventional vector analysis, the derived rules become identities, which are convenient forms used for 
analysis. 
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Some useful GA operations for two dimensional (2D) operations are listed below: 

1.) An operation not defined in vector analysis is the reverse operation (M)t, defined by Hestenesl. In the 
reverse operation the elements of a product are arranged in reverse order, and then the elements themselves 
are reversed; e.g., 

(Ba)+ = atBt, (2.8) 

where B is a general bivector. The reverse operation applies to vectors and bivectors as follows: 

a.) By definition, the reverse of a vector reproduces the same vector; 

vt = v  

b.) Reversing a bivector changes the bivector sign and consequently, the circulation direction. 

Bt = (a A b)t = btA at= - a n  b = - B (2.10) 

As a corollary, since i is a bivector, it = - i. 

2.) The geometric product and the dot and outer products of a vector a and a bivector B are defined by 
relationships (2.11) and (2.12), which are similar in form to (2.2) and (2.3). 

a B = a - B + a A B  and B a = B . a + B A a  (2.11) 

a -  B = 1/2 (aB-Ba)= - B a and a A B = 1/2 (aB+Ba)= B A a (2.12) 

In Appendix 1, we show that a B is a vector, which is an object one dimension lower than B. The 
operation a A B creates a trivector, which is an object one dimension higher than B. For our analysis in this 
paper we set a A B  = 0 because trivectors are not needed to solve two dimensional problems. 
Consequently, for 2D problems the product ai = a i is a vector, and using (2.12) or (2.8), (2.9) and (2.10), 
we get 

ai =- ia. (2.13) 

The relationship a A B = 0 is also the condition that vector a is in plane B. 

3.) The following general vector identities (see Appendix 6.1 for proofs), are often useful: 

(aAb)Ac =an(bAC) 

a -  (bAc)=(a*b)c - (a*c)b 

(2.14) 

(2.15) 

4.) Another useful identity is the expansion of vector a relative to vector b and b-' = I; / b: 

abb-' = (a. b)b-' +(ah b)b-' = a. (2.16) 

Equation (2.16) expresses vector a in components along h and perpendicular to b. The first term is the 
vector component of a in the direction of b and is called the projection of a onto b, while the second term, 
(a A b) b-', is the vector component of a perpendicular to b, which is called the rejection of vector a from 
vector b. 

5.) Equations (2.3) and (2.4) provide another way to Yite the geometric product of unit vectors & and 6. If 
the unit bivector for the plane which contains h and b is i, the geometric product can be written in several 
ways using well known identities. 

a i  = & a i  + & A 6  =cose+isine=eie (2.17) 

Equation (2.17) defines the exponential eie, which is also called a two dimensional rotor. The rotor 
concept gives geometric significance to the exponential, and geometric content, as well as consistent vector 

Vectors are denoted by lower case boldface letters, unit vectors have a caret (̂ ), and bivectors and 
trivectors are denoted by capital boldface letters. The exceptions are the unit bivector, which is denoted by 
a boldface i, and the unit trivector which is denoted by an italic i .  
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algebra content, to vectors in two dimensional complex variable theory. When a rotor multiplies a vector a, 
the result is a new vector a', which is the old vector a rotated by the angle 8 in the i plane; 

(2.18) a' = a - - a cos8 + a isine 

According to (2. le), if 8 = 90", the vector bivector product ai is the vector a rotated by 90" in the i plane: 

a'=aeifl2 = a i .  (2.19) 

The important result is that it takes the product of a rotor, eie, and a vector in the i plane, to create a 
consistent two dimensional vector algebra expression for rotating a vector2. These ideas, which 
consistently link GA, vector analysis and complex numbers, are summarized in Table 2.1. 

2-D Rotor Rotated Vector 

E 
a' = ade = Vector Rotor Product 

7 
bivector 

s = acos0 +ai sin0 

rotor =scalar + bivector 

a' = acos0 + a,i sine 

vector = vector + vector 

Table 2.1. Properties of a two dimensional rotor and a rotated vector. 

A summary of the GA properties of the common elements of 2D geometric algebra are given in (2.20). 

a i=- ia  i i  = - 1 aeie = (,,ie)t = e-i@a (2.20) 

Using rules (2.20), geometric products of vectors in a plane reduce to standard rotated vector forms. In two 
dimensions, with vectors a and b written in rotor form as a = a& eia and b = b 6  eiP, with 6 being a unit 
vector in a reference direction in the i plane, and with the angles a and f3 being measured relative to 6 , we 
can use rules (2.20) to reduce a compound vector geometric product to a simple polar form, e.g., 

(2.21) babab = a2b3 6 ei(3P-2a) 

3.0 Aberrations 

3 J  Introduction 
Light and particle beam optical theories are usually studied in several parts: 1 .) creating system layouts; 
2.) understanding aberration types; 3.) learning what aberrations are created by different optical 
components and systems, and 4.) creating designs with prescribed first order properties that have 
satisfactory aberration characteristics. This paper is only concerned with understanding aberration types. 

Ray aberration theory is based on a simple concept: when the wavefront leaving the pupil is an ideal 
spherical surface, all wavefront normals (rays) pierce the image plane at the ideal image point, but when the 
wavefront leaving the pupil is aberrated, the wavefront normals point in a direction slightly different from 
the ideal direction, and the normals pierce the image plane a vector distance 2 from the ideal image point. 
The vector E" is called the ray aberration. The pattern that results from plotting all the 2 ' s  at an image 
point for each point on the aberrated wavefront that is centered in the exit pupil is called a spot diagram. 
The geometry for the analysis is shown in Figure 3.1. The vector H = h&e'P is a normalized image plane 

kotors and phasors, which are often used in engineering analysis, are easily confused. In phasor notation 
a rotated vector is written as a = aeie. This is not a legitimate equality that can be manipulated by the rules 
of vector algebra, because the left hand side is a vector, but the right hand side is not. 
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vector, and the vector p = p&eia is a normalized pupil plane vector. For round pupils the scalars p and h 
take any value between 0 and 1, and the angles a and p are measured from the reference direction 6. 

Plane 

- Optical Axis 

Spot Diagisull- \ 

Figure 3.1. a.) The pattern that results from plotting all the 2 ' s  at an image point, for each point on the 
aberrated wavefront in the exit pupil, is a spot diagram. b.) The analysis plane. 

A spot diagram is located in the image plane by H, or equivalently h and p, and the ray aberrations are 
generated at H by letting p scan a set of points in the pupil, usually circles or squares. 

The most general expansion for the ray aberration 2 is given by (3.1). 

- c  

c=l m=fl 

Since the ray aberration 2 must be a vector, and Wmcc-m, is a scalar, the sum of the powers of H and p, 
which is equal to c, must be an odd integer. If instead c is an even integer, (3.1) reduces not to a vector, but 
rather to a sum of scalars and bivectors. The even order expansions are identical to the traditional wave 
aberration polynomials as shown in Appendix 6.2. The first two odd power terms from (3.1) are (3.2) and 
(3.3). 

E" = W,,p + Wl,H 

d =  Wo,p3+W12(Hp2)+W21(€J?p)+W3,H3. (3.3) 

(3.2) 

Since H and p do not necessarily commute, we define the symbol (H"p"") in (3.1) and (3.3) to represent 
the sum of different permutations of the vectors H and p in the product. This sum of permutations is 
necessary because Hp2 can also be written as p H p  or as p2H, but since H and p do not commute the 
different forms are not equivalent. We create spot diagrams by writing the vectors in polar form and 
reducing the results using the 2D geometric algebra results summarized by (2.20) and (2.21). With this 
interpretation (3.1) produces all the classical aberration types, which for third order (3.3) are spherical 
aberration, coma, astigmatism and distortion. The goal of the next section is to develop the geometric 
algebra of ray aberrations and produce spot diagrams. 

3.2 Spot Diagrams 

3.2.1 First Order Aberrations 
The simplest ray aberration is the second vector in (3.2), W,,H = W,,h6eiP. It points along the direction 
of the field vector H and changes the position of the image point. The first vector in (3.2), W,,p = 
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Wolp&eia, creates a scaled circle or square as the vector p scans either a circle or square in the exit pupil. 
The spot diagrams on the ideal image plane correspond to out of focus image points. The amount of focus 
shift is determined by either W,, or W,, and E, the distance from the pupil to the ideal image plane. As 
shown in Figure 3.2, simple geometry leads to an equation for the defocus distance Az, which is the axial 
distance between a flat image plane and an observation point. The focus shift is calculated by comparing 
similar triangles, which leads to two equations for the defocus distance Az. 

AZ = W,,L = W,,L. 

E 

(3.4) 

E 

Figure 3.2. The relationship between defocus and lst order aberrations. 

3.2.2 Third Order Aberrations 

W2(Hp2), w2d* P), and 
The third order aberrations, which are defined by c = 3 in (3.1) and separated out as (3.3), are: W&p3, 

The third order spherical aberration term, E" = Wmp3 = W,,p2p = Wo3p3&eia, is independent of the field 
vector H; consequently, for round pupils, spherical aberration produces the same size blur spot at every 
point in the image field. At each point the maximum blur circle radius occurs when p = 1, and the 
maximum radius is equal to W03. For square pupils the p3 dependence, perhaps surprisingly, changes the 
focal spot shape dramatically, as shown in Figure 3.3. For all the figures we use square and round pupils 
with the same area3, and we set all the qj = 1 so the size of the spot diagram shapes can be directly 
compared. The real aberration sizes are of course much smaller because the Wj will be much smaller than 
one, in fact, hopefully close to zero for a good design. 

1.51 

-1.51 -1.51 

Figure 3.3 Third order spherical aberration for round and square pupils. 

Since we consider equal areas for round and square pupils, for a given radius p for a round pupil, the 
corresponding square pupil has a half-side length value of pq = f i 1 2 .  Plotted are spot diagrams for round 
pupil radii of 018, 118,218, ..., 818,and the corresponding half-sidelengths for square pupils of the same area. 
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Third order coma, i?' = W,,(Hp2), is linear in H and quadratic in p and is sometimes called linear coma. 
This is the first term where the commutation properties of vectors H and p are needed. The 3!/2! different 
permutations of (Hp') are pZH, Hp2 and p a p .  Since p2 := p p = pz is a scalar, the first two forms are the 
same. We collect like forms and normalize the result by dividing by the total number of permutations to 
produce the ray aberration vector for coma given by 

2 = 1/3 W,,(2p2H + pHp),  (3.5) 

which simplifies when we write it in polar form using results like (2.21) to 

d = 213 W,,hZp (6 + 112 6e2i(a-P)) e'$. (3.6) 

For round pupils (3.6) produces the familiar coma spot diagrams. Probably the easiest way to sketch the 
geometric figure corresponding to (3.6) for round pupils is to draw the figure for p = 0, since the only effect 
of p is to rotate the figure to a new field position. With p = 0, the first vector in (3.6), 6, is a displacement 
along the field vector direction. The second vector, (1/2 &e2ia), traces a circle twice in the image plane as 
a scans the pupil once between 0 and 2 ~ .  Both the displacement and circle radius depend on the 
coefficient 213 W12hzp. The coma patterns point toward the origin if W,, is positive and away from the 
origin if W,, is negative. These results perfectly match the classical descriptions of third order coma for 
round pupils. For square pupils the quadratic dependence of coma on p effects the shape and field 
dependence of the coma spot diagrams in an interesting way. For square pupils the shape and the size vary 
as a function of field position and are difficult to sketch; computer generated results are shown in Figure 
3.4 and Appendix 6.5. 

1.51 

-1.5 -1 -0%- I w .5 1 1.5 -1.5 -1 - O M  I -%. 5 1 1.5 

-1.51 
Figure 3.4 Third order coma for round and square pupils. 

Third order astigmatism, 2 = W,,(@p), is second order in H and linear in p. In a useful classification 
scheme developed by Cruickshank and Hills[l6], this is called linear astigmatism. This term has the same 
form as (3.6) but with the roles of H and p interchanged. For third order astigmatism, 

2 = Wzl(@p) = 113 Wz1(2h2p + HpH), 

which in polar form is 

(3.7) 

The interpretation of (3.8) is that of unequal length vectors spinning in opposite directions. The vector sum 
creates an ellipse centered on the field point in the image plane as p traces a circle in the pupil plane. These 
elliptical patterns, with the major axis oriented along the field vector direction, are the characteristic 
patterns for astigmatism on the Gaussian image plane. Tlhe characteristic patterns for square pupils are 
rectangles, but the square pupil skews the pattern in the Gaussian image plane in the directions of the 
corners of the pupil. The spot diagrams for third order astigmatism for round and square pupils are shown 
in Figure 3.5. 
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Figure 3.5 Third order astigmatism on the Gaussian image plane for round and square pupils. 

The last third order term, W,H3, is third order distortion. Distortion terms do not depend on p, and they do 
not blur the image spot; they just displace the image point along the field vector direction by an amount that 
nonlinearly depends on the field position. If the object is square the image is either pincushion or barrel 
shaped depending on the sign of W30; this is summarized in Figure 3.6; a result that is independent of the 
shape of the pupil. 

a.) Pincushion Distortion b.) Barrel Distortion 

Figure 3.6 Third order distortion of a square object for a.) positive and b.) negative distortion coefficients. 

3.2.3 Fifth Order Aberrations 
There are six, fifth order aberration terms produced when c = 5 in (3.1). They are WO5p5, W,,(Hp4), 
W,(H2p3), W,,(H3p2), W,,(H4p), and W5,,H5. The fist  and last terms are fifth order spherical aberration 
and fifth order distortion respectively. The geometric interpretation for these terms is the same as for the 
corresponding third order theory except of course for the higher order p and h dependence. For square 
pupils, the fifth order dependence of spherical aberration on p produces dramatically spiked spot diagram 
shapes as shown in Appendix 6.5. 

The fifth order coma term linear in H is W,,(Hp4). There are 5!/4! different permutations of Hp4 to reduce 
using geometric algebra, but the 5 permutations reduce to just two simple forms. It is time consuming to 
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count and reduce the number of different permutations by hand, so we developed a short Mathematica4 
program, which we called reduce (see appendix), to canry out the process. As an example, for Hp4, 
reduce[ { H,p,p,p,p}] produces the following results: 

1.) A listing of the permutations of the list { H,p,p,p,p}, which are: 

2.) A listing of the reduced forms of each sublist; 

I {HI 9 {P,H,P 1, {HI 9 {PJXP 1, {H 1 1 ; 
3.) A listing of the separate forms; 

4.) A listing of the coefficients for each form. These coefficients are simply the number of times an 

For this example there are 3 H's and 2 pHp's in list 2, so the coefficient list is, (3,2} 

element of list 3 appears in list 2. 

With this information the expression for the 5" order ray aberration is easily developed. 

d = W,,(Hp4) = 1/5 w4(3  p4H + 2 p2pHp); 

E" = 3/5 Wl,hp4 ( 6  + 213 &e2i(a-p)) e'$. 

(3.9) 

(3.10) 

Fifth and third order coma spot diagrams have similar shapes. The only difference is the coefficient in 
front of the second term, which gives the fifth order coma flare angle a value of 2 sin-' (U3) = 83.6O. For 
third order coma, the flare angle is only 2 sin-' (1/2) = 6 0 O .  The 5"' order coma patterns for square and 
round pupils are shown in Appendix 6.5. 

The ray aberration Wz3(Hz p3) is fifth order astigmatism ( 2"d order in H ). The 5!/(2! 3!) permutations 
reduce to a sum of 3 simple forms: 

E" = 1/10 W23(6 h2p2p + 3 p2HpH +pHpHp) ;  (3.11) 

2 = 315 W2,hZp3(& e'( a-p) + 1/2 & e-i( a-p) +. 1/6 6 e3i( a-p) kip. (3.12) 

The sum of these 3 rotating vectors create a peanut shaped spot diagram centered on the field point as p 
scans a round pupil. This aberration is sometimes called fifth order oblique spherical aberration because it 
is similar to spherical aberration in that the pattern is centered on the image point. It is also called cubic 
astigmatism. 

The next 51h order term W3,(H3p2) is called 5~ order elliptical coma. It has the same form as (3.11), but 
with H and p interchanged. 

(3.13) 

(3.14) 

The first term is a displacement along the field vector, and the sum of the next two vectors create an ellipse. 
The major axis is along the field vector direction, and the ratio of major to minor axis is 3/1. This pattern 
has many of the characteristics of coma patterns and is also called cubic coma. 

The last 5"' order aberration is W41 (H4p), 

(3.15) 

(3.16) 

Mathematica is a commercially available symbolic computing environment created by Wolfram 
Research. 
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The spot diagram for this 5" order aberration is created by ellipses centered on the field point. The major 
axis of the ellipse is oriented along the field vector H; the imajor to minor axis ratio is 5/1. This aberration 
has the same shape as 31d order astigmatism but a different field dependence. 

This analysis of spot diagrams is easily continued. A summary chart of ray aberration vectors and spot 
diagrams for 3d, 5"' ,7" order aberrations are summarized in the appendix. The basic shapes are constructed 
from sums of rotating vectors and vectors displaced along the field vector direction. The aberrations, 
which separate into two basic classes were usefully classified by Cruickshank and Hills[l6]. Spot diagrams 
for aberrations that are even order in H are all centered on the field point H, and just resized as the 
magnitude of p varies between 0 and 1. These patterns are similar to spherical aberration. Spot diagrams 
for aberrations which are odd order in H are created by resizing the basic shape and displacing the resized 
basic shapes from the ideal image point along the direction of the field vector as the magnitude of p varies 
between 0 and 1; these patterns are similar to coma. 

4.0 Combining Aberrations 
In the following sections we combine the first and third order aberrations to reproduce more classical 
results using geometric algebra. 

4.1 Defocus + 3'd Order Spherical Aberration 
When defocus and 3d order spherical aberration are added together the ray aberration vector E" is given by 
(4.1). 

2 = W,,H + w,,p + &p3 = W,,H + (w,,p + w&p3) &eia (4.1) 

For round pupils this E" describes blur circles at the field point with a radius which depends on the amount 
of defocus, which is given by W,, or Wol. At the paraxial focus, i.e., the Gaussian image plane; W,, = W,, = 
0, and the blur circle radius is simply W,p3, which has a maximum value of W,, when p = 1. The marginal 
focus (really defocus) position is defined by the position of an image plane where the marginal rays (p = 1 
rays) produce a zero radius blur circle. The amount of defocus required to reach the marginal focal plane is 
found by setting the coefficient of the second term, the blur radius, equal to 0 when p = 1, i.e., W,, + Wo3 = 
0 which from Figure (3.2) gives W,, = Az / R = - WO3; consequently, the distance from the paraxial image 
plane to the marginal image plane is Az = - RW,,. On the marginal image plane the radius of the blur is 
given by (4.2), 

r =  I WioP +wo3P3 I = I -w03P +wasp3 1, 
which has a maximum when p = 1 /e At this maximum r := I 2WO3 / (3n) I .  See Figure 4.1. 

-Liz- 

- Gaussian 
Image Plane 

Figure 4.1 Defocus + 3d Order Spherical Aberration 

4.2 Defocus + Yd Order Coma 
When defocus and 31d order coma are added together the ray aberration vector d is given by (4.3). 

10 



2 = W,,H + W,,p + 213 W,,(Hp2 + 1/2 p H p )  (4.3) 

Collecting and reducing terms leads to (4.4) 

$= WIO + 2 3  W12p2)H + W,,p + 113 W12pHp) 

= (Wlo+ 213 WI2p2) h &eiP + (WOlp&eia + 1/3 W,,p2h&e2i(a-P)eiP) 

= (Wto+ 213 Wt2p2) h&eiP + (W,,p&ei(a-P) + 1/3 W,p2h&e2i(a-P)) eiP 

= Wlo{l + [2W,2p2/(3W,,)1} h&eiP + W,,p( &e,i(a-P) + [WI2ph/(3Wol)] &e2i(a-P)} eiP (4.4) 

The first term in (4.4) is a displacement along the field vector, and the second term produces a Limascon of 
Pascal as shown in Figure 4.2. The size and orientation o:f the patterns depend on the amount and sign of 
the defocus and coma coefficients and the field position h. 

(a> (b) (c) 
Figure 4.2 Defocus + Yd Order Coma, for the same defocus but different amounts of astigmatism: 
W,, = W,, = 0.3 and a) W,J W,, = 31 4, b) W121 W,, = 51 2, c) W121 W,, = 4. 

4.3 Defocus + 3d Order Astigmatism 
The results for 3d order astigmatism on the Gaussian image plane are summarized by equation (3.8). When 
defocus is added to 31d order astigmatism the ray aberration vector i? is given by (4.5). 

i? = W,,H + W,,p + 2/3 W2,(h2p + 1/2 HpH)  

= W,,h&eiP + (W,,p +2/3 W2,h2p) &eia + 113 W,,h2p&ee-i(a-P)eiP 

Equation (4.5) has the same form as (3.8) except that the coefficients for the clockwise and 
counterclockwise spinning vectors are different in (4.5) than in (3.8); consequently, in general, we expect 
astigmatism to produce elliptical patterns whose size increases with h2. There are however, some well 
known special cases. 

Special Case I 

We use the defocus parameter W,, to search for surfaces with special characteristic shapes. For example, a 
special case will result when the coefficients of the clockwise and counterclockwise spinning vectors are 
equal to each other. For this case, from (4.5), 

W,, = -113 W,, h2, 

and thus, using (3.4) and (4.6), the defocus is given by, 

Az = W,, L = -1/3 L W,, h2, 

which descibes a parabolic surface in Az and h that is called the sagittal surface. 

(4.6) 

(4.7) 
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On the sagittal surface we easily determine that the characteristic shape of the aberrations are straight lines 
pointing along the field direction. Since the coefficients in (4.5) are equal because of (4.6), the length of 
the lines is given by 2/3 W,, h2. This is show in Figure 4.3. 

Special Case 11 

By adjusting the defocus parameter Wol, we can set the coefficient of the first spinning vector in (4.5) equal 
to zero; then, as p scans the pupil, the characteristic patterns are circles with radius 11/3 W,,hzp~. The 
condition for the first coefficient in (4.5) to equal zero is given by (4.8), and the amount of defocus 
necessary to maintain this condition is given by (4.9) 

Wo, = -2/3 W,, h2 

AZ = Wo1 L= -2/3 L W21 h2 

(4.8) 

(4.9) 

Equation (4.9) shows that the circles will be produced on a parabolic surface called the medial surface. 

Special Case 111 

When the defocus parameter W,, is adjusted so the coefficients of the spinning vectors are the negative of 
each other, 

W,, = - W,, h2 

Az = Wo1 L = -L W,, h2 

(4.10) 

(4.1 1) 

Again, the condition (4.10) for a particular shape is maintained on a parabolic surface, which in this case is 
called the tangential surface. When the spinning vectors are added they produce lines that are 
perpendicular H. On both the sagittal and the tangential surfaces the line length is (2/3 W,, h2(. 

1 .5 ,  

1 

/ 
\ /  

0.5. 
\ 

~, I . .  --. 
-1.5 -1 -0.5. 0.5 1 1 . 5  

I .  . .  --. I 
- 0 . 5 .  

/ \ 
/ \  

-1 

-1.51 

Sagittal 

@ 

@ 
.5 1 1.5 

8,) @ 
-1.51 

Medial 

I : I .  
-1.5 -11 -0.5, I 0.5 I 1  1.5 

-1.51 

Tangential 

Figure 4.3 Defocus and Astigmatism on the sagittal, medial and tangential spherical surfaces. The 
Gaussian image plane is always closest to the sagittal surface. 

At a particular field height h, the distance between the Gaussian and sagittal surfaces, the sagittal and 
medial surfaces and the medial and tangential surfaces are equal. Starting at the Gaussian surface, the 
surfaces always occur in the order: Gaussian, sagittal, medial, tangential; however, the direction that the 
paraboloids open up depends on the sign of W,,. 

Usually Az is small and the paraboloids can be approximated by a section of a sphere. In this case we can 
treat Az as the sag of a spherical surface away from a plane surface. The radius of the spherical surface, R, 
is related to the sag by (4.12). When we use (4.12) with (4.7), (4.9) and (4.1 1) we find the radius of each of 
the spherical surfaces that approximate the paraboloids near the optical axis. 

Az =h2/(2R) (4.12) 
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I I 

-1.5‘ 

a. b. C. 

Figure 4.4 a.) The astigmatism characteristic patterns on the medial surface when the pupil is a square. b.) 
and c.) schematically depict the order of the Gaussian, sagittal and tangential surfaces for both signs of the 
astigmatism coefficient. A defocused plane image surface will show characteristic shapes of all the special 
surfaces because it cuts through the parabolic surfaces. 

The reasoning for square pupils is exactly the same and the characteristic shapes on the sagittal and 
tangential surfaces are again lines along and perpendicular to the direction to the field point. On the medial 
surface the characteristic shapes are squares, and the orientation of the squares on the spherical medial 
surface depends on the position in the field, as shown in Figure 4.4. 

5.0 Conclusion 
Optical aberration theory provides an interesting way to learn GA in an easy two dimensional setting that is 
readily understandable and easy to visualize; in return, GA provides an interesting and concise description 
of classical optical aberration theory. The noncommuting nature of GA is necessary to obtain all the 
classical well known results. We developed a theory for classical aberration shapes for square and round 
pupils could be extended to learn about the aberrations for other pupil shapes and aberration in optical 
systems with displaced pupils and tilted components following the theory already developed by Shack and 
Thompson. There also seems to be much in common between this approach to optical aberration theory 
and the aberration theory developed for particle beam optics using Lie algebra [17]. Given the fast PC’s 
and elegant design codes currently available for designing optical systems, our results are primarily useful 
for learning about aberration types, developing intuition about design code results, exercising GA as a new 
analysis tool, and having some fun learning about old things in a new way. 
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6.0 Appendix 

6.1 Proofs of Several Geometric Algebra Identities 
To prove that a (b A c) = (a b) c - (a c) b, one starts with a b  c = a b c, which one rewrites as (ab)c = 
a(bc), and then expands using (2.1) to give 

(a* b)c  +(a A b) c = a ( b  *c) + a (b  A c) 

(a* b)c  +(a A b). c + (a A b) A c = a ( b  c) + 8 .  (b A c) + a A 0, A c) 

(6.1) 

(6.2) 

Equating the trivector parts of the above equation gives the desired result 

(a A b)A c = a  A (b A c). 

To prove (2.15), one equates the remaining parts of equation (6.2) which gives 

(a- b)c  + (a A b ) * c  = a ( b  *c) + a -  (b A c) 

One also expands a b c using (2.1) and rewrites the result using (2.3) to give 

(a b)c = (a b)c + (a A b)c = (a b)c + 1/2 (ab - b a)c 

(a b)c = 2(a b)c - b a c 

Starting instead with b a c, one can likewise show that 

b (ac ) = 2b (a c) - b ca 

(6.4) 

Using that result in equation (6.4) gives 

(a b)c = 2(a* b)c - 2b (a. c) + bca  

a b c - b ca = 2(a b)c - 2b (a c) = 2(a b)c .- 2(a c) b. (6.5) 

The left hand side is then expanded using (2.1), (2.12), and recalling that the outer product of two vectors is 
a bivector to yield 

a b  c - b c a =  a (b c) + a (b A c) - (b c)a - (b A c)a 

= a (b c) + a (b A c) + a A (b A c) - (b c)a _- (b A c). a - (b A c ) ~  a 

= a  (b c) - (b *c)a + a *  (b A c) -(b A c)* a + a A (b A c)- (b A c ) ~  a (6.6) 

Equating the right hand sides of (6.5)and (6.6) and noting the trivector parts must be equivalent gives 

a A (b A c)- (b A C)A a = 0. (6.7) 

Similarly, noting that the remaining parts must be equivalent gives 

2(a*b)c-2(a.c)b =a(b*c)- (b .c )a+a.O,~c) - (b  A C ) . ~ .  

Recalling that (b c) is a scalar, and a scalar commutes with a vector [i.e. a (b *c)= (b *c)a  3, and using 
(2.1 l), we can rewrite (6.8) as 

2(a b)c - 2(a* c)b = 2a. (b A e), (6.9) 

which is equivalent to the identity (2.15). This also shows that a (b A c) and thus a B is a vector. 

6.2 Wave Aberration Expansion 
Wave aberration is an alternate way to describe the aberrations. In the wave aberration theory the ideal 
wavefront leaving the pupil is a perfect spherical surface. Aberrations add an additional phase to the 
wavefront in the exit pupil that depends on p and H. The additional phase shift caused by aberrations must 
be a scalar, and the most general scalar is given by 
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c=l m=O 

where the sum of the powers of H and p must be even. Just as for ray aberrations, the term (IFp"-") , 
represents the sum of the different ways that the vectors H and p can be rearranged because H and p do not 
commute. When c = 4 the terms are (HHHH), (HHHp), (HHpp), (Hppp), and (pppp). When we use 
our Mathematica program reduce on each of these terms to find all the rearrangements, just as we did for 
ray aberrations, we get the following results, which exactly match classical wave aberration theory[ 181: 

(HHHH) reduces to h4, which is constant over the entire pupil and is called a piston error; 

(p p p p) reduces to p4, which is spherical aberration; 

(Hppp) reduces to 2h p3 {ei(a-P) -F e-i(a-P) = 4hp3 cos(a-p), which is coma; 

(HHpp) reduces to 4h2p2 + h2p2{e2i(a-B) + e-2i(a-P) 1 = 2h2p2 + 4h2p2cos2(a-p), which is a field 
curvature term plus astigmatism, and 

(HHHp) reduces to 2h3p { ei("-P) + e-i(a-P) } = 4h3g cos(a-p), which is distortion. 

6.3 The Mathematica Code to Reduce Aberration Forms 
The Mathematica code to reduce the forms for the aberrations is listed below. The program newperm takes 
a list to be reduced, i.e., {H,p,p,p}, and compares the elements in pairs, starting with the first pair, i.e., 
element 1, H , and element 2, p. Since these elements are not the same the comparison shifts one element to 
the right and compares element 2 and element 3, which are both p's; both p's are dropped from the list and 
the process starts over at the beginning and proceeds until the list pair has been compared. 

newperm[list-List] := + 
Module[{i,listl], 
listl=list/. {H + l,p + 2 ) ;  
i=l; 
While[i I Length[listl]-I, 
If[listl[[i]] = = listl[[i+l]], 
listl=Drop[listl ,{i,(i+l)}]; i =1, 
i++]]; 
listU.1 4 H, 2 + p}] 

The next section of code called reduce applies newperm to each permutation of the list, sorts out the list of 
different permutations, and counts the number of times each separate reduced permutation occurs in the list 
of reduced permutations. 

reduce pist-List] := 
Module[ { perm,list2,list3,coef}, 
perm=Permutations [list] ; 
list2=Map [newperm,perm] ; 
list3=Union[list2] ; 
coef=Table[Count[list2,list3 [ [ill] { i, 1 ,Length[list3] }] ; 
Print[ {perm,list2,list3,coef}] 

1 
After typing the code into Mathematica, the results are calculated by typing reduce[ { list}] followed by shift 
enter, where {list} is the list of symbols to be reduced. {H,H,p,p,p} is an example of an acceptable list. 



6.4 Aberration Summary 
Third Order Aberration Summarv 

1 .) Third Order Spherical 

w,p3 = w,p3 6 eia 

2.) Third Order Linear Coma 

WI2(H p2) = 2/3 WI2(H p2 + 112 p Hp); 

= 2/3 W12hp2 (6 + 1/2 6 ezi(a-P)) eiP 

3.) Third Order Linear Astigmatism 

W2,(H2p)=2/3W2,(h2p + 1/2HpH); 

=2/3 W2,h2p (6 ei(a-P) + 1/2 e-i(a-Pl) eip 

4.) Third Order Distortion 

W3,H3 = W,h3 6 e@ 

Fifth Order Aberration Summary 

1 .) Fifth Order Spherical Aberration 

w,,p5 = wO5p5 6 eia 

2.) Fifth Order Linear Coma 

W,,(Hp4)= 3/5 W,,(Hp4 + 2/3 p2pHp); 

= 3/5 WI4hp4 (6 + 2/3 6 e2i(a-P)) eiP 

3.) Fifth Order Cubic Astigmatism (Oblique Spherica 

W23(H2p3)=3/5W23(h2p2p+ 1 /2p2HpH+ 1/6pHpHp) ;  

enation) 

= 3/5 Wz3h2p3 (6 ei(a-P) + 1/2 6 e-i(a-P) + 1/6 6 e3i(a-P)) eiP 

4.) Fifth Order Cubic Coma (Elliptical Coma) 

W3,(H3p2) = 315 W3,(h2pZH + 1/2 h 2 p H p  + 1/6 HpHpH);  

= 315 W3,h3p2 (6 + 1/26 e2i(a-P) + 1/6 6 e-2ica-P)) eiP 

5.) Fifth Order Linear Astigmatism 

W4, (H4 p) = 3/5 W,, (h4 p + 2/3 hZ H p  H); 

= 3/5 W4,h4 p (6 ei(a-P) + 213 6 e-i(a-P)) eiP 

6.) Fifth Order Distortion 

W,H5 = W,h5 6 eiP 
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Seventh Order Aberration Summary 

1 .) Spherical 

wO7p7 = w,p7 6 eia 

2.) Linear Coma 

w16@p6)=4/7 w16mp6 + 3/4 p4pHp); 

= 417 Wl,hp6 (6 + 3/4 6 e2i(a-P)) eiP 

3.) Quintic Astigmatism 

W2,(H2p5) = 12/21 W2,(h2p4p + 1/2p4HpH + 1/4p2pHpHp); 

=4/7 W2,h2p5 (6 ei(a-P) + 1/2 6 e-i(a-P) + 1/4 6. e3i(a-P)) GP 

4.) Cubic Coma 

W3,(H3p4) = 18/35 W3, (h2p4H + 213 h2p2pHp + 2/9p2HpHpH + 1/18 p H p H p H p ) ;  

= 18/35 W3,h3p4 (6 + 2/3 6 ezi(a-P) + 2/9 6 e-2i(a-P) + 6 e4ica-P)) eiP 

5.) Cubic Astigmatism 

W4,(H4p3)= 18/35W43(h4p2p +2/3p2h2HpH+2/9 h 2 p H p H p  + 1/18HpHpHpH); 

= 18/35 W,h4p3 (6 ei(a-P) + 2/3 6 e-i(a-b) + 2/9 6 e3i(a-P) + 6 e-3ica-P)) eiP 

6.) Quintic Coma 

W,2(H5p2) = 12/21 W,,(h4p2H + 1/2 h4pHp + 1/4 h2HpHpH);  

=4/7 W,2h5p2 (6 + 1/2 6 e2i(a-P) + 114 6 e-2iCa-B)) eiP 

7.) Linear Astigmatism 

w& (H6 p) = 4/7 w61 (h6 p + 3/4 h4 H p H); 

= 4/7 W6,h6 p (6 ei(0r-P) + 3/4 6 e-i(a-P)) eiP 

8.) Distortion 

W7,H7 = W7,h7 6 eiP 
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6.5 Spot Diagrams for Round and Square Pupils 

Spherical Aberrations 
s Type 

Round Pupil 

P3 
1.51 

-1.51 

P5 

-1 5 

-1.51 

P7 
1.51  

-1.51 
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Astigmatism Aberrations 
s Type 

Wound Pupil 
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Spherical Aberrations 
S Type 

Square Pupil 
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Astigmatism Aberrations 
s Type 
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