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Optimisation of Circuits Using a Constructive Learning Algorithm 

Valeriu Beiu :’ 
Los Alamos National Laboratory, Division NIS-I. MS D466, Los Alamos, NM 87545, USA 

Abstract-The paper presents an application of a constructive learning algorithm to 
optimisation of circuits. For a given Boolean function j a fresh constructive learning 
algorithm builds circuits belonging to the smallest F,,,, class of functions (n inputs 
and having m groups of ones in their truth table). The constructive proofs, which show 
h w  arbitrary Boolean functions can be implemented by this algorithm, are shortly 
enumerated. An interesting aspect is that the algorithm can be used for generating 
both classical Boolean circuits and threshold gate circuits (i.e. analogue inputs and 
digital outputs), or a mixture of them, thus taking advantage of mixed analogue/digital 
technologies. One illustrative example is detailed. The size and the area of the differ- 
ent circuits are compared (special cost functions can be used to closer estimate the 
area and the delay of V U I  implementations). Conclusions and further directions of 
research are ending the paper. 
Keywords-constructive learning, circuit optimisation, VLSI complexity. 

Introduction 

In this paper we shall consider a neural network (NN) constructive algorithm (i.e. which determines 
both the number of layers and number of neurons, and their synaptic weights), which is guaranteed to 
converge in finite time. In particular, it can be used for synthesising Boolean circuits. We shall use the 
notations for feedforward NNs which classify m examples of n bits each X, = (xo, . . ., x,,J E IRn, 
k = 1, . . . , m where each neuron computes out (2.) = CT ( ;:d W, x I.,+ e) , with wi E R called the synaptic 
weights, 8 EW known as the threshold, and (3 a non-linear activation function. The cost functions com- 
monly in use are depth and size. These can be linked to T (= depth) and A (= size) of a VLSI chip, 
but NNs do not closely follow such proportionalities (as the area of the connections counts and the 
area of one neuron is related to its associated weights, not to mention the complexity of the function 
realised by each neuron). That is why better alternative measures are: (i) the fan-in as the “area required 
for inter-node connectivity grows like the cube of a node’s fan-in” [13]; (ii) the total number of con- 
nections [17]; (iii) the total number of bits needed to represent the weights [ll,  201; or even more 
precise a proximations like (iv) the sum of all the weights and thresholds ( C  ;:,’ i w i l + l e  I )  [3, 51, or 
CC YL: wt [21]. Such cost measures can easily be understood as the area is related to the weights and 
the thresholdr;, as they have to be physically realised (transistors, conductances, resistances, etc.), and 
have been used as an optimum criteria for linear programming synthesis [16], or for defining the mini- 
mal integer realisation of one threshold gate (TG) [14]. 

2: 

A Direct Synthesis Algorithm 

A novel synthesis algorithm has evolved from the decomposition of COMPARISON. 
Proposition 1 [l] The computation of COMPARISON of two n-bit numbers can be realised by a A-ary 
tree of size 0 (n  /A) and depth O(1oga / IogA) for any integer fan-in 2 5 A I 2n. 
Proposition 2 [l] The COM~ARISON of two n-bit numbers can be computed by a A-ary tree neural net- 
work with polynomially bounded integer weights and thresholds, having size 0 ( n  /A) and depth 
O(logn/logA) for any integer fan-in (A) in the range 3 to 0 (logn). 
Proposition 3 [3] The neural network with polynomially bounded integer weights (and thresholds) com- 
puting the COMPARISON of two n-bit numbers occupies an area of 0 (n . 2  A‘2/A) for all the values of 
the fan-in (A) in the range 3 to 0 (logn). 

* On leave of absence from the Department of Computer Science , “Politehnica” University of Bucharest, Splaiul Independenpi 
313, RO-77206 Bucharest. Romhia. 
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We have used these results for synthesising functions of n input variables having m groups of ones. 
Proposition4[2,3] Any function f c  F,,,can be computed by a neural network with polynomially 
bounded integer weights (and thresholds) of depth 0 [log(mn) /logA] and size 0 (mn/A) ,  and occupy- 
ing 0 (mn . 2  */A) area if 2m I 2  ', for all the values of the fan-in (A) in the range 3 to 0 (logn). 
The well-known AT2 becomes 0 [(mn . log2(mn) . 2 ') /(A . log'A)], which is minimised for smai: con- 
stant fan-in values 6...9 [7]. This method can be directly used to learn k functions from m examples. 
Proposition 5 [3,5] Any finite set of k functions f E F,,i defined by m examples ( i  I in I ik), can be com- 
puted by a neural network with polynomially bounded integer weights and thresholds having size 
0 [m (2n + k )  /A] and depth 0 [log(mn) /logA], and occupying 0 (mn . 2  ' / A  + mk) area, for all the 
values of the fan-in (A) in the range 3 to 0 (logn). 
If 2m > 2 * the tree structure has more COMPARATORS than all the different COMPARISONS (of limited 
fan-in), and by deleting the redundant ones the size and the area can be reduced by huge factors. 
Proposition 6 [6] The dichotomy of m examples from R" can always be solved with: 

#bits < m . rn log ( D  /d) + 2.0471 n - (logn) / 2  - 0.82571 1 2 .  
The entropy of a dichotomy of m examples from IR" is bounded by 2 Ilt r'ogm'. 

The dichotomy of m = m++ m -  examples from R" can always be solved with: 
Proposition 7[6] 
Proposition 8 [9] 

#bits < max (m+, m-)  . rn log ( D / q  i- 1.8396 n - 1.08001. 
Proposition 9 [12] The number-of-bits necessary for the classzjication of m patterns in general position 
in Rn using weights in the set { - p ,  -p + 1, . . . , 0, . . . , p )  is: 

#bits > m n . [log (2pD)l = m n . Flog ( D  141. 
Proposition 10 [lo] The dichotomy of m = m ,  + m- examples in general position in Rn using weights 
in the set { -p ,  -p + 1, . . . , 0, . . . , p )  requires: 

#bits > m . rnlog(D/d) + n i- 0.65151/2 . 
Proposition 11 [lo] The dichotomy of m = m+ + m- examples in general position in Rn using weights 
in the set { - p ,  -p + 1, . . . , 0, . . . , p ]  requires: 

#bits > max (m+, m-) . rnlog ( D / d )  - 0.4667n + logn + 0.06651 . 
A frrst algorithm has been described [2, 4, 5, 81 as: 
1. Quantize the space as described in Propositions 6 and 8; for the moment a logarithmic factor is lost 

as the intersection of two hypercubes is used instead of the intersection of two balls (see [6,9, 191). 
2. From the set of examples, determine the 'constants' to be used by the COMPARATORs (the first layer). 
3. Reduce the number of COMPARATORS by grouping together more hypercubes, or by sometimes using 

AND gates instead of COMPARATORS. 
This is equivalent to $ding hyperplanes parallel to the axes, which are COMPARISONs (first layer) with 
values deduced from the data-set. The desired function can be synthesised either by one more layer of 
TGs (in fact MAJORITY gates, see Fig. l.a), or by an additionai classical 2-layer AND-OR structure: a 
second hidden layer of AND gates (each gate corresponds to one hypercube, and at most 2 COMPARATORS 
are needed for each dimension), and a third layer of k OR gates represents the outputs (Fig. 1.b). For 
minimking the area some COMPARATORS can be replaced by AND gates [3] (see first layer in Fig. 1.b). 

xIl-1 . . .  x, x,, 

Figure 1. Two solutions for implementing F,,,, functions: (a) COMPARISONS and one M A J O R ~ Y  gate; (b) COMPARI- 
SONS or AND gates (for minimising size and urea), followed by a classical AND-OR tree structure. 



(a) XO@XI@Y,@‘, (b) xo@x,@Y,@v, 
size = 3 
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Figure 2. The PAWY problem: (a) solution with XORS; (b) TG solution; (c) classical AND-OR solution (brute force). 

An immediate but significant extension for analog inputs has been to use analogue COMPARATORS in 
the first layer [5]. Such an extension-beside allowing analog inputs-has also several other advantages: 
(i) the overall area is reduced (a 2-input analog COMPARATOR is smaller than a digital COMPARATOR 
requiring several digital inputs); (ii) it is faster (smaller depth); (iii) dissipates less power (due to reduced 
area and fewer transistors needed to implement analog COMPARATORS). The only disadvantage is that 
the design and the technology is more complex. 

Illustrative Example 
As an example, we consider the  PAR^ function of four bits. Here we estimate the area as the sum 
of the fun-ins [17] (see [S, 81 for more precise cost functions). It is known that PARITY can be imple- 
mented with just three 2-input XOR gates (Fig. 2.a), or with five 4-input TGs (Fig. 2.b). It is also known 
that, in general, a 4-input Boolean function requires 2 a - t  3 = 11 TGs [15, 181. A classical Boolean 
solution requires eight (one for each minterm) AND gates (Fig. 2.c). Using the constructive algorithm 
we obtain a brute force solution (see Fig. 3.a and 3.b); a hand crafted solution can be seen in Fig. 3.c. 

Figure3. The PARITY problen 

size = 17 

x 

n: 
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(a) Kamaugh map (for COMPARATORS); (b) brute 
%XI YOYl XOYO XIYI XOYI XlYO 

: force solution; (c) hand crafted. 

If the inputs are considered ‘analogues’, the solution given by our algorithm is improved, and looks 

Finally, going closer towards the TG solution from.Fig. 2.b, we can allow COMPARATORS between 
like the one in Fig. 4.b, or Fig. 4.c (using MAJORITY gates, the size could still be reduced). 

.05 

2.5 

’>05 v<25 

Figure 4. The PARITY problem: (a) 
(with constants); (c) mixed solution 

(4 xO@Xl@YO@YI 
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Karnaugh map (for analogue COMPARATORS); (b) solution using COMPARATORS 
using COMPARATORS with constants and classicd digital circuitry. 
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Figures. The P ~ Y  problem: 
circuit; (c) Karnaugh map for a 
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(a) Karnaugh map for analogue COMPARATORS 
possible mixed solution (hand crafted). 
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between inputs *; (b) the resulting 

several inputs and a constant (e.g. the inputs are combined by a pre-processing layer of op-amps); this 
is equivalent to allowing hyperplanes which are equally spaces from the axes (Fig. 5.a). Now, the al- 
gorithm generates an even smaller circuit (Fig. 5.b); a mixed solution can be hand crafted (Fig. 5.c). 

Conclusions 

This paper has shown that constructive learning could be used for optimising circuits. Such an approach 
can take advantage of mixed analogue/digital implementations as it builds either TG circuits, Boolean 
circuits, or a mixture of them (for a solution to the two-spirals problem see [5, ‘31). For the particular 
example considered, the solutions given by our algorithm can still be enhanced (see hand crafted ver- 
sions), but the starting points are always in the solutions given by the algorithm. We are currently 
working on designing another constructive algorithm based on Propositions 9: 10 and 11. 
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